C++程序  |  2202行  |  85.69 KB

//===- llvm/IRBuilder.h - Builder for LLVM Instructions ---------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the IRBuilder class, which is used as a convenient way
// to create LLVM instructions with a consistent and simplified interface.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_IR_IRBUILDER_H
#define LLVM_IR_IRBUILDER_H

#include "llvm-c/Types.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantFolder.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/CBindingWrapping.h"
#include "llvm/Support/Casting.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <functional>
#include <utility>

namespace llvm {

class APInt;
class MDNode;
class Use;

/// This provides the default implementation of the IRBuilder
/// 'InsertHelper' method that is called whenever an instruction is created by
/// IRBuilder and needs to be inserted.
///
/// By default, this inserts the instruction at the insertion point.
class IRBuilderDefaultInserter {
protected:
  void InsertHelper(Instruction *I, const Twine &Name,
                    BasicBlock *BB, BasicBlock::iterator InsertPt) const {
    if (BB) BB->getInstList().insert(InsertPt, I);
    I->setName(Name);
  }
};

/// Provides an 'InsertHelper' that calls a user-provided callback after
/// performing the default insertion.
class IRBuilderCallbackInserter : IRBuilderDefaultInserter {
  std::function<void(Instruction *)> Callback;

public:
  IRBuilderCallbackInserter(std::function<void(Instruction *)> Callback)
      : Callback(std::move(Callback)) {}

protected:
  void InsertHelper(Instruction *I, const Twine &Name,
                    BasicBlock *BB, BasicBlock::iterator InsertPt) const {
    IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
    Callback(I);
  }
};

/// Common base class shared among various IRBuilders.
class IRBuilderBase {
  DebugLoc CurDbgLocation;

protected:
  BasicBlock *BB;
  BasicBlock::iterator InsertPt;
  LLVMContext &Context;

  MDNode *DefaultFPMathTag;
  FastMathFlags FMF;

  ArrayRef<OperandBundleDef> DefaultOperandBundles;

public:
  IRBuilderBase(LLVMContext &context, MDNode *FPMathTag = nullptr,
                ArrayRef<OperandBundleDef> OpBundles = None)
      : Context(context), DefaultFPMathTag(FPMathTag),
        DefaultOperandBundles(OpBundles) {
    ClearInsertionPoint();
  }

  //===--------------------------------------------------------------------===//
  // Builder configuration methods
  //===--------------------------------------------------------------------===//

  /// Clear the insertion point: created instructions will not be
  /// inserted into a block.
  void ClearInsertionPoint() {
    BB = nullptr;
    InsertPt = BasicBlock::iterator();
  }

  BasicBlock *GetInsertBlock() const { return BB; }
  BasicBlock::iterator GetInsertPoint() const { return InsertPt; }
  LLVMContext &getContext() const { return Context; }

  /// This specifies that created instructions should be appended to the
  /// end of the specified block.
  void SetInsertPoint(BasicBlock *TheBB) {
    BB = TheBB;
    InsertPt = BB->end();
  }

  /// This specifies that created instructions should be inserted before
  /// the specified instruction.
  void SetInsertPoint(Instruction *I) {
    BB = I->getParent();
    InsertPt = I->getIterator();
    assert(InsertPt != BB->end() && "Can't read debug loc from end()");
    SetCurrentDebugLocation(I->getDebugLoc());
  }

  /// This specifies that created instructions should be inserted at the
  /// specified point.
  void SetInsertPoint(BasicBlock *TheBB, BasicBlock::iterator IP) {
    BB = TheBB;
    InsertPt = IP;
    if (IP != TheBB->end())
      SetCurrentDebugLocation(IP->getDebugLoc());
  }

  /// Set location information used by debugging information.
  void SetCurrentDebugLocation(DebugLoc L) { CurDbgLocation = std::move(L); }

  /// Get location information used by debugging information.
  const DebugLoc &getCurrentDebugLocation() const { return CurDbgLocation; }

  /// If this builder has a current debug location, set it on the
  /// specified instruction.
  void SetInstDebugLocation(Instruction *I) const {
    if (CurDbgLocation)
      I->setDebugLoc(CurDbgLocation);
  }

  /// Get the return type of the current function that we're emitting
  /// into.
  Type *getCurrentFunctionReturnType() const;

  /// InsertPoint - A saved insertion point.
  class InsertPoint {
    BasicBlock *Block = nullptr;
    BasicBlock::iterator Point;

  public:
    /// Creates a new insertion point which doesn't point to anything.
    InsertPoint() = default;

    /// Creates a new insertion point at the given location.
    InsertPoint(BasicBlock *InsertBlock, BasicBlock::iterator InsertPoint)
        : Block(InsertBlock), Point(InsertPoint) {}

    /// Returns true if this insert point is set.
    bool isSet() const { return (Block != nullptr); }

    BasicBlock *getBlock() const { return Block; }
    BasicBlock::iterator getPoint() const { return Point; }
  };

  /// Returns the current insert point.
  InsertPoint saveIP() const {
    return InsertPoint(GetInsertBlock(), GetInsertPoint());
  }

  /// Returns the current insert point, clearing it in the process.
  InsertPoint saveAndClearIP() {
    InsertPoint IP(GetInsertBlock(), GetInsertPoint());
    ClearInsertionPoint();
    return IP;
  }

  /// Sets the current insert point to a previously-saved location.
  void restoreIP(InsertPoint IP) {
    if (IP.isSet())
      SetInsertPoint(IP.getBlock(), IP.getPoint());
    else
      ClearInsertionPoint();
  }

  /// Get the floating point math metadata being used.
  MDNode *getDefaultFPMathTag() const { return DefaultFPMathTag; }

  /// Get the flags to be applied to created floating point ops
  FastMathFlags getFastMathFlags() const { return FMF; }

  /// Clear the fast-math flags.
  void clearFastMathFlags() { FMF.clear(); }

  /// Set the floating point math metadata to be used.
  void setDefaultFPMathTag(MDNode *FPMathTag) { DefaultFPMathTag = FPMathTag; }

  /// Set the fast-math flags to be used with generated fp-math operators
  void setFastMathFlags(FastMathFlags NewFMF) { FMF = NewFMF; }

  //===--------------------------------------------------------------------===//
  // RAII helpers.
  //===--------------------------------------------------------------------===//

  // RAII object that stores the current insertion point and restores it
  // when the object is destroyed. This includes the debug location.
  class InsertPointGuard {
    IRBuilderBase &Builder;
    AssertingVH<BasicBlock> Block;
    BasicBlock::iterator Point;
    DebugLoc DbgLoc;

  public:
    InsertPointGuard(IRBuilderBase &B)
        : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()),
          DbgLoc(B.getCurrentDebugLocation()) {}

    InsertPointGuard(const InsertPointGuard &) = delete;
    InsertPointGuard &operator=(const InsertPointGuard &) = delete;

    ~InsertPointGuard() {
      Builder.restoreIP(InsertPoint(Block, Point));
      Builder.SetCurrentDebugLocation(DbgLoc);
    }
  };

  // RAII object that stores the current fast math settings and restores
  // them when the object is destroyed.
  class FastMathFlagGuard {
    IRBuilderBase &Builder;
    FastMathFlags FMF;
    MDNode *FPMathTag;

  public:
    FastMathFlagGuard(IRBuilderBase &B)
        : Builder(B), FMF(B.FMF), FPMathTag(B.DefaultFPMathTag) {}

    FastMathFlagGuard(const FastMathFlagGuard &) = delete;
    FastMathFlagGuard &operator=(const FastMathFlagGuard &) = delete;

    ~FastMathFlagGuard() {
      Builder.FMF = FMF;
      Builder.DefaultFPMathTag = FPMathTag;
    }
  };

  //===--------------------------------------------------------------------===//
  // Miscellaneous creation methods.
  //===--------------------------------------------------------------------===//

  /// Make a new global variable with initializer type i8*
  ///
  /// Make a new global variable with an initializer that has array of i8 type
  /// filled in with the null terminated string value specified.  The new global
  /// variable will be marked mergable with any others of the same contents.  If
  /// Name is specified, it is the name of the global variable created.
  GlobalVariable *CreateGlobalString(StringRef Str, const Twine &Name = "",
                                     unsigned AddressSpace = 0);

  /// Get a constant value representing either true or false.
  ConstantInt *getInt1(bool V) {
    return ConstantInt::get(getInt1Ty(), V);
  }

  /// Get the constant value for i1 true.
  ConstantInt *getTrue() {
    return ConstantInt::getTrue(Context);
  }

  /// Get the constant value for i1 false.
  ConstantInt *getFalse() {
    return ConstantInt::getFalse(Context);
  }

  /// Get a constant 8-bit value.
  ConstantInt *getInt8(uint8_t C) {
    return ConstantInt::get(getInt8Ty(), C);
  }

  /// Get a constant 16-bit value.
  ConstantInt *getInt16(uint16_t C) {
    return ConstantInt::get(getInt16Ty(), C);
  }

  /// Get a constant 32-bit value.
  ConstantInt *getInt32(uint32_t C) {
    return ConstantInt::get(getInt32Ty(), C);
  }

  /// Get a constant 64-bit value.
  ConstantInt *getInt64(uint64_t C) {
    return ConstantInt::get(getInt64Ty(), C);
  }

  /// Get a constant N-bit value, zero extended or truncated from
  /// a 64-bit value.
  ConstantInt *getIntN(unsigned N, uint64_t C) {
    return ConstantInt::get(getIntNTy(N), C);
  }

  /// Get a constant integer value.
  ConstantInt *getInt(const APInt &AI) {
    return ConstantInt::get(Context, AI);
  }

  //===--------------------------------------------------------------------===//
  // Type creation methods
  //===--------------------------------------------------------------------===//

  /// Fetch the type representing a single bit
  IntegerType *getInt1Ty() {
    return Type::getInt1Ty(Context);
  }

  /// Fetch the type representing an 8-bit integer.
  IntegerType *getInt8Ty() {
    return Type::getInt8Ty(Context);
  }

  /// Fetch the type representing a 16-bit integer.
  IntegerType *getInt16Ty() {
    return Type::getInt16Ty(Context);
  }

  /// Fetch the type representing a 32-bit integer.
  IntegerType *getInt32Ty() {
    return Type::getInt32Ty(Context);
  }

  /// Fetch the type representing a 64-bit integer.
  IntegerType *getInt64Ty() {
    return Type::getInt64Ty(Context);
  }

  /// Fetch the type representing a 128-bit integer.
  IntegerType *getInt128Ty() { return Type::getInt128Ty(Context); }

  /// Fetch the type representing an N-bit integer.
  IntegerType *getIntNTy(unsigned N) {
    return Type::getIntNTy(Context, N);
  }

  /// Fetch the type representing a 16-bit floating point value.
  Type *getHalfTy() {
    return Type::getHalfTy(Context);
  }

  /// Fetch the type representing a 32-bit floating point value.
  Type *getFloatTy() {
    return Type::getFloatTy(Context);
  }

  /// Fetch the type representing a 64-bit floating point value.
  Type *getDoubleTy() {
    return Type::getDoubleTy(Context);
  }

  /// Fetch the type representing void.
  Type *getVoidTy() {
    return Type::getVoidTy(Context);
  }

  /// Fetch the type representing a pointer to an 8-bit integer value.
  PointerType *getInt8PtrTy(unsigned AddrSpace = 0) {
    return Type::getInt8PtrTy(Context, AddrSpace);
  }

