/*
* Copyright (C) 2008 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef MacroAssemblerX86_64_h
#define MacroAssemblerX86_64_h
#include <wtf/Platform.h>
#if ENABLE(ASSEMBLER) && PLATFORM(X86_64)
#include "MacroAssemblerX86Common.h"
#define REPTACH_OFFSET_CALL_R11 3
namespace JSC {
class MacroAssemblerX86_64 : public MacroAssemblerX86Common {
protected:
static const X86::RegisterID scratchRegister = X86::r11;
public:
static const Scale ScalePtr = TimesEight;
using MacroAssemblerX86Common::add32;
using MacroAssemblerX86Common::and32;
using MacroAssemblerX86Common::or32;
using MacroAssemblerX86Common::sub32;
using MacroAssemblerX86Common::load32;
using MacroAssemblerX86Common::store32;
using MacroAssemblerX86Common::call;
using MacroAssemblerX86Common::loadDouble;
using MacroAssemblerX86Common::convertInt32ToDouble;
void add32(Imm32 imm, AbsoluteAddress address)
{
move(ImmPtr(address.m_ptr), scratchRegister);
add32(imm, Address(scratchRegister));
}
void and32(Imm32 imm, AbsoluteAddress address)
{
move(ImmPtr(address.m_ptr), scratchRegister);
and32(imm, Address(scratchRegister));
}
void or32(Imm32 imm, AbsoluteAddress address)
{
move(ImmPtr(address.m_ptr), scratchRegister);
or32(imm, Address(scratchRegister));
}
void sub32(Imm32 imm, AbsoluteAddress address)
{
move(ImmPtr(address.m_ptr), scratchRegister);
sub32(imm, Address(scratchRegister));
}
void load32(void* address, RegisterID dest)
{
if (dest == X86::eax)
m_assembler.movl_mEAX(address);
else {
move(X86::eax, dest);
m_assembler.movl_mEAX(address);
swap(X86::eax, dest);
}
}
void loadDouble(void* address, FPRegisterID dest)
{
move(ImmPtr(address), scratchRegister);
loadDouble(scratchRegister, dest);
}
void convertInt32ToDouble(AbsoluteAddress src, FPRegisterID dest)
{
move(Imm32(*static_cast<int32_t*>(src.m_ptr)), scratchRegister);
m_assembler.cvtsi2sd_rr(scratchRegister, dest);
}
void store32(Imm32 imm, void* address)
{
move(X86::eax, scratchRegister);
move(imm, X86::eax);
m_assembler.movl_EAXm(address);
move(scratchRegister, X86::eax);
}
Call call()
{
DataLabelPtr label = moveWithPatch(ImmPtr(0), scratchRegister);
Call result = Call(m_assembler.call(scratchRegister), Call::Linkable);
ASSERT(differenceBetween(label, result) == REPTACH_OFFSET_CALL_R11);
return result;
}
Call tailRecursiveCall()
{
DataLabelPtr label = moveWithPatch(ImmPtr(0), scratchRegister);
Jump newJump = Jump(m_assembler.jmp_r(scratchRegister));
ASSERT(differenceBetween(label, newJump) == REPTACH_OFFSET_CALL_R11);
return Call::fromTailJump(newJump);
}
Call makeTailRecursiveCall(Jump oldJump)
{
oldJump.link(this);
DataLabelPtr label = moveWithPatch(ImmPtr(0), scratchRegister);
Jump newJump = Jump(m_assembler.jmp_r(scratchRegister));
ASSERT(differenceBetween(label, newJump) == REPTACH_OFFSET_CALL_R11);
return Call::fromTailJump(newJump);
}
void addPtr(RegisterID src, RegisterID dest)
{
m_assembler.addq_rr(src, dest);
}
void addPtr(Imm32 imm, RegisterID srcDest)
{
m_assembler.addq_ir(imm.m_value, srcDest);
}
void addPtr(ImmPtr imm, RegisterID dest)
{
move(imm, scratchRegister);
m_assembler.addq_rr(scratchRegister, dest);
}
void addPtr(Imm32 imm, RegisterID src, RegisterID dest)
{
m_assembler.leaq_mr(imm.m_value, src, dest);
}
void addPtr(Imm32 imm, Address address)
{
m_assembler.addq_im(imm.m_value, address.offset, address.base);
}
void addPtr(Imm32 imm, AbsoluteAddress address)
{
move(ImmPtr(address.m_ptr), scratchRegister);
addPtr(imm, Address(scratchRegister));
}
void andPtr(RegisterID src, RegisterID dest)
{
m_assembler.andq_rr(src, dest);
}
void andPtr(Imm32 imm, RegisterID srcDest)
{
m_assembler.andq_ir(imm.m_value, srcDest);
}
void orPtr(RegisterID src, RegisterID dest)
{
m_assembler.orq_rr(src, dest);
}
void orPtr(ImmPtr imm, RegisterID dest)
{
move(imm, scratchRegister);
m_assembler.orq_rr(scratchRegister, dest);
}
void orPtr(Imm32 imm, RegisterID dest)
{
m_assembler.orq_ir(imm.m_value, dest);
}
void rshiftPtr(RegisterID shift_amount, RegisterID dest)
{
// On x86 we can only shift by ecx; if asked to shift by another register we'll
// need rejig the shift amount into ecx first, and restore the registers afterwards.
