/*
*******************************************************************************
*
* Copyright (C) 2009-2010, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
* file name: n2builder.cpp
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 2009nov25
* created by: Markus W. Scherer
*
* Builds Normalizer2 data and writes a binary .nrm file.
* For the file format see source/common/normalizer2impl.h.
*/
#include "unicode/utypes.h"
#include "unicode/std_string.h" // U_HAVE_STD_STRING, #include <string>
#include "n2builder.h" // UCONFIG_NO_NORMALIZATION=1 if !U_HAVE_STD_STRING
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#if U_HAVE_STD_STRING
#include <vector>
#endif
#include "unicode/errorcode.h"
#include "unicode/localpointer.h"
#include "unicode/putil.h"
#include "unicode/udata.h"
#include "unicode/uniset.h"
#include "unicode/unistr.h"
#include "unicode/ustring.h"
#include "hash.h"
#include "normalizer2impl.h"
#include "toolutil.h"
#include "unewdata.h"
#include "utrie2.h"
#define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
#if !UCONFIG_NO_NORMALIZATION
/* UDataInfo cf. udata.h */
static UDataInfo dataInfo={
sizeof(UDataInfo),
0,
U_IS_BIG_ENDIAN,
U_CHARSET_FAMILY,
U_SIZEOF_UCHAR,
0,
{ 0x4e, 0x72, 0x6d, 0x32 }, /* dataFormat="Nrm2" */
{ 1, 0, 0, 0 }, /* formatVersion */
{ 5, 2, 0, 0 } /* dataVersion (Unicode version) */
};
U_NAMESPACE_BEGIN
class HangulIterator {
public:
struct Range {
UChar32 start, limit;
uint16_t norm16;
};
HangulIterator() : rangeIndex(0) {}
const Range *nextRange() {
if(rangeIndex<LENGTHOF(ranges)) {
return ranges+rangeIndex++;
} else {
return NULL;
}
}
void reset() { rangeIndex=0; }
private:
static const Range ranges[4];
int32_t rangeIndex;
};
const HangulIterator::Range HangulIterator::ranges[4]={
{ Hangul::JAMO_L_BASE, Hangul::JAMO_L_BASE+Hangul::JAMO_L_COUNT, 1 },
{ Hangul::JAMO_V_BASE, Hangul::JAMO_V_BASE+Hangul::JAMO_V_COUNT, Normalizer2Impl::JAMO_VT },
// JAMO_T_BASE+1: not U+11A7
{ Hangul::JAMO_T_BASE+1, Hangul::JAMO_T_BASE+Hangul::JAMO_T_COUNT, Normalizer2Impl::JAMO_VT },
{ Hangul::HANGUL_BASE, Hangul::HANGUL_BASE+Hangul::HANGUL_COUNT, 0 }, // will become minYesNo
};
struct CompositionPair {
CompositionPair(UChar32 t, UChar32 c) : trail(t), composite(c) {}
UChar32 trail, composite;
};
struct Norm {
enum MappingType { NONE, REMOVED, ROUND_TRIP, ONE_WAY };
UBool hasMapping() const { return mappingType>REMOVED; }
// Requires hasMapping() and well-formed mapping.