  /// Fetch the type representing a pointer to an integer value.
  IntegerType *getIntPtrTy(const DataLayout &DL, unsigned AddrSpace = 0) {
    return DL.getIntPtrType(Context, AddrSpace);
  }

  //===--------------------------------------------------------------------===//
  // Intrinsic creation methods
  //===--------------------------------------------------------------------===//

  /// Create and insert a memset to the specified pointer and the
  /// specified value.
  ///
  /// If the pointer isn't an i8*, it will be converted. If a TBAA tag is
  /// specified, it will be added to the instruction. Likewise with alias.scope
  /// and noalias tags.
  CallInst *CreateMemSet(Value *Ptr, Value *Val, uint64_t Size, unsigned Align,
                         bool isVolatile = false, MDNode *TBAATag = nullptr,
                         MDNode *ScopeTag = nullptr,
                         MDNode *NoAliasTag = nullptr) {
    return CreateMemSet(Ptr, Val, getInt64(Size), Align, isVolatile,
                        TBAATag, ScopeTag, NoAliasTag);
  }

  CallInst *CreateMemSet(Value *Ptr, Value *Val, Value *Size, unsigned Align,
                         bool isVolatile = false, MDNode *TBAATag = nullptr,
                         MDNode *ScopeTag = nullptr,
                         MDNode *NoAliasTag = nullptr);

  /// Create and insert an element unordered-atomic memset of the region of
  /// memory starting at the given pointer to the given value.
  ///
  /// If the pointer isn't an i8*, it will be converted. If a TBAA tag is
  /// specified, it will be added to the instruction. Likewise with alias.scope
  /// and noalias tags.
  CallInst *CreateElementUnorderedAtomicMemSet(Value *Ptr, Value *Val,
                                               uint64_t Size, unsigned Align,
                                               uint32_t ElementSize,
                                               MDNode *TBAATag = nullptr,
                                               MDNode *ScopeTag = nullptr,
                                               MDNode *NoAliasTag = nullptr) {
    return CreateElementUnorderedAtomicMemSet(Ptr, Val, getInt64(Size), Align,
                                              ElementSize, TBAATag, ScopeTag,
                                              NoAliasTag);
  }

  CallInst *CreateElementUnorderedAtomicMemSet(Value *Ptr, Value *Val,
                                               Value *Size, unsigned Align,
                                               uint32_t ElementSize,
                                               MDNode *TBAATag = nullptr,
                                               MDNode *ScopeTag = nullptr,
                                               MDNode *NoAliasTag = nullptr);

  /// Create and insert a memcpy between the specified pointers.
  ///
  /// If the pointers aren't i8*, they will be converted.  If a TBAA tag is
  /// specified, it will be added to the instruction. Likewise with alias.scope
  /// and noalias tags.
  CallInst *CreateMemCpy(Value *Dst, unsigned DstAlign, Value *Src,
                         unsigned SrcAlign, uint64_t Size,
                         bool isVolatile = false, MDNode *TBAATag = nullptr,
                         MDNode *TBAAStructTag = nullptr,
                         MDNode *ScopeTag = nullptr,
                         MDNode *NoAliasTag = nullptr) {
    return CreateMemCpy(Dst, DstAlign, Src, SrcAlign, getInt64(Size),
                        isVolatile, TBAATag, TBAAStructTag, ScopeTag,
                        NoAliasTag);
  }

  CallInst *CreateMemCpy(Value *Dst, unsigned DstAlign, Value *Src,
                         unsigned SrcAlign, Value *Size,
                         bool isVolatile = false, MDNode *TBAATag = nullptr,
                         MDNode *TBAAStructTag = nullptr,
                         MDNode *ScopeTag = nullptr,
                         MDNode *NoAliasTag = nullptr);

  /// Create and insert an element unordered-atomic memcpy between the
  /// specified pointers.
  ///
  /// DstAlign/SrcAlign are the alignments of the Dst/Src pointers, respectively.
  ///
  /// If the pointers aren't i8*, they will be converted.  If a TBAA tag is
  /// specified, it will be added to the instruction. Likewise with alias.scope
  /// and noalias tags.
  CallInst *CreateElementUnorderedAtomicMemCpy(
      Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign,
      uint64_t Size, uint32_t ElementSize, MDNode *TBAATag = nullptr,
      MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr,
      MDNode *NoAliasTag = nullptr) {
    return CreateElementUnorderedAtomicMemCpy(
        Dst, DstAlign, Src, SrcAlign, getInt64(Size), ElementSize, TBAATag,
        TBAAStructTag, ScopeTag, NoAliasTag);
  }

  CallInst *CreateElementUnorderedAtomicMemCpy(
      Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign, Value *Size,
      uint32_t ElementSize, MDNode *TBAATag = nullptr,
      MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr,
      MDNode *NoAliasTag = nullptr);

  /// Create and insert a memmove between the specified
  /// pointers.
  ///
  /// If the pointers aren't i8*, they will be converted.  If a TBAA tag is
  /// specified, it will be added to the instruction. Likewise with alias.scope
  /// and noalias tags.
  CallInst *CreateMemMove(Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign,
                          uint64_t Size, bool isVolatile = false,
                          MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr,
                          MDNode *NoAliasTag = nullptr) {
    return CreateMemMove(Dst, DstAlign, Src, SrcAlign, getInt64(Size), isVolatile,
                         TBAATag, ScopeTag, NoAliasTag);
  }

  CallInst *CreateMemMove(Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign,
                          Value *Size, bool isVolatile = false, MDNode *TBAATag = nullptr,
                          MDNode *ScopeTag = nullptr,
                          MDNode *NoAliasTag = nullptr);

  /// \brief Create and insert an element unordered-atomic memmove between the
  /// specified pointers.
  ///
  /// DstAlign/SrcAlign are the alignments of the Dst/Src pointers,
  /// respectively.
  ///
  /// If the pointers aren't i8*, they will be converted.  If a TBAA tag is
  /// specified, it will be added to the instruction. Likewise with alias.scope
  /// and noalias tags.
  CallInst *CreateElementUnorderedAtomicMemMove(
      Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign,
      uint64_t Size, uint32_t ElementSize, MDNode *TBAATag = nullptr,
      MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr,
      MDNode *NoAliasTag = nullptr) {
    return CreateElementUnorderedAtomicMemMove(
        Dst, DstAlign, Src, SrcAlign, getInt64(Size), ElementSize, TBAATag,
        TBAAStructTag, ScopeTag, NoAliasTag);
  }

  CallInst *CreateElementUnorderedAtomicMemMove(
      Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign, Value *Size,
      uint32_t ElementSize, MDNode *TBAATag = nullptr,
      MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr,
      MDNode *NoAliasTag = nullptr);

  /// Create a vector fadd reduction intrinsic of the source vector.
  /// The first parameter is a scalar accumulator value for ordered reductions.
  CallInst *CreateFAddReduce(Value *Acc, Value *Src);

  /// Create a vector fmul reduction intrinsic of the source vector.
  /// The first parameter is a scalar accumulator value for ordered reductions.
  CallInst *CreateFMulReduce(Value *Acc, Value *Src);

  /// Create a vector int add reduction intrinsic of the source vector.
  CallInst *CreateAddReduce(Value *Src);

  /// Create a vector int mul reduction intrinsic of the source vector.
  CallInst *CreateMulReduce(Value *Src);

  /// Create a vector int AND reduction intrinsic of the source vector.
  CallInst *CreateAndReduce(Value *Src);

  /// Create a vector int OR reduction intrinsic of the source vector.
  CallInst *CreateOrReduce(Value *Src);

  /// Create a vector int XOR reduction intrinsic of the source vector.
  CallInst *CreateXorReduce(Value *Src);

  /// Create a vector integer max reduction intrinsic of the source
  /// vector.
  CallInst *CreateIntMaxReduce(Value *Src, bool IsSigned = false);

  /// Create a vector integer min reduction intrinsic of the source
  /// vector.
  CallInst *CreateIntMinReduce(Value *Src, bool IsSigned = false);

  /// Create a vector float max reduction intrinsic of the source
  /// vector.
  CallInst *CreateFPMaxReduce(Value *Src, bool NoNaN = false);

  /// Create a vector float min reduction intrinsic of the source
  /// vector.
  CallInst *CreateFPMinReduce(Value *Src, bool NoNaN = false);

  /// Create a lifetime.start intrinsic.
  ///
  /// If the pointer isn't i8* it will be converted.
  CallInst *CreateLifetimeStart(Value *Ptr, ConstantInt *Size = nullptr);

  /// Create a lifetime.end intrinsic.
  ///
  /// If the pointer isn't i8* it will be converted.
  CallInst *CreateLifetimeEnd(Value *Ptr, ConstantInt *Size = nullptr);

  /// Create a call to invariant.start intrinsic.
  ///
  /// If the pointer isn't i8* it will be converted.
  CallInst *CreateInvariantStart(Value *Ptr, ConstantInt *Size = nullptr);

  /// Create a call to Masked Load intrinsic
  CallInst *CreateMaskedLoad(Value *Ptr, unsigned Align, Value *Mask,
                             Value *PassThru = nullptr, const Twine &Name = "");

  /// Create a call to Masked Store intrinsic
  CallInst *CreateMaskedStore(Value *Val, Value *Ptr, unsigned Align,
                              Value *Mask);

  /// Create a call to Masked Gather intrinsic
  CallInst *CreateMaskedGather(Value *Ptrs, unsigned Align,
                               Value *Mask = nullptr,
                               Value *PassThru = nullptr,
                               const Twine& Name = "");

  /// Create a call to Masked Scatter intrinsic
  CallInst *CreateMaskedScatter(Value *Val, Value *Ptrs, unsigned Align,
                                Value *Mask = nullptr);

  /// Create an assume intrinsic call that allows the optimizer to
  /// assume that the provided condition will be true.
  CallInst *CreateAssumption(Value *Cond);

  /// Create a call to the experimental.gc.statepoint intrinsic to
  /// start a new statepoint sequence.
  CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
                                   Value *ActualCallee,
                                   ArrayRef<Value *> CallArgs,
                                   ArrayRef<Value *> DeoptArgs,
                                   ArrayRef<Value *> GCArgs,
                                   const Twine &Name = "");

  /// Create a call to the experimental.gc.statepoint intrinsic to
  /// start a new statepoint sequence.
  CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
                                   Value *ActualCallee, uint32_t Flags,
                                   ArrayRef<Use> CallArgs,
                                   ArrayRef<Use> TransitionArgs,
                                   ArrayRef<Use> DeoptArgs,
                                   ArrayRef<Value *> GCArgs,
                                   const Twine &Name = "");

  /// Conveninence function for the common case when CallArgs are filled
  /// in using makeArrayRef(CS.arg_begin(), CS.arg_end()); Use needs to be
  /// .get()'ed to get the Value pointer.
  CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
                                   Value *ActualCallee, ArrayRef<Use> CallArgs,
                                   ArrayRef<Value *> DeoptArgs,
                                   ArrayRef<Value *> GCArgs,
                                   const Twine &Name = "");

  /// Create an invoke to the experimental.gc.statepoint intrinsic to
  /// start a new statepoint sequence.
  InvokeInst *
  CreateGCStatepointInvoke(uint64_t ID, uint32_t NumPatchBytes,
                           Value *ActualInvokee, BasicBlock *NormalDest,
                           BasicBlock *UnwindDest, ArrayRef<Value *> InvokeArgs,
                           ArrayRef<Value *> DeoptArgs,
                           ArrayRef<Value *> GCArgs, const Twine &Name = "");