if (shift_amount != X86::ecx) {
swap(shift_amount, X86::ecx);
// E.g. transform "shll %eax, %eax" -> "xchgl %eax, %ecx; shll %ecx, %ecx; xchgl %eax, %ecx"
if (dest == shift_amount)
m_assembler.sarq_CLr(X86::ecx);
// E.g. transform "shll %eax, %ecx" -> "xchgl %eax, %ecx; shll %ecx, %eax; xchgl %eax, %ecx"
else if (dest == X86::ecx)
m_assembler.sarq_CLr(shift_amount);
// E.g. transform "shll %eax, %ebx" -> "xchgl %eax, %ecx; shll %ecx, %ebx; xchgl %eax, %ecx"
else
m_assembler.sarq_CLr(dest);
swap(shift_amount, X86::ecx);
} else
m_assembler.sarq_CLr(dest);
}
void rshiftPtr(Imm32 imm, RegisterID dest)
{
m_assembler.sarq_i8r(imm.m_value, dest);
}
void subPtr(RegisterID src, RegisterID dest)
{
m_assembler.subq_rr(src, dest);
}
void subPtr(Imm32 imm, RegisterID dest)
{
m_assembler.subq_ir(imm.m_value, dest);
}
void subPtr(ImmPtr imm, RegisterID dest)
{
move(imm, scratchRegister);
m_assembler.subq_rr(scratchRegister, dest);
}
void xorPtr(RegisterID src, RegisterID dest)
{
m_assembler.xorq_rr(src, dest);
}
void xorPtr(Imm32 imm, RegisterID srcDest)
{
m_assembler.xorq_ir(imm.m_value, srcDest);
}
void loadPtr(ImplicitAddress address, RegisterID dest)
{
m_assembler.movq_mr(address.offset, address.base, dest);
}
void loadPtr(BaseIndex address, RegisterID dest)
{
m_assembler.movq_mr(address.offset, address.base, address.index, address.scale, dest);
}
void loadPtr(void* address, RegisterID dest)
{
if (dest == X86::eax)
m_assembler.movq_mEAX(address);
else {
move(X86::eax, dest);
m_assembler.movq_mEAX(address);
swap(X86::eax, dest);
}
}
DataLabel32 loadPtrWithAddressOffsetPatch(Address address, RegisterID dest)
{
m_assembler.movq_mr_disp32(address.offset, address.base, dest);
return DataLabel32(this);
}
void storePtr(RegisterID src, ImplicitAddress address)
{
m_assembler.movq_rm(src, address.offset, address.base);
}
void storePtr(RegisterID src, BaseIndex address)
{
m_assembler.movq_rm(src, address.offset, address.base, address.index, address.scale);
}
void storePtr(RegisterID src, void* address)
{
if (src == X86::eax)
m_assembler.movq_EAXm(address);
else {
swap(X86::eax, src);
m_assembler.movq_EAXm(address);
swap(X86::eax, src);
}
}
void storePtr(ImmPtr imm, ImplicitAddress address)
{
intptr_t ptr = imm.asIntptr();
if (CAN_SIGN_EXTEND_32_64(ptr))
m_assembler.movq_i32m(static_cast<int>(ptr), address.offset, address.base);
else {
move(imm, scratchRegister);
storePtr(scratchRegister, address);
}
}
DataLabel32 storePtrWithAddressOffsetPatch(RegisterID src, Address address)
{
m_assembler.movq_rm_disp32(src, address.offset, address.base);
return DataLabel32(this);
}
void movePtrToDouble(RegisterID src, FPRegisterID dest)
{
m_assembler.movq_rr(src, dest);
}
void moveDoubleToPtr(FPRegisterID src, RegisterID dest)
{
m_assembler.movq_rr(src, dest);
}
void setPtr(Condition cond, RegisterID left, Imm32 right, RegisterID dest)
{
if (((cond == Equal) || (cond == NotEqual)) && !right.m_value)
m_assembler.testq_rr(left, left);
else
m_assembler.cmpq_ir(right.m_value, left);
m_assembler.setCC_r(x86Condition(cond), dest);
m_assembler.movzbl_rr(dest, dest);
}
Jump branchPtr(Condition cond, RegisterID left, RegisterID right)
{
m_assembler.cmpq_rr(right, left);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchPtr(Condition cond, RegisterID left, ImmPtr right)
{
intptr_t imm = right.asIntptr();
if (CAN_SIGN_EXTEND_32_64(imm)) {
if (!imm)
m_assembler.testq_rr(left, left);
else
m_assembler.cmpq_ir(imm, left);
return Jump(m_assembler.jCC(x86Condition(cond)));
} else {
move(right, scratchRegister);
return branchPtr(cond, left, scratchRegister);
}
}
Jump branchPtr(Condition cond, RegisterID left, Address right)
{
m_assembler.cmpq_mr(right.offset, right.base, left);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchPtr(Condition cond, AbsoluteAddress left, RegisterID right)
{
move(ImmPtr(left.m_ptr), scratchRegister);