void setMappingCP() {
UChar32 c;
if(!mapping->isEmpty() && mapping->length()==U16_LENGTH(c=mapping->char32At(0))) {
mappingCP=c;
} else {
mappingCP=U_SENTINEL;
}
}
UnicodeString *mapping;
UChar32 mappingCP; // >=0 if mapping to 1 code point
int32_t mappingPhase;
MappingType mappingType;
U_STD_NSQ vector<CompositionPair> *compositions;
uint8_t cc;
UBool combinesBack;
UBool hasNoCompBoundaryAfter;
enum OffsetType {
OFFSET_NONE, OFFSET_MAYBE_YES,
OFFSET_YES_YES, OFFSET_YES_NO, OFFSET_NO_NO,
OFFSET_DELTA
};
enum { OFFSET_SHIFT=4, OFFSET_MASK=(1<<OFFSET_SHIFT)-1 };
int32_t offset;
};
class Normalizer2DBEnumerator {
public:
Normalizer2DBEnumerator(Normalizer2DataBuilder &b) : builder(b) {}
virtual ~Normalizer2DBEnumerator() {}
virtual UBool rangeHandler(UChar32 start, UChar32 end, uint32_t value) = 0;
Normalizer2DBEnumerator *ptr() { return this; }
protected:
Normalizer2DataBuilder &builder;
};
U_CDECL_BEGIN
static UBool U_CALLCONV
enumRangeHandler(const void *context, UChar32 start, UChar32 end, uint32_t value) {
return ((Normalizer2DBEnumerator *)context)->rangeHandler(start, end, value);
}
U_CDECL_END
Normalizer2DataBuilder::Normalizer2DataBuilder(UErrorCode &errorCode) :
phase(0), overrideHandling(OVERRIDE_PREVIOUS), optimization(OPTIMIZE_NORMAL) {
memset(unicodeVersion, 0, sizeof(unicodeVersion));
normTrie=utrie2_open(0, 0, &errorCode);
normMem=utm_open("gennorm2 normalization structs", 10000, 0x110100, sizeof(Norm));
norms=allocNorm(); // unused Norm struct at index 0
memset(indexes, 0, sizeof(indexes));
}
Normalizer2DataBuilder::~Normalizer2DataBuilder() {
utrie2_close(normTrie);
int32_t normsLength=utm_countItems(normMem);
for(int32_t i=1; i<normsLength; ++i) {
delete norms[i].mapping;
delete norms[i].compositions;
}
utm_close(normMem);
utrie2_close(norm16Trie);
}
void
Normalizer2DataBuilder::setUnicodeVersion(const char *v) {
u_versionFromString(unicodeVersion, v);
}
Norm *Normalizer2DataBuilder::allocNorm() {
Norm *p=(Norm *)utm_alloc(normMem);
norms=(Norm *)utm_getStart(normMem); // in case it got reallocated
return p;
}
/* get an existing Norm unit */
Norm *Normalizer2DataBuilder::getNorm(UChar32 c) {
uint32_t i=utrie2_get32(normTrie, c);
if(i==0) {
return NULL;
}
return norms+i;
}
const Norm &Normalizer2DataBuilder::getNormRef(UChar32 c) const {
return norms[utrie2_get32(normTrie, c)];
}
/*
* get or create a Norm unit;
* get or create the intermediate trie entries for it as well
*/
Norm *Normalizer2DataBuilder::createNorm(UChar32 c) {
uint32_t i=utrie2_get32(normTrie, c);
if(i!=0) {
return norms+i;
} else {
/* allocate Norm */
Norm *p=allocNorm();
IcuToolErrorCode errorCode("gennorm2/createNorm()");
utrie2_set32(normTrie, c, (uint32_t)(p-norms), errorCode);
return p;
}
}
Norm *Normalizer2DataBuilder::checkNormForMapping(Norm *p, UChar32 c) {
if(p!=NULL) {
if(p->mappingType!=Norm::NONE) {
if( overrideHandling==OVERRIDE_NONE ||
(overrideHandling==OVERRIDE_PREVIOUS && p->mappingPhase==phase)
) {
fprintf(stderr,
"error in gennorm2 phase %d: "
"not permitted to override mapping for U+%04lX from phase %d\n",
(int)phase, (long)c, (int)p->mappingPhase);
exit(U_INVALID_FORMAT_ERROR);
}
delete p->mapping;
p->mapping=NULL;
}
p->mappingPhase=phase;
}
return p;
}
void Normalizer2DataBuilder::setOverrideHandling(OverrideHandling oh) {
overrideHandling=oh;
++phase;
}
void Normalizer2DataBuilder::setCC(UChar32 c, uint8_t cc) {
createNorm(c)->cc=cc;
}