  /// Create an invoke to the experimental.gc.statepoint intrinsic to
  /// start a new statepoint sequence.
  InvokeInst *CreateGCStatepointInvoke(
      uint64_t ID, uint32_t NumPatchBytes, Value *ActualInvokee,
      BasicBlock *NormalDest, BasicBlock *UnwindDest, uint32_t Flags,
      ArrayRef<Use> InvokeArgs, ArrayRef<Use> TransitionArgs,
      ArrayRef<Use> DeoptArgs, ArrayRef<Value *> GCArgs,
      const Twine &Name = "");

  // Conveninence function for the common case when CallArgs are filled in using
  // makeArrayRef(CS.arg_begin(), CS.arg_end()); Use needs to be .get()'ed to
  // get the Value *.
  InvokeInst *
  CreateGCStatepointInvoke(uint64_t ID, uint32_t NumPatchBytes,
                           Value *ActualInvokee, BasicBlock *NormalDest,
                           BasicBlock *UnwindDest, ArrayRef<Use> InvokeArgs,
                           ArrayRef<Value *> DeoptArgs,
                           ArrayRef<Value *> GCArgs, const Twine &Name = "");

  /// Create a call to the experimental.gc.result intrinsic to extract
  /// the result from a call wrapped in a statepoint.
  CallInst *CreateGCResult(Instruction *Statepoint,
                           Type *ResultType,
                           const Twine &Name = "");

  /// Create a call to the experimental.gc.relocate intrinsics to
  /// project the relocated value of one pointer from the statepoint.
  CallInst *CreateGCRelocate(Instruction *Statepoint,
                             int BaseOffset,
                             int DerivedOffset,
                             Type *ResultType,
                             const Twine &Name = "");

  /// Create a call to intrinsic \p ID with 2 operands which is mangled on the
  /// first type.
  CallInst *CreateBinaryIntrinsic(Intrinsic::ID ID,
                                  Value *LHS, Value *RHS,
                                  const Twine &Name = "");

  /// Create a call to intrinsic \p ID with no operands.
  CallInst *CreateIntrinsic(Intrinsic::ID ID,
                            Instruction *FMFSource = nullptr,
                            const Twine &Name = "");

  /// Create a call to intrinsic \p ID with 1 or more operands assuming the
  /// intrinsic and all operands have the same type. If \p FMFSource is
  /// provided, copy fast-math-flags from that instruction to the intrinsic.
  CallInst *CreateIntrinsic(Intrinsic::ID ID, ArrayRef<Value *> Args,
                            Instruction *FMFSource = nullptr,
                            const Twine &Name = "");

  /// Create call to the minnum intrinsic.
  CallInst *CreateMinNum(Value *LHS, Value *RHS, const Twine &Name = "") {
    return CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS, Name);
  }

  /// Create call to the maxnum intrinsic.
  CallInst *CreateMaxNum(Value *LHS, Value *RHS, const Twine &Name = "") {
    return CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS, Name);
  }

private:
  /// Create a call to a masked intrinsic with given Id.
  CallInst *CreateMaskedIntrinsic(Intrinsic::ID Id, ArrayRef<Value *> Ops,
                                  ArrayRef<Type *> OverloadedTypes,
                                  const Twine &Name = "");

  Value *getCastedInt8PtrValue(Value *Ptr);
};

/// This provides a uniform API for creating instructions and inserting
/// them into a basic block: either at the end of a BasicBlock, or at a specific
/// iterator location in a block.
///
/// Note that the builder does not expose the full generality of LLVM
/// instructions.  For access to extra instruction properties, use the mutators
/// (e.g. setVolatile) on the instructions after they have been
/// created. Convenience state exists to specify fast-math flags and fp-math
/// tags.
///
/// The first template argument specifies a class to use for creating constants.
/// This defaults to creating minimally folded constants.  The second template
/// argument allows clients to specify custom insertion hooks that are called on
/// every newly created insertion.
template <typename T = ConstantFolder,
          typename Inserter = IRBuilderDefaultInserter>
class IRBuilder : public IRBuilderBase, public Inserter {
  T Folder;

public:
  IRBuilder(LLVMContext &C, const T &F, Inserter I = Inserter(),
            MDNode *FPMathTag = nullptr,
            ArrayRef<OperandBundleDef> OpBundles = None)
      : IRBuilderBase(C, FPMathTag, OpBundles), Inserter(std::move(I)),
        Folder(F) {}

  explicit IRBuilder(LLVMContext &C, MDNode *FPMathTag = nullptr,
                     ArrayRef<OperandBundleDef> OpBundles = None)
      : IRBuilderBase(C, FPMathTag, OpBundles) {}

  explicit IRBuilder(BasicBlock *TheBB, const T &F, MDNode *FPMathTag = nullptr,
                     ArrayRef<OperandBundleDef> OpBundles = None)
      : IRBuilderBase(TheBB->getContext(), FPMathTag, OpBundles), Folder(F) {
    SetInsertPoint(TheBB);
  }

  explicit IRBuilder(BasicBlock *TheBB, MDNode *FPMathTag = nullptr,
                     ArrayRef<OperandBundleDef> OpBundles = None)
      : IRBuilderBase(TheBB->getContext(), FPMathTag, OpBundles) {
    SetInsertPoint(TheBB);
  }

  explicit IRBuilder(Instruction *IP, MDNode *FPMathTag = nullptr,
                     ArrayRef<OperandBundleDef> OpBundles = None)
      : IRBuilderBase(IP->getContext(), FPMathTag, OpBundles) {
    SetInsertPoint(IP);
  }

  IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP, const T &F,
            MDNode *FPMathTag = nullptr,
            ArrayRef<OperandBundleDef> OpBundles = None)
      : IRBuilderBase(TheBB->getContext(), FPMathTag, OpBundles), Folder(F) {
    SetInsertPoint(TheBB, IP);
  }

  IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP,
            MDNode *FPMathTag = nullptr,
            ArrayRef<OperandBundleDef> OpBundles = None)
      : IRBuilderBase(TheBB->getContext(), FPMathTag, OpBundles) {
    SetInsertPoint(TheBB, IP);
  }

  /// Get the constant folder being used.
  const T &getFolder() { return Folder; }

  /// Insert and return the specified instruction.
  template<typename InstTy>
  InstTy *Insert(InstTy *I, const Twine &Name = "") const {
    this->InsertHelper(I, Name, BB, InsertPt);
    this->SetInstDebugLocation(I);
    return I;
  }

  /// No-op overload to handle constants.
  Constant *Insert(Constant *C, const Twine& = "") const {
    return C;
  }

  //===--------------------------------------------------------------------===//
  // Instruction creation methods: Terminators
  //===--------------------------------------------------------------------===//

private:
  /// Helper to add branch weight and unpredictable metadata onto an
  /// instruction.
  /// \returns The annotated instruction.
  template <typename InstTy>
  InstTy *addBranchMetadata(InstTy *I, MDNode *Weights, MDNode *Unpredictable) {
    if (Weights)
      I->setMetadata(LLVMContext::MD_prof, Weights);
    if (Unpredictable)
      I->setMetadata(LLVMContext::MD_unpredictable, Unpredictable);
    return I;
  }

public:
  /// Create a 'ret void' instruction.
  ReturnInst *CreateRetVoid() {
    return Insert(ReturnInst::Create(Context));
  }

  /// Create a 'ret <val>' instruction.
  ReturnInst *CreateRet(Value *V) {
    return Insert(ReturnInst::Create(Context, V));
  }

  /// Create a sequence of N insertvalue instructions,
  /// with one Value from the retVals array each, that build a aggregate
  /// return value one value at a time, and a ret instruction to return
  /// the resulting aggregate value.
  ///
  /// This is a convenience function for code that uses aggregate return values
  /// as a vehicle for having multiple return values.
  ReturnInst *CreateAggregateRet(Value *const *retVals, unsigned N) {
    Value *V = UndefValue::get(getCurrentFunctionReturnType());
    for (unsigned i = 0; i != N; ++i)
      V = CreateInsertValue(V, retVals[i], i, "mrv");
    return Insert(ReturnInst::Create(Context, V));
  }

  /// Create an unconditional 'br label X' instruction.
  BranchInst *CreateBr(BasicBlock *Dest) {
    return Insert(BranchInst::Create(Dest));
  }

  /// Create a conditional 'br Cond, TrueDest, FalseDest'
  /// instruction.
  BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False,
                           MDNode *BranchWeights = nullptr,
                           MDNode *Unpredictable = nullptr) {
    return Insert(addBranchMetadata(BranchInst::Create(True, False, Cond),
                                    BranchWeights, Unpredictable));
  }

  /// Create a conditional 'br Cond, TrueDest, FalseDest'
  /// instruction. Copy branch meta data if available.
  BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False,
                           Instruction *MDSrc) {
    BranchInst *Br = BranchInst::Create(True, False, Cond);
    if (MDSrc) {
      unsigned WL[4] = {LLVMContext::MD_prof, LLVMContext::MD_unpredictable,
                        LLVMContext::MD_make_implicit, LLVMContext::MD_dbg};
      Br->copyMetadata(*MDSrc, makeArrayRef(&WL[0], 4));
    }
    return Insert(Br);
  }

  /// Create a switch instruction with the specified value, default dest,
  /// and with a hint for the number of cases that will be added (for efficient
  /// allocation).
  SwitchInst *CreateSwitch(Value *V, BasicBlock *Dest, unsigned NumCases = 10,
                           MDNode *BranchWeights = nullptr,
                           MDNode *Unpredictable = nullptr) {
    return Insert(addBranchMetadata(SwitchInst::Create(V, Dest, NumCases),
                                    BranchWeights, Unpredictable));
  }

  /// Create an indirect branch instruction with the specified address
  /// operand, with an optional hint for the number of destinations that will be
  /// added (for efficient allocation).
  IndirectBrInst *CreateIndirectBr(Value *Addr, unsigned NumDests = 10) {
    return Insert(IndirectBrInst::Create(Addr, NumDests));
  }

  /// Create an invoke instruction.
  InvokeInst *CreateInvoke(Value *Callee, BasicBlock *NormalDest,
                           BasicBlock *UnwindDest,
                           ArrayRef<Value *> Args = None,
                           const Twine &Name = "") {
    return Insert(InvokeInst::Create(Callee, NormalDest, UnwindDest, Args),
                  Name);
  }
  InvokeInst *CreateInvoke(Value *Callee, BasicBlock *NormalDest,
                           BasicBlock *UnwindDest, ArrayRef<Value *> Args,
                           ArrayRef<OperandBundleDef> OpBundles,
                           const Twine &Name = "") {
    return Insert(InvokeInst::Create(Callee, NormalDest, UnwindDest, Args,
                                     OpBundles), Name);
  }

  ResumeInst *CreateResume(Value *Exn) {
    return Insert(ResumeInst::Create(Exn));
  }

  CleanupReturnInst *CreateCleanupRet(CleanupPadInst *CleanupPad,
                                      BasicBlock *UnwindBB = nullptr) {
    return Insert(CleanupReturnInst::Create(CleanupPad, UnwindBB));
  }

  CatchSwitchInst *CreateCatchSwitch(Value *ParentPad, BasicBlock *UnwindBB,
                                     unsigned NumHandlers,
                                     const Twine &Name = "") {
    return Insert(CatchSwitchInst::Create(ParentPad, UnwindBB, NumHandlers),
                  Name);
  }

  CatchPadInst *CreateCatchPad(Value *ParentPad, ArrayRef<Value *> Args,
                               const Twine &Name = "") {
    return Insert(CatchPadInst::Create(ParentPad, Args), Name);
  }

