// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package amd64
import (
"cmd/compile/internal/gc"
"cmd/internal/obj"
"cmd/internal/obj/x86"
"cmd/internal/objabi"
)
// no floating point in note handlers on Plan 9
var isPlan9 = objabi.GOOS == "plan9"
// DUFFZERO consists of repeated blocks of 4 MOVUPSs + LEAQ,
// See runtime/mkduff.go.
const (
dzBlocks = 16 // number of MOV/ADD blocks
dzBlockLen = 4 // number of clears per block
dzBlockSize = 19 // size of instructions in a single block
dzMovSize = 4 // size of single MOV instruction w/ offset
dzLeaqSize = 4 // size of single LEAQ instruction
dzClearStep = 16 // number of bytes cleared by each MOV instruction
dzClearLen = dzClearStep * dzBlockLen // bytes cleared by one block
dzSize = dzBlocks * dzBlockSize
)
// dzOff returns the offset for a jump into DUFFZERO.
// b is the number of bytes to zero.
func dzOff(b int64) int64 {
off := int64(dzSize)
off -= b / dzClearLen * dzBlockSize
tailLen := b % dzClearLen
if tailLen >= dzClearStep {
off -= dzLeaqSize + dzMovSize*(tailLen/dzClearStep)
}
return off
}
// duffzeroDI returns the pre-adjustment to DI for a call to DUFFZERO.
// b is the number of bytes to zero.
func dzDI(b int64) int64 {
tailLen := b % dzClearLen
if tailLen < dzClearStep {
return 0
}
tailSteps := tailLen / dzClearStep
return -dzClearStep * (dzBlockLen - tailSteps)
}
func zerorange(pp *gc.Progs, p *obj.Prog, off, cnt int64, state *uint32) *obj.Prog {
const (
ax = 1 << iota
x0
)
if cnt == 0 {
return p
}
if cnt%int64(gc.Widthreg) != 0 {
// should only happen with nacl
if cnt%int64(gc.Widthptr) != 0 {
gc.Fatalf("zerorange count not a multiple of widthptr %d", cnt)
}
if *state&ax == 0 {
p = pp.Appendpp(p, x86.AMOVQ, obj.TYPE_CONST, 0, 0, obj.TYPE_REG, x86.REG_AX, 0)
*state |= ax
}
p = pp.Appendpp(p, x86.AMOVL, obj.TYPE_REG, x86.REG_AX, 0, obj.TYPE_MEM, x86.REG_SP, off)
off += int64(gc.Widthptr)
cnt -= int64(gc.Widthptr)
}
if cnt == 8 {
if *state&ax == 0 {
p = pp.Appendpp(p, x86.AMOVQ, obj.TYPE_CONST, 0, 0, obj.TYPE_REG, x86.REG_AX, 0)
*state |= ax
}
p = pp.Appendpp(p, x86.AMOVQ, obj.TYPE_REG, x86.REG_AX, 0, obj.TYPE_MEM, x86.REG_SP, off)
} else if !isPlan9 && cnt <= int64(8*gc.Widthreg) {
if *state&x0 == 0 {
p = pp.Appendpp(p, x86.AXORPS, obj.TYPE_REG, x86.REG_X0, 0, obj.TYPE_REG, x86.REG_X0, 0)
*state |= x0
}
for i := int64(0); i < cnt/16; i++ {
p = pp.Appendpp(p, x86.AMOVUPS, obj.TYPE_REG, x86.REG_X0, 0, obj.TYPE_MEM, x86.REG_SP, off+i*16)
}
if cnt%16 != 0 {
p = pp.Appendpp(p, x86.AMOVUPS, obj.TYPE_REG, x86.REG_X0, 0, obj.TYPE_MEM, x86.REG_SP, off+cnt-int64(16))
}
} else if !gc.Nacl && !isPlan9 && (cnt <= int64(128*gc.Widthreg)) {
if *state&x0 == 0 {
p = pp.Appendpp(p, x86.AXORPS, obj.TYPE_REG, x86.REG_X0, 0, obj.TYPE_REG, x86.REG_X0, 0)
*state |= x0
}
p = pp.Appendpp(p, leaptr, obj.TYPE_MEM, x86.REG_SP, off+dzDI(cnt), obj.TYPE_REG, x86.REG_DI, 0)
p = pp.Appendpp(p, obj.ADUFFZERO, obj.TYPE_NONE, 0, 0, obj.TYPE_ADDR, 0, dzOff(cnt))
p.To.Sym = gc.Duffzero
if cnt%16 != 0 {
p = pp.Appendpp(p, x86.AMOVUPS, obj.TYPE_REG, x86.REG_X0, 0, obj.TYPE_MEM, x86.REG_DI, -int64(8))
}
} else {
if *state&ax == 0 {
p = pp.Appendpp(p, x86.AMOVQ, obj.TYPE_CONST, 0, 0, obj.TYPE_REG, x86.REG_AX, 0)
*state |= ax
}
p = pp.Appendpp(p, x86.AMOVQ, obj.TYPE_CONST, 0, cnt/int64(gc.Widthreg), obj.TYPE_REG, x86.REG_CX, 0)
p = pp.Appendpp(p, leaptr, obj.TYPE_MEM, x86.REG_SP, off, obj.TYPE_REG, x86.REG_DI, 0)
p = pp.Appendpp(p, x86.AREP, obj.TYPE_NONE, 0, 0, obj.TYPE_NONE, 0, 0)
p = pp.Appendpp(p, x86.ASTOSQ, obj.TYPE_NONE, 0, 0, obj.TYPE_NONE, 0, 0)
}
return p
}
func zeroAuto(pp *gc.Progs, n *gc.Node) {
// Note: this code must not clobber any registers.
op := x86.AMOVQ
if gc.Widthptr == 4 {
op = x86.AMOVL
}
sym := n.Sym.Linksym()
size := n.Type.Size()
for i := int64(0); i < size; i += int64(gc.Widthptr) {
p := pp.Prog(op)
p.From.Type = obj.TYPE_CONST
p.From.Offset = 0
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_AUTO
p.To.Reg = x86.REG_SP
p.To.Offset = n.Xoffset + i
p.To.Sym = sym
}
}
func ginsnop(pp *gc.Progs) *obj.Prog {
// This is actually not the x86 NOP anymore,
// but at the point where it gets used, AX is dead
// so it's okay if we lose the high bits.
p := pp.Prog(x86.AXCHGL)
p.From.Type = obj.TYPE_REG
p.From.Reg = x86.REG_AX
p.To.Type = obj.TYPE_REG
p.To.Reg = x86.REG_AX
return p
}