uint8_t Normalizer2DataBuilder::getCC(UChar32 c) const {
return getNormRef(c).cc;
}
static UBool isWellFormed(const UnicodeString &s) {
UErrorCode errorCode=U_ZERO_ERROR;
u_strToUTF8(NULL, 0, NULL, s.getBuffer(), s.length(), &errorCode);
return U_SUCCESS(errorCode) || errorCode==U_BUFFER_OVERFLOW_ERROR;
}
void Normalizer2DataBuilder::setOneWayMapping(UChar32 c, const UnicodeString &m) {
if(!isWellFormed(m)) {
fprintf(stderr,
"error in gennorm2 phase %d: "
"illegal one-way mapping from U+%04lX to malformed string\n",
(int)phase, (long)c);
exit(U_INVALID_FORMAT_ERROR);
}
Norm *p=checkNormForMapping(createNorm(c), c);
p->mapping=new UnicodeString(m);
p->mappingType=Norm::ONE_WAY;
p->setMappingCP();
}
void Normalizer2DataBuilder::setRoundTripMapping(UChar32 c, const UnicodeString &m) {
if(U_IS_SURROGATE(c)) {
fprintf(stderr,
"error in gennorm2 phase %d: "
"illegal round-trip mapping from surrogate code point U+%04lX\n",
(int)phase, (long)c);
exit(U_INVALID_FORMAT_ERROR);
}
if(!isWellFormed(m)) {
fprintf(stderr,
"error in gennorm2 phase %d: "
"illegal round-trip mapping from U+%04lX to malformed string\n",
(int)phase, (long)c);
exit(U_INVALID_FORMAT_ERROR);
}
int32_t numCP=u_countChar32(m.getBuffer(), m.length());
if(numCP!=2) {
fprintf(stderr,
"error in gennorm2 phase %d: "
"illegal round-trip mapping from U+%04lX to %d!=2 code points\n",
(int)phase, (long)c, (int)numCP);
exit(U_INVALID_FORMAT_ERROR);
}
Norm *p=checkNormForMapping(createNorm(c), c);
p->mapping=new UnicodeString(m);
p->mappingType=Norm::ROUND_TRIP;
p->mappingCP=U_SENTINEL;
}
void Normalizer2DataBuilder::removeMapping(UChar32 c) {
Norm *p=checkNormForMapping(getNorm(c), c);
if(p!=NULL) {
p->mappingType=Norm::REMOVED;
}
}
class CompositionBuilder : public Normalizer2DBEnumerator {
public:
CompositionBuilder(Normalizer2DataBuilder &b) : Normalizer2DBEnumerator(b) {}
virtual UBool rangeHandler(UChar32 start, UChar32 end, uint32_t value) {
builder.addComposition(start, end, value);
return TRUE;
}
};
void
Normalizer2DataBuilder::addComposition(UChar32 start, UChar32 end, uint32_t value) {
if(norms[value].mappingType==Norm::ROUND_TRIP) {
if(start!=end) {
fprintf(stderr,
"gennorm2 error: same round-trip mapping for "
"more than 1 code point U+%04lX..U+%04lX\n",
(long)start, (long)end);
exit(U_INVALID_FORMAT_ERROR);
}
if(norms[value].cc!=0) {
fprintf(stderr,
"gennorm2 error: "
"U+%04lX has a round-trip mapping and ccc!=0, "
"not possible in Unicode normalization\n",
(long)start);
exit(U_INVALID_FORMAT_ERROR);
}
// setRoundTripMapping() ensured that there are exactly two code points.
const UnicodeString &m=*norms[value].mapping;
UChar32 lead=m.char32At(0);
UChar32 trail=m.char32At(m.length()-1);
if(getCC(lead)!=0) {
fprintf(stderr,
"gennorm2 error: "
"U+%04lX's round-trip mapping's starter U+%04lX has ccc!=0, "
"not possible in Unicode normalization\n",
(long)start, (long)lead);
exit(U_INVALID_FORMAT_ERROR);
}
// Flag for trailing character.
createNorm(trail)->combinesBack=TRUE;
// Insert (trail, composite) pair into compositions list for the lead character.
CompositionPair pair(trail, start);
Norm *leadNorm=createNorm(lead);
U_STD_NSQ vector<CompositionPair> *compositions=leadNorm->compositions;
if(compositions==NULL) {
compositions=leadNorm->compositions=new U_STD_NSQ vector<CompositionPair>;
compositions->push_back(pair);
} else {
// Insertion sort, and check for duplicate trail characters.