  CleanupPadInst *CreateCleanupPad(Value *ParentPad,
                                   ArrayRef<Value *> Args = None,
                                   const Twine &Name = "") {
    return Insert(CleanupPadInst::Create(ParentPad, Args), Name);
  }

  CatchReturnInst *CreateCatchRet(CatchPadInst *CatchPad, BasicBlock *BB) {
    return Insert(CatchReturnInst::Create(CatchPad, BB));
  }

  UnreachableInst *CreateUnreachable() {
    return Insert(new UnreachableInst(Context));
  }

  //===--------------------------------------------------------------------===//
  // Instruction creation methods: Binary Operators
  //===--------------------------------------------------------------------===//
private:
  BinaryOperator *CreateInsertNUWNSWBinOp(BinaryOperator::BinaryOps Opc,
                                          Value *LHS, Value *RHS,
                                          const Twine &Name,
                                          bool HasNUW, bool HasNSW) {
    BinaryOperator *BO = Insert(BinaryOperator::Create(Opc, LHS, RHS), Name);
    if (HasNUW) BO->setHasNoUnsignedWrap();
    if (HasNSW) BO->setHasNoSignedWrap();
    return BO;
  }

  Instruction *setFPAttrs(Instruction *I, MDNode *FPMD,
                          FastMathFlags FMF) const {
    if (!FPMD)
      FPMD = DefaultFPMathTag;
    if (FPMD)
      I->setMetadata(LLVMContext::MD_fpmath, FPMD);
    I->setFastMathFlags(FMF);
    return I;
  }

  Value *foldConstant(Instruction::BinaryOps Opc, Value *L,
                      Value *R, const Twine &Name = nullptr) const {
    auto *LC = dyn_cast<Constant>(L);
    auto *RC = dyn_cast<Constant>(R);
    return (LC && RC) ? Insert(Folder.CreateBinOp(Opc, LC, RC), Name) : nullptr;
  }

public:
  Value *CreateAdd(Value *LHS, Value *RHS, const Twine &Name = "",
                   bool HasNUW = false, bool HasNSW = false) {
    if (auto *LC = dyn_cast<Constant>(LHS))
      if (auto *RC = dyn_cast<Constant>(RHS))
        return Insert(Folder.CreateAdd(LC, RC, HasNUW, HasNSW), Name);
    return CreateInsertNUWNSWBinOp(Instruction::Add, LHS, RHS, Name,
                                   HasNUW, HasNSW);
  }

  Value *CreateNSWAdd(Value *LHS, Value *RHS, const Twine &Name = "") {
    return CreateAdd(LHS, RHS, Name, false, true);
  }

  Value *CreateNUWAdd(Value *LHS, Value *RHS, const Twine &Name = "") {
    return CreateAdd(LHS, RHS, Name, true, false);
  }

  Value *CreateSub(Value *LHS, Value *RHS, const Twine &Name = "",
                   bool HasNUW = false, bool HasNSW = false) {
    if (auto *LC = dyn_cast<Constant>(LHS))
      if (auto *RC = dyn_cast<Constant>(RHS))
        return Insert(Folder.CreateSub(LC, RC, HasNUW, HasNSW), Name);
    return CreateInsertNUWNSWBinOp(Instruction::Sub, LHS, RHS, Name,
                                   HasNUW, HasNSW);
  }

  Value *CreateNSWSub(Value *LHS, Value *RHS, const Twine &Name = "") {
    return CreateSub(LHS, RHS, Name, false, true);
  }

  Value *CreateNUWSub(Value *LHS, Value *RHS, const Twine &Name = "") {
    return CreateSub(LHS, RHS, Name, true, false);
  }

  Value *CreateMul(Value *LHS, Value *RHS, const Twine &Name = "",
                   bool HasNUW = false, bool HasNSW = false) {
    if (auto *LC = dyn_cast<Constant>(LHS))
      if (auto *RC = dyn_cast<Constant>(RHS))
        return Insert(Folder.CreateMul(LC, RC, HasNUW, HasNSW), Name);
    return CreateInsertNUWNSWBinOp(Instruction::Mul, LHS, RHS, Name,
                                   HasNUW, HasNSW);
  }

  Value *CreateNSWMul(Value *LHS, Value *RHS, const Twine &Name = "") {
    return CreateMul(LHS, RHS, Name, false, true);
  }

  Value *CreateNUWMul(Value *LHS, Value *RHS, const Twine &Name = "") {
    return CreateMul(LHS, RHS, Name, true, false);
  }

  Value *CreateUDiv(Value *LHS, Value *RHS, const Twine &Name = "",
                    bool isExact = false) {
    if (auto *LC = dyn_cast<Constant>(LHS))
      if (auto *RC = dyn_cast<Constant>(RHS))
        return Insert(Folder.CreateUDiv(LC, RC, isExact), Name);
    if (!isExact)
      return Insert(BinaryOperator::CreateUDiv(LHS, RHS), Name);
    return Insert(BinaryOperator::CreateExactUDiv(LHS, RHS), Name);
  }

  Value *CreateExactUDiv(Value *LHS, Value *RHS, const Twine &Name = "") {
    return CreateUDiv(LHS, RHS, Name, true);
  }

  Value *CreateSDiv(Value *LHS, Value *RHS, const Twine &Name = "",
                    bool isExact = false) {
    if (auto *LC = dyn_cast<Constant>(LHS))
      if (auto *RC = dyn_cast<Constant>(RHS))
        return Insert(Folder.CreateSDiv(LC, RC, isExact), Name);
    if (!isExact)
      return Insert(BinaryOperator::CreateSDiv(LHS, RHS), Name);
    return Insert(BinaryOperator::CreateExactSDiv(LHS, RHS), Name);
  }

  Value *CreateExactSDiv(Value *LHS, Value *RHS, const Twine &Name = "") {
    return CreateSDiv(LHS, RHS, Name, true);
  }

  Value *CreateURem(Value *LHS, Value *RHS, const Twine &Name = "") {
    if (Value *V = foldConstant(Instruction::URem, LHS, RHS, Name)) return V;
    return Insert(BinaryOperator::CreateURem(LHS, RHS), Name);
  }

  Value *CreateSRem(Value *LHS, Value *RHS, const Twine &Name = "") {
    if (Value *V = foldConstant(Instruction::SRem, LHS, RHS, Name)) return V;
    return Insert(BinaryOperator::CreateSRem(LHS, RHS), Name);
  }

  Value *CreateShl(Value *LHS, Value *RHS, const Twine &Name = "",
                   bool HasNUW = false, bool HasNSW = false) {
    if (auto *LC = dyn_cast<Constant>(LHS))
      if (auto *RC = dyn_cast<Constant>(RHS))
        return Insert(Folder.CreateShl(LC, RC, HasNUW, HasNSW), Name);
    return CreateInsertNUWNSWBinOp(Instruction::Shl, LHS, RHS, Name,
                                   HasNUW, HasNSW);
  }

  Value *CreateShl(Value *LHS, const APInt &RHS, const Twine &Name = "",
                   bool HasNUW = false, bool HasNSW = false) {
    return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name,
                     HasNUW, HasNSW);
  }

  Value *CreateShl(Value *LHS, uint64_t RHS, const Twine &Name = "",
                   bool HasNUW = false, bool HasNSW = false) {
    return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name,
                     HasNUW, HasNSW);
  }

  Value *CreateLShr(Value *LHS, Value *RHS, const Twine &Name = "",
                    bool isExact = false) {
    if (auto *LC = dyn_cast<Constant>(LHS))
      if (auto *RC = dyn_cast<Constant>(RHS))
        return Insert(Folder.CreateLShr(LC, RC, isExact), Name);
    if (!isExact)
      return Insert(BinaryOperator::CreateLShr(LHS, RHS), Name);
    return Insert(BinaryOperator::CreateExactLShr(LHS, RHS), Name);
  }

  Value *CreateLShr(Value *LHS, const APInt &RHS, const Twine &Name = "",
                    bool isExact = false) {
    return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
  }

  Value *CreateLShr(Value *LHS, uint64_t RHS, const Twine &Name = "",
                    bool isExact = false) {
    return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
  }

  Value *CreateAShr(Value *LHS, Value *RHS, const Twine &Name = "",
                    bool isExact = false) {
    if (auto *LC = dyn_cast<Constant>(LHS))
      if (auto *RC = dyn_cast<Constant>(RHS))
        return Insert(Folder.CreateAShr(LC, RC, isExact), Name);
    if (!isExact)
      return Insert(BinaryOperator::CreateAShr(LHS, RHS), Name);
    return Insert(BinaryOperator::CreateExactAShr(LHS, RHS), Name);
  }

  Value *CreateAShr(Value *LHS, const APInt &RHS, const Twine &Name = "",
                    bool isExact = false) {
    return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
  }

  Value *CreateAShr(Value *LHS, uint64_t RHS, const Twine &Name = "",
                    bool isExact = false) {
    return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
  }

  Value *CreateAnd(Value *LHS, Value *RHS, const Twine &Name = "") {
    if (auto *RC = dyn_cast<Constant>(RHS)) {
      if (isa<ConstantInt>(RC) && cast<ConstantInt>(RC)->isMinusOne())
        return LHS;  // LHS & -1 -> LHS
      if (auto *LC = dyn_cast<Constant>(LHS))
        return Insert(Folder.CreateAnd(LC, RC), Name);
    }
    return Insert(BinaryOperator::CreateAnd(LHS, RHS), Name);
  }

  Value *CreateAnd(Value *LHS, const APInt &RHS, const Twine &Name = "") {
    return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
  }

  Value *CreateAnd(Value *LHS, uint64_t RHS, const Twine &Name = "") {
    return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
  }

  Value *CreateOr(Value *LHS, Value *RHS, const Twine &Name = "") {
    if (auto *RC = dyn_cast<Constant>(RHS)) {
      if (RC->isNullValue())
        return LHS;  // LHS | 0 -> LHS
      if (auto *LC = dyn_cast<Constant>(LHS))
        return Insert(Folder.CreateOr(LC, RC), Name);
    }
    return Insert(BinaryOperator::CreateOr(LHS, RHS), Name);
  }

  Value *CreateOr(Value *LHS, const APInt &RHS, const Twine &Name = "") {
    return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
  }

  Value *CreateOr(Value *LHS, uint64_t RHS, const Twine &Name = "") {
    return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
  }

  Value *CreateXor(Value *LHS, Value *RHS, const Twine &Name = "") {
    if (Value *V = foldConstant(Instruction::Xor, LHS, RHS, Name)) return V;
    return Insert(BinaryOperator::CreateXor(LHS, RHS), Name);
  }

  Value *CreateXor(Value *LHS, const APInt &RHS, const Twine &Name = "") {
    return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
  }

  Value *CreateXor(Value *LHS, uint64_t RHS, const Twine &Name = "") {
    return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
  }

  Value *CreateFAdd(Value *L, Value *R, const Twine &Name = "",
                    MDNode *FPMD = nullptr) {
    if (Value *V = foldConstant(Instruction::FAdd, L, R, Name)) return V;
    Instruction *I = setFPAttrs(BinaryOperator::CreateFAdd(L, R), FPMD, FMF);
    return Insert(I, Name);
  }

  /// Copy fast-math-flags from an instruction rather than using the builder's
  /// default FMF.
  Value *CreateFAddFMF(Value *L, Value *R, Instruction *FMFSource,
                       const Twine &Name = "") {
    if (Value *V = foldConstant(Instruction::FAdd, L, R, Name)) return V;
    Instruction *I = setFPAttrs(BinaryOperator::CreateFAdd(L, R), nullptr,
                                FMFSource->getFastMathFlags());
    return Insert(I, Name);
  }