return branchPtr(cond, Address(scratchRegister), right);
}
Jump branchPtr(Condition cond, Address left, RegisterID right)
{
m_assembler.cmpq_rm(right, left.offset, left.base);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchPtr(Condition cond, Address left, ImmPtr right)
{
move(right, scratchRegister);
return branchPtr(cond, left, scratchRegister);
}
Jump branchTestPtr(Condition cond, RegisterID reg, RegisterID mask)
{
m_assembler.testq_rr(reg, mask);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchTestPtr(Condition cond, RegisterID reg, Imm32 mask = Imm32(-1))
{
// if we are only interested in the low seven bits, this can be tested with a testb
if (mask.m_value == -1)
m_assembler.testq_rr(reg, reg);
else if ((mask.m_value & ~0x7f) == 0)
m_assembler.testb_i8r(mask.m_value, reg);
else
m_assembler.testq_i32r(mask.m_value, reg);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchTestPtr(Condition cond, Address address, Imm32 mask = Imm32(-1))
{
if (mask.m_value == -1)
m_assembler.cmpq_im(0, address.offset, address.base);
else
m_assembler.testq_i32m(mask.m_value, address.offset, address.base);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchTestPtr(Condition cond, BaseIndex address, Imm32 mask = Imm32(-1))
{
if (mask.m_value == -1)
m_assembler.cmpq_im(0, address.offset, address.base, address.index, address.scale);
else
m_assembler.testq_i32m(mask.m_value, address.offset, address.base, address.index, address.scale);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchAddPtr(Condition cond, RegisterID src, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Zero) || (cond == NonZero));
addPtr(src, dest);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
Jump branchSubPtr(Condition cond, Imm32 imm, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Zero) || (cond == NonZero));
subPtr(imm, dest);
return Jump(m_assembler.jCC(x86Condition(cond)));
}
DataLabelPtr moveWithPatch(ImmPtr initialValue, RegisterID dest)
{
m_assembler.movq_i64r(initialValue.asIntptr(), dest);
return DataLabelPtr(this);
}
Jump branchPtrWithPatch(Condition cond, RegisterID left, DataLabelPtr& dataLabel, ImmPtr initialRightValue = ImmPtr(0))
{
dataLabel = moveWithPatch(initialRightValue, scratchRegister);
return branchPtr(cond, left, scratchRegister);
}
Jump branchPtrWithPatch(Condition cond, Address left, DataLabelPtr& dataLabel, ImmPtr initialRightValue = ImmPtr(0))
{
dataLabel = moveWithPatch(initialRightValue, scratchRegister);
return branchPtr(cond, left, scratchRegister);
}
DataLabelPtr storePtrWithPatch(ImmPtr initialValue, ImplicitAddress address)
{
DataLabelPtr label = moveWithPatch(initialValue, scratchRegister);
storePtr(scratchRegister, address);
return label;
}
Label loadPtrWithPatchToLEA(Address address, RegisterID dest)
{
Label label(this);
loadPtr(address, dest);
return label;
}
bool supportsFloatingPoint() const { return true; }
// See comment on MacroAssemblerARMv7::supportsFloatingPointTruncate()
bool supportsFloatingPointTruncate() const { return true; }
private:
friend class LinkBuffer;
friend class RepatchBuffer;
static void linkCall(void* code, Call call, FunctionPtr function)
{
if (!call.isFlagSet(Call::Near))
X86Assembler::linkPointer(code, X86Assembler::labelFor(call.m_jmp, -REPTACH_OFFSET_CALL_R11), function.value());
else
X86Assembler::linkCall(code, call.m_jmp, function.value());
}
static void repatchCall(CodeLocationCall call, CodeLocationLabel destination)
{
X86Assembler::repatchPointer(call.dataLabelPtrAtOffset(-REPTACH_OFFSET_CALL_R11).dataLocation(), destination.executableAddress());
}
static void repatchCall(CodeLocationCall call, FunctionPtr destination)
{
X86Assembler::repatchPointer(call.dataLabelPtrAtOffset(-REPTACH_OFFSET_CALL_R11).dataLocation(), destination.executableAddress());
}
};
} // namespace JSC
#endif // ENABLE(ASSEMBLER)
#endif // MacroAssemblerX86_64_h