U_STD_NSQ vector<CompositionPair>::iterator it;
for(it=compositions->begin(); it!=compositions->end(); ++it) {
if(trail==it->trail) {
fprintf(stderr,
"gennorm2 error: same round-trip mapping for "
"more than 1 code point (e.g., U+%04lX) to U+%04lX + U+%04lX\n",
(long)start, (long)lead, (long)trail);
exit(U_INVALID_FORMAT_ERROR);
}
if(trail<it->trail) {
break;
}
}
compositions->insert(it, pair);
}
}
}
UBool Normalizer2DataBuilder::combinesWithCCBetween(const Norm &norm,
uint8_t lowCC, uint8_t highCC) const {
const U_STD_NSQ vector<CompositionPair> *compositions=norm.compositions;
if(compositions!=NULL && (highCC-lowCC)>=2) {
U_STD_NSQ vector<CompositionPair>::const_iterator it;
for(it=compositions->begin(); it!=compositions->end(); ++it) {
uint8_t trailCC=getCC(it->trail);
if(lowCC<trailCC && trailCC<highCC) {
return TRUE;
}
}
}
return FALSE;
}
UChar32 Normalizer2DataBuilder::combine(const Norm &norm, UChar32 trail) const {
const U_STD_NSQ vector<CompositionPair> *compositions=norm.compositions;
if(compositions!=NULL) {
U_STD_NSQ vector<CompositionPair>::const_iterator it;
for(it=compositions->begin(); it!=compositions->end(); ++it) {
if(trail==it->trail) {
return it->composite;
}
if(trail<it->trail) {
break;
}
}
}
return U_SENTINEL;
}
class Decomposer : public Normalizer2DBEnumerator {
public:
Decomposer(Normalizer2DataBuilder &b) : Normalizer2DBEnumerator(b), didDecompose(FALSE) {}
virtual UBool rangeHandler(UChar32 start, UChar32 end, uint32_t value) {
didDecompose|=builder.decompose(start, end, value);
return TRUE;
}
UBool didDecompose;
};
UBool
Normalizer2DataBuilder::decompose(UChar32 start, UChar32 end, uint32_t value) {
if(norms[value].hasMapping()) {
const UnicodeString &m=*norms[value].mapping;
UnicodeString *decomposed=NULL;
const UChar *s=m.getBuffer();
int32_t length=m.length();
int32_t prev, i=0;
UChar32 c;
while(i<length) {
prev=i;
U16_NEXT(s, i, length, c);
if(start<=c && c<=end) {
fprintf(stderr,
"gennorm2 error: U+%04lX maps to itself directly or indirectly\n",
(long)c);
exit(U_INVALID_FORMAT_ERROR);
}
const Norm &cNorm=getNormRef(c);
if(cNorm.hasMapping()) {
if(norms[value].mappingType==Norm::ROUND_TRIP) {
if(prev==0) {
if(cNorm.mappingType!=Norm::ROUND_TRIP) {
fprintf(stderr,
"gennorm2 error: "
"U+%04lX's round-trip mapping's starter "
"U+%04lX one-way-decomposes, "
"not possible in Unicode normalization\n",
(long)start, (long)c);
exit(U_INVALID_FORMAT_ERROR);
}
uint8_t myTrailCC=getCC(m.char32At(i));
UChar32 cTrailChar=cNorm.mapping->char32At(cNorm.mapping->length()-1);
uint8_t cTrailCC=getCC(cTrailChar);
if(cTrailCC>myTrailCC) {
fprintf(stderr,
"gennorm2 error: "
"U+%04lX's round-trip mapping's starter "
"U+%04lX decomposes and the "
"inner/earlier tccc=%hu > outer/following tccc=%hu, "
"not possible in Unicode normalization\n",
(long)start, (long)c,
(short)cTrailCC, (short)myTrailCC);
exit(U_INVALID_FORMAT_ERROR);
}
} else {