  Value *CreateFSub(Value *L, Value *R, const Twine &Name = "",
                    MDNode *FPMD = nullptr) {
    if (Value *V = foldConstant(Instruction::FSub, L, R, Name)) return V;
    Instruction *I = setFPAttrs(BinaryOperator::CreateFSub(L, R), FPMD, FMF);
    return Insert(I, Name);
  }

  /// Copy fast-math-flags from an instruction rather than using the builder's
  /// default FMF.
  Value *CreateFSubFMF(Value *L, Value *R, Instruction *FMFSource,
                       const Twine &Name = "") {
    if (Value *V = foldConstant(Instruction::FSub, L, R, Name)) return V;
    Instruction *I = setFPAttrs(BinaryOperator::CreateFSub(L, R), nullptr,
                                FMFSource->getFastMathFlags());
    return Insert(I, Name);
  }

  Value *CreateFMul(Value *L, Value *R, const Twine &Name = "",
                    MDNode *FPMD = nullptr) {
    if (Value *V = foldConstant(Instruction::FMul, L, R, Name)) return V;
    Instruction *I = setFPAttrs(BinaryOperator::CreateFMul(L, R), FPMD, FMF);
    return Insert(I, Name);
  }

  /// Copy fast-math-flags from an instruction rather than using the builder's
  /// default FMF.
  Value *CreateFMulFMF(Value *L, Value *R, Instruction *FMFSource,
                       const Twine &Name = "") {
    if (Value *V = foldConstant(Instruction::FMul, L, R, Name)) return V;
    Instruction *I = setFPAttrs(BinaryOperator::CreateFMul(L, R), nullptr,
                                FMFSource->getFastMathFlags());
    return Insert(I, Name);
  }

  Value *CreateFDiv(Value *L, Value *R, const Twine &Name = "",
                    MDNode *FPMD = nullptr) {
    if (Value *V = foldConstant(Instruction::FDiv, L, R, Name)) return V;
    Instruction *I = setFPAttrs(BinaryOperator::CreateFDiv(L, R), FPMD, FMF);
    return Insert(I, Name);
  }

  /// Copy fast-math-flags from an instruction rather than using the builder's
  /// default FMF.
  Value *CreateFDivFMF(Value *L, Value *R, Instruction *FMFSource,
                       const Twine &Name = "") {
    if (Value *V = foldConstant(Instruction::FDiv, L, R, Name)) return V;
    Instruction *I = setFPAttrs(BinaryOperator::CreateFDiv(L, R), nullptr,
                                FMFSource->getFastMathFlags());
    return Insert(I, Name);
  }

  Value *CreateFRem(Value *L, Value *R, const Twine &Name = "",
                    MDNode *FPMD = nullptr) {
    if (Value *V = foldConstant(Instruction::FRem, L, R, Name)) return V;
    Instruction *I = setFPAttrs(BinaryOperator::CreateFRem(L, R), FPMD, FMF);
    return Insert(I, Name);
  }

  /// Copy fast-math-flags from an instruction rather than using the builder's
  /// default FMF.
  Value *CreateFRemFMF(Value *L, Value *R, Instruction *FMFSource,
                       const Twine &Name = "") {
    if (Value *V = foldConstant(Instruction::FRem, L, R, Name)) return V;
    Instruction *I = setFPAttrs(BinaryOperator::CreateFRem(L, R), nullptr,
                                FMFSource->getFastMathFlags());
    return Insert(I, Name);
  }

  Value *CreateBinOp(Instruction::BinaryOps Opc,
                     Value *LHS, Value *RHS, const Twine &Name = "",
                     MDNode *FPMathTag = nullptr) {
    if (Value *V = foldConstant(Opc, LHS, RHS, Name)) return V;
    Instruction *BinOp = BinaryOperator::Create(Opc, LHS, RHS);
    if (isa<FPMathOperator>(BinOp))
      BinOp = setFPAttrs(BinOp, FPMathTag, FMF);
    return Insert(BinOp, Name);
  }

  Value *CreateNeg(Value *V, const Twine &Name = "",
                   bool HasNUW = false, bool HasNSW = false) {
    if (auto *VC = dyn_cast<Constant>(V))
      return Insert(Folder.CreateNeg(VC, HasNUW, HasNSW), Name);
    BinaryOperator *BO = Insert(BinaryOperator::CreateNeg(V), Name);
    if (HasNUW) BO->setHasNoUnsignedWrap();
    if (HasNSW) BO->setHasNoSignedWrap();
    return BO;
  }

  Value *CreateNSWNeg(Value *V, const Twine &Name = "") {
    return CreateNeg(V, Name, false, true);
  }

  Value *CreateNUWNeg(Value *V, const Twine &Name = "") {
    return CreateNeg(V, Name, true, false);
  }

  Value *CreateFNeg(Value *V, const Twine &Name = "",
                    MDNode *FPMathTag = nullptr) {
    if (auto *VC = dyn_cast<Constant>(V))
      return Insert(Folder.CreateFNeg(VC), Name);
    return Insert(setFPAttrs(BinaryOperator::CreateFNeg(V), FPMathTag, FMF),
                  Name);
  }

  Value *CreateNot(Value *V, const Twine &Name = "") {
    if (auto *VC = dyn_cast<Constant>(V))
      return Insert(Folder.CreateNot(VC), Name);
    return Insert(BinaryOperator::CreateNot(V), Name);
  }

  //===--------------------------------------------------------------------===//
  // Instruction creation methods: Memory Instructions
  //===--------------------------------------------------------------------===//

  AllocaInst *CreateAlloca(Type *Ty, unsigned AddrSpace,
                           Value *ArraySize = nullptr, const Twine &Name = "") {
    return Insert(new AllocaInst(Ty, AddrSpace, ArraySize), Name);
  }

  AllocaInst *CreateAlloca(Type *Ty, Value *ArraySize = nullptr,
                           const Twine &Name = "") {
    const DataLayout &DL = BB->getParent()->getParent()->getDataLayout();
    return Insert(new AllocaInst(Ty, DL.getAllocaAddrSpace(), ArraySize), Name);
  }

  /// Provided to resolve 'CreateLoad(Ptr, "...")' correctly, instead of
  /// converting the string to 'bool' for the isVolatile parameter.
  LoadInst *CreateLoad(Value *Ptr, const char *Name) {
    return Insert(new LoadInst(Ptr), Name);
  }

  LoadInst *CreateLoad(Value *Ptr, const Twine &Name = "") {
    return Insert(new LoadInst(Ptr), Name);
  }

  LoadInst *CreateLoad(Type *Ty, Value *Ptr, const Twine &Name = "") {
    return Insert(new LoadInst(Ty, Ptr), Name);
  }

  LoadInst *CreateLoad(Value *Ptr, bool isVolatile, const Twine &Name = "") {
    return Insert(new LoadInst(Ptr, nullptr, isVolatile), Name);
  }

  StoreInst *CreateStore(Value *Val, Value *Ptr, bool isVolatile = false) {
    return Insert(new StoreInst(Val, Ptr, isVolatile));
  }

  /// Provided to resolve 'CreateAlignedLoad(Ptr, Align, "...")'
  /// correctly, instead of converting the string to 'bool' for the isVolatile
  /// parameter.
  LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, const char *Name) {
    LoadInst *LI = CreateLoad(Ptr, Name);
    LI->setAlignment(Align);
    return LI;
  }
  LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align,
                              const Twine &Name = "") {
    LoadInst *LI = CreateLoad(Ptr, Name);
    LI->setAlignment(Align);
    return LI;
  }
  LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, bool isVolatile,
                              const Twine &Name = "") {
    LoadInst *LI = CreateLoad(Ptr, isVolatile, Name);
    LI->setAlignment(Align);
    return LI;
  }

  StoreInst *CreateAlignedStore(Value *Val, Value *Ptr, unsigned Align,
                                bool isVolatile = false) {
    StoreInst *SI = CreateStore(Val, Ptr, isVolatile);
    SI->setAlignment(Align);
    return SI;
  }

  FenceInst *CreateFence(AtomicOrdering Ordering,
                         SyncScope::ID SSID = SyncScope::System,
                         const Twine &Name = "") {
    return Insert(new FenceInst(Context, Ordering, SSID), Name);
  }

  AtomicCmpXchgInst *
  CreateAtomicCmpXchg(Value *Ptr, Value *Cmp, Value *New,
                      AtomicOrdering SuccessOrdering,
                      AtomicOrdering FailureOrdering,
                      SyncScope::ID SSID = SyncScope::System) {
    return Insert(new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering,
                                        FailureOrdering, SSID));
  }

  AtomicRMWInst *CreateAtomicRMW(AtomicRMWInst::BinOp Op, Value *Ptr, Value *Val,
                                 AtomicOrdering Ordering,
                                 SyncScope::ID SSID = SyncScope::System) {
    return Insert(new AtomicRMWInst(Op, Ptr, Val, Ordering, SSID));
  }

  Value *CreateGEP(Value *Ptr, ArrayRef<Value *> IdxList,
                   const Twine &Name = "") {
    return CreateGEP(nullptr, Ptr, IdxList, Name);
  }

  Value *CreateGEP(Type *Ty, Value *Ptr, ArrayRef<Value *> IdxList,
                   const Twine &Name = "") {
    if (auto *PC = dyn_cast<Constant>(Ptr)) {
      // Every index must be constant.
      size_t i, e;
      for (i = 0, e = IdxList.size(); i != e; ++i)
        if (!isa<Constant>(IdxList[i]))
          break;
      if (i == e)
        return Insert(Folder.CreateGetElementPtr(Ty, PC, IdxList), Name);
    }
    return Insert(GetElementPtrInst::Create(Ty, Ptr, IdxList), Name);
  }

  Value *CreateInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
                           const Twine &Name = "") {
    return CreateInBoundsGEP(nullptr, Ptr, IdxList, Name);
  }

  Value *CreateInBoundsGEP(Type *Ty, Value *Ptr, ArrayRef<Value *> IdxList,
                           const Twine &Name = "") {
    if (auto *PC = dyn_cast<Constant>(Ptr)) {
      // Every index must be constant.
      size_t i, e;
      for (i = 0, e = IdxList.size(); i != e; ++i)
        if (!isa<Constant>(IdxList[i]))
          break;
      if (i == e)
        return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, IdxList),
                      Name);
    }
    return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, IdxList), Name);
  }

  Value *CreateGEP(Value *Ptr, Value *Idx, const Twine &Name = "") {
    return CreateGEP(nullptr, Ptr, Idx, Name);
  }

  Value *CreateGEP(Type *Ty, Value *Ptr, Value *Idx, const Twine &Name = "") {
    if (auto *PC = dyn_cast<Constant>(Ptr))
      if (auto *IC = dyn_cast<Constant>(Idx))
        return Insert(Folder.CreateGetElementPtr(Ty, PC, IC), Name);
    return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name);
  }

  Value *CreateInBoundsGEP(Type *Ty, Value *Ptr, Value *Idx,
                           const Twine &Name = "") {
    if (auto *PC = dyn_cast<Constant>(Ptr))
      if (auto *IC = dyn_cast<Constant>(Idx))
        return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, IC), Name);
    return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name);
  }

  Value *CreateConstGEP1_32(Value *Ptr, unsigned Idx0, const Twine &Name = "") {
    return CreateConstGEP1_32(nullptr, Ptr, Idx0, Name);
  }

  Value *CreateConstGEP1_32(Type *Ty, Value *Ptr, unsigned Idx0,
                            const Twine &Name = "") {
    Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0);

    if (auto *PC = dyn_cast<Constant>(Ptr))
      return Insert(Folder.CreateGetElementPtr(Ty, PC, Idx), Name);

    return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name);
  }

  Value *CreateConstInBoundsGEP1_32(Type *Ty, Value *Ptr, unsigned Idx0,
                                    const Twine &Name = "") {
    Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0);

    if (auto *PC = dyn_cast<Constant>(Ptr))
      return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, Idx), Name);

    return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name);
  }

  Value *CreateConstGEP2_32(Type *Ty, Value *Ptr, unsigned Idx0, unsigned Idx1,
                            const Twine &Name = "") {
    Value *Idxs[] = {
      ConstantInt::get(Type::getInt32Ty(Context), Idx0),
      ConstantInt::get(Type::getInt32Ty(Context), Idx1)
    };

    if (auto *PC = dyn_cast<Constant>(Ptr))
      return Insert(Folder.CreateGetElementPtr(Ty, PC, Idxs), Name);

    return Insert(GetElementPtrInst::Create(Ty, Ptr, Idxs), Name);
  }

  Value *CreateConstInBoundsGEP2_32(Type *Ty, Value *Ptr, unsigned Idx0,
                                    unsigned Idx1, const Twine &Name = "") {
    Value *Idxs[] = {
      ConstantInt::get(Type::getInt32Ty(Context), Idx0),
      ConstantInt::get(Type::getInt32Ty(Context), Idx1)
    };

    if (auto *PC = dyn_cast<Constant>(Ptr))
      return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, Idxs), Name);

    return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idxs), Name);
  }

  Value *CreateConstGEP1_64(Value *Ptr, uint64_t Idx0, const Twine &Name = "") {
    Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0);

    if (auto *PC = dyn_cast<Constant>(Ptr))
      return Insert(Folder.CreateGetElementPtr(nullptr, PC, Idx), Name);

    return Insert(GetElementPtrInst::Create(nullptr, Ptr, Idx), Name);
  }

  Value *CreateConstInBoundsGEP1_64(Value *Ptr, uint64_t Idx0,
                                    const Twine &Name = "") {
    Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0);

    if (auto *PC = dyn_cast<Constant>(Ptr))
      return Insert(Folder.CreateInBoundsGetElementPtr(nullptr, PC, Idx), Name);

    return Insert(GetElementPtrInst::CreateInBounds(nullptr, Ptr, Idx), Name);
  }

  Value *CreateConstGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t Idx1,
                    const Twine &Name = "") {
    Value *Idxs[] = {
      ConstantInt::get(Type::getInt64Ty(Context), Idx0),
      ConstantInt::get(Type::getInt64Ty(Context), Idx1)
    };

    if (auto *PC = dyn_cast<Constant>(Ptr))
      return Insert(Folder.CreateGetElementPtr(nullptr, PC, Idxs), Name);

    return Insert(GetElementPtrInst::Create(nullptr, Ptr, Idxs), Name);
  }

  Value *CreateConstInBoundsGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t Idx1,
                                    const Twine &Name = "") {
    Value *Idxs[] = {
      ConstantInt::get(Type::getInt64Ty(Context), Idx0),
      ConstantInt::get(Type::getInt64Ty(Context), Idx1)
    };

    if (auto *PC = dyn_cast<Constant>(Ptr))
      return Insert(Folder.CreateInBoundsGetElementPtr(nullptr, PC, Idxs),
                    Name);

    return Insert(GetElementPtrInst::CreateInBounds(nullptr, Ptr, Idxs), Name);
  }

  Value *CreateStructGEP(Type *Ty, Value *Ptr, unsigned Idx,
                         const Twine &Name = "") {
    return CreateConstInBoundsGEP2_32(Ty, Ptr, 0, Idx, Name);
  }

  Value *CreateStructGEP(Value *Ptr, unsigned Idx, const Twine &Name = "") {
    return CreateConstInBoundsGEP2_32(nullptr, Ptr, 0, Idx, Name);
  }

  /// Same as CreateGlobalString, but return a pointer with "i8*" type
  /// instead of a pointer to array of i8.
  Constant *CreateGlobalStringPtr(StringRef Str, const Twine &Name = "",
                                  unsigned AddressSpace = 0) {
    GlobalVariable *GV = CreateGlobalString(Str, Name, AddressSpace);
    Constant *Zero = ConstantInt::get(Type::getInt32Ty(Context), 0);
    Constant *Indices[] = {Zero, Zero};
    return ConstantExpr::getInBoundsGetElementPtr(GV->getValueType(), GV,
                                                  Indices);
  }

  //===--------------------------------------------------------------------===//
  // Instruction creation methods: Cast/Conversion Operators
  //===--------------------------------------------------------------------===//

  Value *CreateTrunc(Value *V, Type *DestTy, const Twine &Name = "") {
    return CreateCast(Instruction::Trunc, V, DestTy, Name);
  }

  Value *CreateZExt(Value *V, Type *DestTy, const Twine &Name = "") {
    return CreateCast(Instruction::ZExt, V, DestTy, Name);
  }

  Value *CreateSExt(Value *V, Type *DestTy, const Twine &Name = "") {
    return CreateCast(Instruction::SExt, V, DestTy, Name);
  }

  /// Create a ZExt or Trunc from the integer value V to DestTy. Return
  /// the value untouched if the type of V is already DestTy.
  Value *CreateZExtOrTrunc(Value *V, Type *DestTy,
                           const Twine &Name = "") {
    assert(V->getType()->isIntOrIntVectorTy() &&
           DestTy->isIntOrIntVectorTy() &&
           "Can only zero extend/truncate integers!");
    Type *VTy = V->getType();
    if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits())
      return CreateZExt(V, DestTy, Name);
    if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
      return CreateTrunc(V, DestTy, Name);
    return V;
  }

  /// Create a SExt or Trunc from the integer value V to DestTy. Return
  /// the value untouched if the type of V is already DestTy.
  Value *CreateSExtOrTrunc(Value *V, Type *DestTy,
                           const Twine &Name = "") {
    assert(V->getType()->isIntOrIntVectorTy() &&
           DestTy->isIntOrIntVectorTy() &&
           "Can only sign extend/truncate integers!");
    Type *VTy = V->getType();
    if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits())
      return CreateSExt(V, DestTy, Name);
    if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
      return CreateTrunc(V, DestTy, Name);
    return V;
  }

  Value *CreateFPToUI(Value *V, Type *DestTy, const Twine &Name = ""){
    return CreateCast(Instruction::FPToUI, V, DestTy, Name);
  }

  Value *CreateFPToSI(Value *V, Type *DestTy, const Twine &Name = ""){
    return CreateCast(Instruction::FPToSI, V, DestTy, Name);
  }

  Value *CreateUIToFP(Value *V, Type *DestTy, const Twine &Name = ""){
    return CreateCast(Instruction::UIToFP, V, DestTy, Name);
  }

  Value *CreateSIToFP(Value *V, Type *DestTy, const Twine &Name = ""){
    return CreateCast(Instruction::SIToFP, V, DestTy, Name);
  }

  Value *CreateFPTrunc(Value *V, Type *DestTy,
                       const Twine &Name = "") {
    return CreateCast(Instruction::FPTrunc, V, DestTy, Name);
  }

  Value *CreateFPExt(Value *V, Type *DestTy, const Twine &Name = "") {
    return CreateCast(Instruction::FPExt, V, DestTy, Name);
  }

  Value *CreatePtrToInt(Value *V, Type *DestTy,
                        const Twine &Name = "") {
    return CreateCast(Instruction::PtrToInt, V, DestTy, Name);
  }

  Value *CreateIntToPtr(Value *V, Type *DestTy,
                        const Twine &Name = "") {
    return CreateCast(Instruction::IntToPtr, V, DestTy, Name);
  }

  Value *CreateBitCast(Value *V, Type *DestTy,
                       const Twine &Name = "") {
    return CreateCast(Instruction::BitCast, V, DestTy, Name);
  }

  Value *CreateAddrSpaceCast(Value *V, Type *DestTy,
                             const Twine &Name = "") {
    return CreateCast(Instruction::AddrSpaceCast, V, DestTy, Name);
  }

  Value *CreateZExtOrBitCast(Value *V, Type *DestTy,
                             const Twine &Name = "") {
    if (V->getType() == DestTy)
      return V;
    if (auto *VC = dyn_cast<Constant>(V))
      return Insert(Folder.CreateZExtOrBitCast(VC, DestTy), Name);
    return Insert(CastInst::CreateZExtOrBitCast(V, DestTy), Name);
  }

  Value *CreateSExtOrBitCast(Value *V, Type *DestTy,
                             const Twine &Name = "") {
    if (V->getType() == DestTy)
      return V;
    if (auto *VC = dyn_cast<Constant>(V))
      return Insert(Folder.CreateSExtOrBitCast(VC, DestTy), Name);
    return Insert(CastInst::CreateSExtOrBitCast(V, DestTy), Name);
  }

  Value *CreateTruncOrBitCast(Value *V, Type *DestTy,
                              const Twine &Name = "") {
    if (V->getType() == DestTy)
      return V;
    if (auto *VC = dyn_cast<Constant>(V))
      return Insert(Folder.CreateTruncOrBitCast(VC, DestTy), Name);
    return Insert(CastInst::CreateTruncOrBitCast(V, DestTy), Name);
  }

  Value *CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy,
                    const Twine &Name = "") {
    if (V->getType() == DestTy)
      return V;
    if (auto *VC = dyn_cast<Constant>(V))
      return Insert(Folder.CreateCast(Op, VC, DestTy), Name);
    return Insert(CastInst::Create(Op, V, DestTy), Name);
  }

  Value *CreatePointerCast(Value *V, Type *DestTy,
                           const Twine &Name = "") {
    if (V->getType() == DestTy)
      return V;
    if (auto *VC = dyn_cast<Constant>(V))
      return Insert(Folder.CreatePointerCast(VC, DestTy), Name);
    return Insert(CastInst::CreatePointerCast(V, DestTy), Name);
  }

  Value *CreatePointerBitCastOrAddrSpaceCast(Value *V, Type *DestTy,
                                             const Twine &Name = "") {
    if (V->getType() == DestTy)
      return V;

    if (auto *VC = dyn_cast<Constant>(V)) {
      return Insert(Folder.CreatePointerBitCastOrAddrSpaceCast(VC, DestTy),
                    Name);
    }

    return Insert(CastInst::CreatePointerBitCastOrAddrSpaceCast(V, DestTy),
                  Name);
  }

  Value *CreateIntCast(Value *V, Type *DestTy, bool isSigned,
                       const Twine &Name = "") {
    if (V->getType() == DestTy)
      return V;
    if (auto *VC = dyn_cast<Constant>(V))
      return Insert(Folder.CreateIntCast(VC, DestTy, isSigned), Name);
    return Insert(CastInst::CreateIntegerCast(V, DestTy, isSigned), Name);
  }