fprintf(stderr,
"gennorm2 error: "
"U+%04lX's round-trip mapping's non-starter "
"U+%04lX decomposes, "
"not possible in Unicode normalization\n",
(long)start, (long)c);
exit(U_INVALID_FORMAT_ERROR);
}
}
if(decomposed==NULL) {
decomposed=new UnicodeString(m, 0, prev);
}
decomposed->append(*cNorm.mapping);
} else if(Hangul::isHangul(c)) {
UChar buffer[3];
int32_t hangulLength=Hangul::decompose(c, buffer);
if(norms[value].mappingType==Norm::ROUND_TRIP && prev!=0) {
fprintf(stderr,
"gennorm2 error: "
"U+%04lX's round-trip mapping's non-starter "
"U+%04lX decomposes, "
"not possible in Unicode normalization\n",
(long)start, (long)c);
exit(U_INVALID_FORMAT_ERROR);
}
if(decomposed==NULL) {
decomposed=new UnicodeString(m, 0, prev);
}
decomposed->append(buffer, hangulLength);
} else if(decomposed!=NULL) {
decomposed->append(m, prev, i-prev);
}
}
if(decomposed!=NULL) {
delete norms[value].mapping;
norms[value].mapping=decomposed;
// Not norms[value].setMappingCP(); because the original mapping
// is most likely to be encodable as a delta.
return TRUE;
}
}
return FALSE;
}
class BuilderReorderingBuffer {
public:
BuilderReorderingBuffer() : fLength(0), fLastStarterIndex(-1), fDidReorder(FALSE) {}
void reset() {
fLength=0;
fLastStarterIndex=-1;
fDidReorder=FALSE;
}
int32_t length() const { return fLength; }
UBool isEmpty() const { return fLength==0; }
int32_t lastStarterIndex() const { return fLastStarterIndex; }
UChar32 charAt(int32_t i) const { return fArray[i]>>8; }
uint8_t ccAt(int32_t i) const { return (uint8_t)fArray[i]; }
UBool didReorder() const { return fDidReorder; }
void append(UChar32 c, uint8_t cc) {
if(cc==0 || fLength==0 || ccAt(fLength-1)<=cc) {
if(cc==0) {
fLastStarterIndex=fLength;
}
fArray[fLength++]=(c<<8)|cc;
return;
}
// Let this character bubble back to its canonical order.
int32_t i=fLength-1;
while(i>fLastStarterIndex && ccAt(i)>cc) {
--i;
}
++i; // after the last starter or prevCC<=cc
// Move this and the following characters forward one to make space.
for(int32_t j=fLength; i<j; --j) {
fArray[j]=fArray[j-1];
}
fArray[i]=(c<<8)|cc;
++fLength;
fDidReorder=TRUE;
}
void toString(UnicodeString &dest) {
dest.remove();
for(int32_t i=0; i<fLength; ++i) {
dest.append(charAt(i));
}
}
void setComposite(UChar32 composite, int32_t combMarkIndex) {
fArray[fLastStarterIndex]=composite<<8;
// Remove the combining mark that contributed to the composite.
--fLength;
while(combMarkIndex<fLength) {
fArray[combMarkIndex]=fArray[combMarkIndex+1];
++combMarkIndex;
}
}
private:
int32_t fArray[Normalizer2Impl::MAPPING_LENGTH_MASK];
int32_t fLength;
int32_t fLastStarterIndex;
UBool fDidReorder;
};
void
Normalizer2DataBuilder::reorder(Norm *p, BuilderReorderingBuffer &buffer) {
UnicodeString &m=*p->mapping;
int32_t length=m.length();
if(length>Normalizer2Impl::MAPPING_LENGTH_MASK) {
return; // writeMapping() will complain about it and print the code point.