  Value *CreateBitOrPointerCast(Value *V, Type *DestTy,
                                const Twine &Name = "") {
    if (V->getType() == DestTy)
      return V;
    if (V->getType()->isPtrOrPtrVectorTy() && DestTy->isIntOrIntVectorTy())
      return CreatePtrToInt(V, DestTy, Name);
    if (V->getType()->isIntOrIntVectorTy() && DestTy->isPtrOrPtrVectorTy())
      return CreateIntToPtr(V, DestTy, Name);

    return CreateBitCast(V, DestTy, Name);
  }

  Value *CreateFPCast(Value *V, Type *DestTy, const Twine &Name = "") {
    if (V->getType() == DestTy)
      return V;
    if (auto *VC = dyn_cast<Constant>(V))
      return Insert(Folder.CreateFPCast(VC, DestTy), Name);
    return Insert(CastInst::CreateFPCast(V, DestTy), Name);
  }

  // Provided to resolve 'CreateIntCast(Ptr, Ptr, "...")', giving a
  // compile time error, instead of converting the string to bool for the
  // isSigned parameter.
  Value *CreateIntCast(Value *, Type *, const char *) = delete;

  //===--------------------------------------------------------------------===//
  // Instruction creation methods: Compare Instructions
  //===--------------------------------------------------------------------===//

  Value *CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name = "") {
    return CreateICmp(ICmpInst::ICMP_EQ, LHS, RHS, Name);
  }

  Value *CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name = "") {
    return CreateICmp(ICmpInst::ICMP_NE, LHS, RHS, Name);
  }

  Value *CreateICmpUGT(Value *LHS, Value *RHS, const Twine &Name = "") {
    return CreateICmp(ICmpInst::ICMP_UGT, LHS, RHS, Name);
  }

  Value *CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name = "") {
    return CreateICmp(ICmpInst::ICMP_UGE, LHS, RHS, Name);
  }

  Value *CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name = "") {
    return CreateICmp(ICmpInst::ICMP_ULT, LHS, RHS, Name);
  }

  Value *CreateICmpULE(Value *LHS, Value *RHS, const Twine &Name = "") {
    return CreateICmp(ICmpInst::ICMP_ULE, LHS, RHS, Name);
  }

  Value *CreateICmpSGT(Value *LHS, Value *RHS, const Twine &Name = "") {
    return CreateICmp(ICmpInst::ICMP_SGT, LHS, RHS, Name);
  }

  Value *CreateICmpSGE(Value *LHS, Value *RHS, const Twine &Name = "") {
    return CreateICmp(ICmpInst::ICMP_SGE, LHS, RHS, Name);
  }

  Value *CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name = "") {
    return CreateICmp(ICmpInst::ICMP_SLT, LHS, RHS, Name);
  }

  Value *CreateICmpSLE(Value *LHS, Value *RHS, const Twine &Name = "") {
    return CreateICmp(ICmpInst::ICMP_SLE, LHS, RHS, Name);
  }

  Value *CreateFCmpOEQ(Value *LHS, Value *RHS, const Twine &Name = "",
                       MDNode *FPMathTag = nullptr) {
    return CreateFCmp(FCmpInst::FCMP_OEQ, LHS, RHS, Name, FPMathTag);
  }

  Value *CreateFCmpOGT(Value *LHS, Value *RHS, const Twine &Name = "",
                       MDNode *FPMathTag = nullptr) {
    return CreateFCmp(FCmpInst::FCMP_OGT, LHS, RHS, Name, FPMathTag);
  }

  Value *CreateFCmpOGE(Value *LHS, Value *RHS, const Twine &Name = "",
                       MDNode *FPMathTag = nullptr) {
    return CreateFCmp(FCmpInst::FCMP_OGE, LHS, RHS, Name, FPMathTag);
  }

  Value *CreateFCmpOLT(Value *LHS, Value *RHS, const Twine &Name = "",
                       MDNode *FPMathTag = nullptr) {
    return CreateFCmp(FCmpInst::FCMP_OLT, LHS, RHS, Name, FPMathTag);
  }

  Value *CreateFCmpOLE(Value *LHS, Value *RHS, const Twine &Name = "",
                       MDNode *FPMathTag = nullptr) {
    return CreateFCmp(FCmpInst::FCMP_OLE, LHS, RHS, Name, FPMathTag);
  }

  Value *CreateFCmpONE(Value *LHS, Value *RHS, const Twine &Name = "",
                       MDNode *FPMathTag = nullptr) {
    return CreateFCmp(FCmpInst::FCMP_ONE, LHS, RHS, Name, FPMathTag);
  }

  Value *CreateFCmpORD(Value *LHS, Value *RHS, const Twine &Name = "",
                       MDNode *FPMathTag = nullptr) {
    return CreateFCmp(FCmpInst::FCMP_ORD, LHS, RHS, Name, FPMathTag);
  }

  Value *CreateFCmpUNO(Value *LHS, Value *RHS, const Twine &Name = "",
                       MDNode *FPMathTag = nullptr) {
    return CreateFCmp(FCmpInst::FCMP_UNO, LHS, RHS, Name, FPMathTag);
  }

  Value *CreateFCmpUEQ(Value *LHS, Value *RHS, const Twine &Name = "",
                       MDNode *FPMathTag = nullptr) {
    return CreateFCmp(FCmpInst::FCMP_UEQ, LHS, RHS, Name, FPMathTag);
  }

  Value *CreateFCmpUGT(Value *LHS, Value *RHS, const Twine &Name = "",
                       MDNode *FPMathTag = nullptr) {
    return CreateFCmp(FCmpInst::FCMP_UGT, LHS, RHS, Name, FPMathTag);
  }

  Value *CreateFCmpUGE(Value *LHS, Value *RHS, const Twine &Name = "",
                       MDNode *FPMathTag = nullptr) {
    return CreateFCmp(FCmpInst::FCMP_UGE, LHS, RHS, Name, FPMathTag);
  }

  Value *CreateFCmpULT(Value *LHS, Value *RHS, const Twine &Name = "",
                       MDNode *FPMathTag = nullptr) {
    return CreateFCmp(FCmpInst::FCMP_ULT, LHS, RHS, Name, FPMathTag);
  }

  Value *CreateFCmpULE(Value *LHS, Value *RHS, const Twine &Name = "",
                       MDNode *FPMathTag = nullptr) {
    return CreateFCmp(FCmpInst::FCMP_ULE, LHS, RHS, Name, FPMathTag);
  }

  Value *CreateFCmpUNE(Value *LHS, Value *RHS, const Twine &Name = "",
                       MDNode *FPMathTag = nullptr) {
    return CreateFCmp(FCmpInst::FCMP_UNE, LHS, RHS, Name, FPMathTag);
  }

  Value *CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS,
                    const Twine &Name = "") {
    if (auto *LC = dyn_cast<Constant>(LHS))
      if (auto *RC = dyn_cast<Constant>(RHS))
        return Insert(Folder.CreateICmp(P, LC, RC), Name);
    return Insert(new ICmpInst(P, LHS, RHS), Name);
  }

  Value *CreateFCmp(CmpInst::Predicate P, Value *LHS, Value *RHS,
                    const Twine &Name = "", MDNode *FPMathTag = nullptr) {
    if (auto *LC = dyn_cast<Constant>(LHS))
      if (auto *RC = dyn_cast<Constant>(RHS))
        return Insert(Folder.CreateFCmp(P, LC, RC), Name);
    return Insert(setFPAttrs(new FCmpInst(P, LHS, RHS), FPMathTag, FMF), Name);
  }

  //===--------------------------------------------------------------------===//
  // Instruction creation methods: Other Instructions
  //===--------------------------------------------------------------------===//

  PHINode *CreatePHI(Type *Ty, unsigned NumReservedValues,
                     const Twine &Name = "") {
    return Insert(PHINode::Create(Ty, NumReservedValues), Name);
  }

  CallInst *CreateCall(Value *Callee, ArrayRef<Value *> Args = None,
                       const Twine &Name = "", MDNode *FPMathTag = nullptr) {
    auto *PTy = cast<PointerType>(Callee->getType());
    auto *FTy = cast<FunctionType>(PTy->getElementType());
    return CreateCall(FTy, Callee, Args, Name, FPMathTag);
  }

  CallInst *CreateCall(FunctionType *FTy, Value *Callee,
                       ArrayRef<Value *> Args, const Twine &Name = "",
                       MDNode *FPMathTag = nullptr) {
    CallInst *CI = CallInst::Create(FTy, Callee, Args, DefaultOperandBundles);
    if (isa<FPMathOperator>(CI))
      CI = cast<CallInst>(setFPAttrs(CI, FPMathTag, FMF));
    return Insert(CI, Name);
  }

  CallInst *CreateCall(Value *Callee, ArrayRef<Value *> Args,
                       ArrayRef<OperandBundleDef> OpBundles,
                       const Twine &Name = "", MDNode *FPMathTag = nullptr) {
    CallInst *CI = CallInst::Create(Callee, Args, OpBundles);
    if (isa<FPMathOperator>(CI))
      CI = cast<CallInst>(setFPAttrs(CI, FPMathTag, FMF));
    return Insert(CI, Name);
  }

  CallInst *CreateCall(Function *Callee, ArrayRef<Value *> Args,
                       const Twine &Name = "", MDNode *FPMathTag = nullptr) {
    return CreateCall(Callee->getFunctionType(), Callee, Args, Name, FPMathTag);
  }

  Value *CreateSelect(Value *C, Value *True, Value *False,
                      const Twine &Name = "", Instruction *MDFrom = nullptr) {
    if (auto *CC = dyn_cast<Constant>(C))
      if (auto *TC = dyn_cast<Constant>(True))
        if (auto *FC = dyn_cast<Constant>(False))
          return Insert(Folder.CreateSelect(CC, TC, FC), Name);

    SelectInst *Sel = SelectInst::Create(C, True, False);
    if (MDFrom) {
      MDNode *Prof = MDFrom->getMetadata(LLVMContext::MD_prof);
      MDNode *Unpred = MDFrom->getMetadata(LLVMContext::MD_unpredictable);
      Sel = addBranchMetadata(Sel, Prof, Unpred);
    }
    return Insert(Sel, Name);
  }

  VAArgInst *CreateVAArg(Value *List, Type *Ty, const Twine &Name = "") {
    return Insert(new VAArgInst(List, Ty), Name);
  }

  Value *CreateExtractElement(Value *Vec, Value *Idx,
                              const Twine &Name = "") {
    if (auto *VC = dyn_cast<Constant>(Vec))
      if (auto *IC = dyn_cast<Constant>(Idx))
        return Insert(Folder.CreateExtractElement(VC, IC), Name);
    return Insert(ExtractElementInst::Create(Vec, Idx), Name);
  }

  Value *CreateExtractElement(Value *Vec, uint64_t Idx,
                              const Twine &Name = "") {
    return CreateExtractElement(Vec, getInt64(Idx), Name);
  }

  Value *CreateInsertElement(Value *Vec, Value *NewElt, Value *Idx,
                             const Twine &Name = "") {
    if (auto *VC = dyn_cast<Constant>(Vec))
      if (auto *NC = dyn_cast<Constant>(NewElt))
        if (auto *IC = dyn_cast<Constant>(Idx))
          return Insert(Folder.CreateInsertElement(VC, NC, IC), Name);
    return Insert(InsertElementInst::Create(Vec, NewElt, Idx), Name);
  }

  Value *CreateInsertElement(Value *Vec, Value *NewElt, uint64_t Idx,
                             const Twine &Name = "") {
    return CreateInsertElement(Vec, NewElt, getInt64(Idx), Name);
  }

  Value *CreateShuffleVector(Value *V1, Value *V2, Value *Mask,
                             const Twine &Name = "") {
    if (auto *V1C = dyn_cast<Constant>(V1))
      if (auto *V2C = dyn_cast<Constant>(V2))
        if (auto *MC = dyn_cast<Constant>(Mask))
          return Insert(Folder.CreateShuffleVector(V1C, V2C, MC), Name);
    return Insert(new ShuffleVectorInst(V1, V2, Mask), Name);
  }