}
const UChar *s=m.getBuffer();
int32_t i=0;
UChar32 c;
while(i<length) {
U16_NEXT(s, i, length, c);
buffer.append(c, getCC(c));
}
if(buffer.didReorder()) {
buffer.toString(m);
}
}
UBool Normalizer2DataBuilder::hasNoCompBoundaryAfter(BuilderReorderingBuffer &buffer) {
if(buffer.isEmpty()) {
return TRUE; // maps-to-empty string is no boundary of any kind
}
int32_t lastStarterIndex=buffer.lastStarterIndex();
if(lastStarterIndex<0) {
return TRUE; // no starter
}
UChar32 starter=buffer.charAt(lastStarterIndex);
if( Hangul::isJamoL(starter) ||
(Hangul::isJamoV(starter) &&
0<lastStarterIndex && Hangul::isJamoL(buffer.charAt(lastStarterIndex-1)))
) {
// A Jamo leading consonant or an LV pair combines-forward if it is at the end,
// otherwise it is blocked.
return lastStarterIndex==buffer.length()-1;
}
// no Hangul in fully decomposed mapping
const Norm *starterNorm=&getNormRef(starter);
if(starterNorm->compositions==NULL) {
return FALSE; // the last starter does not combine forward
}
// Compose as far as possible, and see if further compositions are possible.
uint8_t prevCC=0;
for(int32_t combMarkIndex=lastStarterIndex+1; combMarkIndex<buffer.length();) {
uint8_t cc=buffer.ccAt(combMarkIndex); // !=0 because after last starter
if(combinesWithCCBetween(*starterNorm, prevCC, cc)) {
return TRUE;
}
if( prevCC<cc &&
(starter=combine(*starterNorm, buffer.charAt(combMarkIndex)))>=0
) {
buffer.setComposite(starter, combMarkIndex);
starterNorm=&getNormRef(starter);
if(starterNorm->compositions==NULL) {
return FALSE; // the composite does not combine further
}
} else {
prevCC=cc;
++combMarkIndex;
}
}
// TRUE if the final, forward-combining starter is at the end.
return prevCC==0;
}
// Requires p->hasMapping().
void Normalizer2DataBuilder::writeMapping(UChar32 c, const Norm *p, UnicodeString &dataString) {
UnicodeString &m=*p->mapping;
int32_t length=m.length();
if(length>Normalizer2Impl::MAPPING_LENGTH_MASK) {
fprintf(stderr,
"gennorm2 error: "
"mapping for U+%04lX longer than maximum of %d\n",
(long)c, Normalizer2Impl::MAPPING_LENGTH_MASK);
exit(U_INVALID_FORMAT_ERROR);
}
int32_t leadCC, trailCC;
if(length==0) {
leadCC=trailCC=0;
} else {
leadCC=getCC(m.char32At(0));
trailCC=getCC(m.char32At(length-1));
}
if(c<Normalizer2Impl::MIN_CCC_LCCC_CP && (p->cc!=0 || leadCC!=0)) {
fprintf(stderr,
"gennorm2 error: "
"U+%04lX below U+0300 has ccc!=0 or lccc!=0, not supported by ICU\n",
(long)c);
exit(U_INVALID_FORMAT_ERROR);
}
int32_t firstUnit=length|(trailCC<<8);
int32_t secondUnit=p->cc|(leadCC<<8);
if(secondUnit!=0) {
firstUnit|=Normalizer2Impl::MAPPING_HAS_CCC_LCCC_WORD;
}
if(p->compositions!=NULL) {
firstUnit|=Normalizer2Impl::MAPPING_PLUS_COMPOSITION_LIST;
}
if(p->hasNoCompBoundaryAfter) {
firstUnit|=Normalizer2Impl::MAPPING_NO_COMP_BOUNDARY_AFTER;
}
dataString.append((UChar)firstUnit);
if(secondUnit!=0) {
dataString.append((UChar)secondUnit);
}
dataString.append(m);
}
// Requires p->compositions!=NULL.
void Normalizer2DataBuilder::writeCompositions(UChar32 c, const Norm *p, UnicodeString &dataString) {
if(p->cc!=0) {
fprintf(stderr,
"gennorm2 error: "
"U+%04lX combines-forward and has ccc!=0, not possible in Unicode normalization\n",
(long)c);
exit(U_INVALID_FORMAT_ERROR);
}
int32_t length=p->compositions->size();
for(int32_t i=0; i<length; ++i) {
CompositionPair &pair=p->compositions->at(i);
// 22 bits for the composite character and whether it combines forward.
UChar32 compositeAndFwd=pair.composite<<1;
if(getNormRef(pair.composite).compositions!=NULL) {
compositeAndFwd|=1; // The composite character also combines-forward.
}
// Encode most pairs in two units and some in three.
int32_t firstUnit, secondUnit, thirdUnit;
if(pair.trail<Normalizer2Impl::COMP_1_TRAIL_LIMIT) {
if(compositeAndFwd<=0xffff) {
firstUnit=pair.trail<<1;
secondUnit=compositeAndFwd;
thirdUnit=-1;
} else {
firstUnit=(pair.trail<<1)|Normalizer2Impl::COMP_1_TRIPLE;
secondUnit=compositeAndFwd>>16;
thirdUnit=compositeAndFwd;
}
} else {
firstUnit=(Normalizer2Impl::COMP_1_TRAIL_LIMIT+
(pair.trail>>Normalizer2Impl::COMP_1_TRAIL_SHIFT))|
Normalizer2Impl::COMP_1_TRIPLE;
secondUnit=(pair.trail<<Normalizer2Impl::COMP_2_TRAIL_SHIFT)|
(compositeAndFwd>>16);
thirdUnit=compositeAndFwd;
}
// Set the high bit of the first unit if this is the last composition pair.
if(i==(length-1)) {
firstUnit|=Normalizer2Impl::COMP_1_LAST_TUPLE;
}
dataString.append((UChar)firstUnit).append((UChar)secondUnit);
if(thirdUnit>=0) {
dataString.append((UChar)thirdUnit);
}
}
}
class ExtraDataWriter : public Normalizer2DBEnumerator {
public:
ExtraDataWriter(Normalizer2DataBuilder &b) :
Normalizer2DBEnumerator(b),
yesYesCompositions(1000, (UChar32)0xffff, 2), // 0=inert, 1=Jamo L, 2=start of compositions
yesNoData(1000, (UChar32)0, 1) {} // 0=Hangul, 1=start of normal data
virtual UBool rangeHandler(UChar32 start, UChar32 end, uint32_t value) {
if(value!=0) {
if(start!=end) {
fprintf(stderr,
"gennorm2 error: unexpected shared data for "
"multiple code points U+%04lX..U+%04lX\n",
(long)start, (long)end);
exit(U_INTERNAL_PROGRAM_ERROR);
}
builder.writeExtraData(start, value, *this);
}
return TRUE;
}
UnicodeString maybeYesCompositions;
UnicodeString yesYesCompositions;
UnicodeString yesNoData;
UnicodeString noNoMappings;
Hashtable previousNoNoMappings; // If constructed in runtime code, pass in UErrorCode.
};
void Normalizer2DataBuilder::writeExtraData(UChar32 c, uint32_t value, ExtraDataWriter &writer) {
Norm *p=norms+value;
if(p->combinesBack) {
if(p->hasMapping()) {
fprintf(stderr,
"gennorm2 error: "
"U+%04lX combines-back and decomposes, not possible in Unicode normalization\n",
(long)c);
exit(U_INVALID_FORMAT_ERROR);
}
if(p->compositions!=NULL) {
p->offset=
(writer.maybeYesCompositions.length()<<Norm::OFFSET_SHIFT)|
Norm::OFFSET_MAYBE_YES;
writeCompositions(c, p, writer.maybeYesCompositions);
}
} else if(!p->hasMapping()) {
if(p->compositions!=NULL) {
p->offset=
(writer.yesYesCompositions.length()<<Norm::OFFSET_SHIFT)|
Norm::OFFSET_YES_YES;
writeCompositions(c, p, writer.yesYesCompositions);
}
} else if(p->mappingType==Norm::ROUND_TRIP) {
p->offset=
(writer.yesNoData.length()<<Norm::OFFSET_SHIFT)|
Norm::OFFSET_YES_NO;
writeMapping(c, p, writer.yesNoData);
if(p->compositions!=NULL) {
writeCompositions(c, p, writer.yesNoData);
}
} else /* one-way */ {
if(p->compositions!=NULL) {
fprintf(stderr,
"gennorm2 error: "
"U+%04lX combines-forward and has a one-way mapping, "
"not possible in Unicode normalization\n",
(long)c);
exit(U_INVALID_FORMAT_ERROR);
}
if(p->cc==0 && optimization!=OPTIMIZE_FAST) {
// Try a compact, algorithmic encoding.