  Value *CreateShuffleVector(Value *V1, Value *V2, ArrayRef<uint32_t> IntMask,
                             const Twine &Name = "") {
    Value *Mask = ConstantDataVector::get(Context, IntMask);
    return CreateShuffleVector(V1, V2, Mask, Name);
  }

  Value *CreateExtractValue(Value *Agg,
                            ArrayRef<unsigned> Idxs,
                            const Twine &Name = "") {
    if (auto *AggC = dyn_cast<Constant>(Agg))
      return Insert(Folder.CreateExtractValue(AggC, Idxs), Name);
    return Insert(ExtractValueInst::Create(Agg, Idxs), Name);
  }

  Value *CreateInsertValue(Value *Agg, Value *Val,
                           ArrayRef<unsigned> Idxs,
                           const Twine &Name = "") {
    if (auto *AggC = dyn_cast<Constant>(Agg))
      if (auto *ValC = dyn_cast<Constant>(Val))
        return Insert(Folder.CreateInsertValue(AggC, ValC, Idxs), Name);
    return Insert(InsertValueInst::Create(Agg, Val, Idxs), Name);
  }

  LandingPadInst *CreateLandingPad(Type *Ty, unsigned NumClauses,
                                   const Twine &Name = "") {
    return Insert(LandingPadInst::Create(Ty, NumClauses), Name);
  }

  //===--------------------------------------------------------------------===//
  // Utility creation methods
  //===--------------------------------------------------------------------===//

  /// Return an i1 value testing if \p Arg is null.
  Value *CreateIsNull(Value *Arg, const Twine &Name = "") {
    return CreateICmpEQ(Arg, Constant::getNullValue(Arg->getType()),
                        Name);
  }

  /// Return an i1 value testing if \p Arg is not null.
  Value *CreateIsNotNull(Value *Arg, const Twine &Name = "") {
    return CreateICmpNE(Arg, Constant::getNullValue(Arg->getType()),
                        Name);
  }

  /// Return the i64 difference between two pointer values, dividing out
  /// the size of the pointed-to objects.
  ///
  /// This is intended to implement C-style pointer subtraction. As such, the
  /// pointers must be appropriately aligned for their element types and
  /// pointing into the same object.
  Value *CreatePtrDiff(Value *LHS, Value *RHS, const Twine &Name = "") {
    assert(LHS->getType() == RHS->getType() &&
           "Pointer subtraction operand types must match!");
    auto *ArgType = cast<PointerType>(LHS->getType());
    Value *LHS_int = CreatePtrToInt(LHS, Type::getInt64Ty(Context));
    Value *RHS_int = CreatePtrToInt(RHS, Type::getInt64Ty(Context));
    Value *Difference = CreateSub(LHS_int, RHS_int);
    return CreateExactSDiv(Difference,
                           ConstantExpr::getSizeOf(ArgType->getElementType()),
                           Name);
  }

  /// Create a launder.invariant.group intrinsic call. If Ptr type is
  /// different from pointer to i8, it's casted to pointer to i8 in the same
  /// address space before call and casted back to Ptr type after call.
  Value *CreateLaunderInvariantGroup(Value *Ptr) {
    assert(isa<PointerType>(Ptr->getType()) &&
           "launder.invariant.group only applies to pointers.");
    // FIXME: we could potentially avoid casts to/from i8*.
    auto *PtrType = Ptr->getType();
    auto *Int8PtrTy = getInt8PtrTy(PtrType->getPointerAddressSpace());
    if (PtrType != Int8PtrTy)
      Ptr = CreateBitCast(Ptr, Int8PtrTy);
    Module *M = BB->getParent()->getParent();
    Function *FnLaunderInvariantGroup = Intrinsic::getDeclaration(
        M, Intrinsic::launder_invariant_group, {Int8PtrTy});

    assert(FnLaunderInvariantGroup->getReturnType() == Int8PtrTy &&
           FnLaunderInvariantGroup->getFunctionType()->getParamType(0) ==
               Int8PtrTy &&
           "LaunderInvariantGroup should take and return the same type");

    CallInst *Fn = CreateCall(FnLaunderInvariantGroup, {Ptr});

    if (PtrType != Int8PtrTy)
      return CreateBitCast(Fn, PtrType);
    return Fn;
  }

  /// \brief Create a strip.invariant.group intrinsic call. If Ptr type is
  /// different from pointer to i8, it's casted to pointer to i8 in the same
  /// address space before call and casted back to Ptr type after call.
  Value *CreateStripInvariantGroup(Value *Ptr) {
    assert(isa<PointerType>(Ptr->getType()) &&
           "strip.invariant.group only applies to pointers.");

    // FIXME: we could potentially avoid casts to/from i8*.
    auto *PtrType = Ptr->getType();
    auto *Int8PtrTy = getInt8PtrTy(PtrType->getPointerAddressSpace());
    if (PtrType != Int8PtrTy)
      Ptr = CreateBitCast(Ptr, Int8PtrTy);
    Module *M = BB->getParent()->getParent();
    Function *FnStripInvariantGroup = Intrinsic::getDeclaration(
        M, Intrinsic::strip_invariant_group, {Int8PtrTy});

    assert(FnStripInvariantGroup->getReturnType() == Int8PtrTy &&
           FnStripInvariantGroup->getFunctionType()->getParamType(0) ==
               Int8PtrTy &&
           "StripInvariantGroup should take and return the same type");

    CallInst *Fn = CreateCall(FnStripInvariantGroup, {Ptr});

    if (PtrType != Int8PtrTy)
      return CreateBitCast(Fn, PtrType);
    return Fn;
  }

  /// Return a vector value that contains \arg V broadcasted to \p
  /// NumElts elements.
  Value *CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name = "") {
    assert(NumElts > 0 && "Cannot splat to an empty vector!");

    // First insert it into an undef vector so we can shuffle it.
    Type *I32Ty = getInt32Ty();
    Value *Undef = UndefValue::get(VectorType::get(V->getType(), NumElts));
    V = CreateInsertElement(Undef, V, ConstantInt::get(I32Ty, 0),
                            Name + ".splatinsert");

    // Shuffle the value across the desired number of elements.
    Value *Zeros = ConstantAggregateZero::get(VectorType::get(I32Ty, NumElts));
    return CreateShuffleVector(V, Undef, Zeros, Name + ".splat");
  }

  /// Return a value that has been extracted from a larger integer type.
  Value *CreateExtractInteger(const DataLayout &DL, Value *From,
                              IntegerType *ExtractedTy, uint64_t Offset,
                              const Twine &Name) {
    auto *IntTy = cast<IntegerType>(From->getType());
    assert(DL.getTypeStoreSize(ExtractedTy) + Offset <=
               DL.getTypeStoreSize(IntTy) &&
           "Element extends past full value");
    uint64_t ShAmt = 8 * Offset;
    Value *V = From;
    if (DL.isBigEndian())
      ShAmt = 8 * (DL.getTypeStoreSize(IntTy) -
                   DL.getTypeStoreSize(ExtractedTy) - Offset);
    if (ShAmt) {
      V = CreateLShr(V, ShAmt, Name + ".shift");
    }
    assert(ExtractedTy->getBitWidth() <= IntTy->getBitWidth() &&
           "Cannot extract to a larger integer!");
    if (ExtractedTy != IntTy) {
      V = CreateTrunc(V, ExtractedTy, Name + ".trunc");
    }
    return V;
  }

private:
  /// Helper function that creates an assume intrinsic call that
  /// represents an alignment assumption on the provided Ptr, Mask, Type
  /// and Offset.
  CallInst *CreateAlignmentAssumptionHelper(const DataLayout &DL,
                                            Value *PtrValue, Value *Mask,
                                            Type *IntPtrTy,
                                            Value *OffsetValue) {
    Value *PtrIntValue = CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");

    if (OffsetValue) {
      bool IsOffsetZero = false;
      if (const auto *CI = dyn_cast<ConstantInt>(OffsetValue))
        IsOffsetZero = CI->isZero();

      if (!IsOffsetZero) {
        if (OffsetValue->getType() != IntPtrTy)
          OffsetValue = CreateIntCast(OffsetValue, IntPtrTy, /*isSigned*/ true,
                                      "offsetcast");
        PtrIntValue = CreateSub(PtrIntValue, OffsetValue, "offsetptr");
      }
    }

    Value *Zero = ConstantInt::get(IntPtrTy, 0);
    Value *MaskedPtr = CreateAnd(PtrIntValue, Mask, "maskedptr");
    Value *InvCond = CreateICmpEQ(MaskedPtr, Zero, "maskcond");
    return CreateAssumption(InvCond);
  }

public:
  /// Create an assume intrinsic call that represents an alignment
  /// assumption on the provided pointer.
  ///
  /// An optional offset can be provided, and if it is provided, the offset
  /// must be subtracted from the provided pointer to get the pointer with the
  /// specified alignment.
  CallInst *CreateAlignmentAssumption(const DataLayout &DL, Value *PtrValue,
                                      unsigned Alignment,
                                      Value *OffsetValue = nullptr) {
    assert(isa<PointerType>(PtrValue->getType()) &&
           "trying to create an alignment assumption on a non-pointer?");
    auto *PtrTy = cast<PointerType>(PtrValue->getType());
    Type *IntPtrTy = getIntPtrTy(DL, PtrTy->getAddressSpace());

    Value *Mask = ConstantInt::get(IntPtrTy, Alignment > 0 ? Alignment - 1 : 0);
    return CreateAlignmentAssumptionHelper(DL, PtrValue, Mask, IntPtrTy,
                                           OffsetValue);
  }

  /// Create an assume intrinsic call that represents an alignment
  /// assumption on the provided pointer.
  ///
  /// An optional offset can be provided, and if it is provided, the offset
  /// must be subtracted from the provided pointer to get the pointer with the
  /// specified alignment.
  ///
  /// This overload handles the condition where the Alignment is dependent
  /// on an existing value rather than a static value.
  CallInst *CreateAlignmentAssumption(const DataLayout &DL, Value *PtrValue,
                                      Value *Alignment,
                                      Value *OffsetValue = nullptr) {
    assert(isa<PointerType>(PtrValue->getType()) &&
           "trying to create an alignment assumption on a non-pointer?");
    auto *PtrTy = cast<PointerType>(PtrValue->getType());
    Type *IntPtrTy = getIntPtrTy(DL, PtrTy->getAddressSpace());

    if (Alignment->getType() != IntPtrTy)
      Alignment = CreateIntCast(Alignment, IntPtrTy, /*isSigned*/ true,
                                "alignmentcast");
    Value *IsPositive =
        CreateICmp(CmpInst::ICMP_SGT, Alignment,
                   ConstantInt::get(Alignment->getType(), 0), "ispositive");
    Value *PositiveMask =
        CreateSub(Alignment, ConstantInt::get(IntPtrTy, 1), "positivemask");
    Value *Mask = CreateSelect(IsPositive, PositiveMask,
                               ConstantInt::get(IntPtrTy, 0), "mask");

    return CreateAlignmentAssumptionHelper(DL, PtrValue, Mask, IntPtrTy,
                                           OffsetValue);
  }
};

// Create wrappers for C Binding types (see CBindingWrapping.h).
DEFINE_SIMPLE_CONVERSION_FUNCTIONS(IRBuilder<>, LLVMBuilderRef)

} // end namespace llvm

#endif // LLVM_IR_IRBUILDER_H