// Only for ccc=0, because we can't store additional information.
if(p->mappingCP>=0) {
int32_t delta=p->mappingCP-c;
if(-Normalizer2Impl::MAX_DELTA<=delta && delta<=Normalizer2Impl::MAX_DELTA) {
p->offset=(delta<<Norm::OFFSET_SHIFT)|Norm::OFFSET_DELTA;
}
}
}
if(p->offset==0) {
int32_t oldNoNoLength=writer.noNoMappings.length();
writeMapping(c, p, writer.noNoMappings);
UnicodeString newMapping=writer.noNoMappings.tempSubString(oldNoNoLength);
int32_t previousOffset=writer.previousNoNoMappings.geti(newMapping);
if(previousOffset!=0) {
// Duplicate, remove the new units and point to the old ones.
writer.noNoMappings.truncate(oldNoNoLength);
p->offset=
((previousOffset-1)<<Norm::OFFSET_SHIFT)|
Norm::OFFSET_NO_NO;
} else {
// Enter this new mapping into the hashtable, avoiding value 0 which is "not found".
IcuToolErrorCode errorCode("gennorm2/writeExtraData()/Hashtable.puti()");
writer.previousNoNoMappings.puti(newMapping, oldNoNoLength+1, errorCode);
p->offset=
(oldNoNoLength<<Norm::OFFSET_SHIFT)|
Norm::OFFSET_NO_NO;
}
}
}
}
class Norm16Writer : public Normalizer2DBEnumerator {
public:
Norm16Writer(Normalizer2DataBuilder &b) : Normalizer2DBEnumerator(b) {}
virtual UBool rangeHandler(UChar32 start, UChar32 end, uint32_t value) {
builder.writeNorm16(start, end, value);
return TRUE;
}
};
void Normalizer2DataBuilder::writeNorm16(UChar32 start, UChar32 end, uint32_t value) {
if(value!=0) {
const Norm *p=norms+value;
int32_t offset=p->offset>>Norm::OFFSET_SHIFT;
int32_t norm16=0;
UBool isDecompNo=FALSE;
UBool isCompNoMaybe=FALSE;
switch(p->offset&Norm::OFFSET_MASK) {
case Norm::OFFSET_NONE:
// No mapping, no compositions list.
if(p->combinesBack) {
norm16=Normalizer2Impl::MIN_NORMAL_MAYBE_YES+p->cc;
isDecompNo=(UBool)(p->cc!=0);
isCompNoMaybe=TRUE;
} else if(p->cc!=0) {
norm16=Normalizer2Impl::MIN_YES_YES_WITH_CC-1+p->cc;
isDecompNo=isCompNoMaybe=TRUE;
}
break;
case Norm::OFFSET_MAYBE_YES:
norm16=indexes[Normalizer2Impl::IX_MIN_MAYBE_YES]+offset;
isCompNoMaybe=TRUE;
break;
case Norm::OFFSET_YES_YES:
norm16=offset;
break;
case Norm::OFFSET_YES_NO:
norm16=indexes[Normalizer2Impl::IX_MIN_YES_NO]+offset;
isDecompNo=TRUE;
break;
case Norm::OFFSET_NO_NO:
norm16=indexes[Normalizer2Impl::IX_MIN_NO_NO]+offset;
isDecompNo=isCompNoMaybe=TRUE;
break;
case Norm::OFFSET_DELTA:
norm16=getCenterNoNoDelta()+offset;
isDecompNo=isCompNoMaybe=TRUE;
break;
default: // Should not occur.
exit(U_INTERNAL_PROGRAM_ERROR);
}
IcuToolErrorCode errorCode("gennorm2/writeNorm16()");
utrie2_setRange32(norm16Trie, start, end, (uint32_t)norm16, TRUE, errorCode);
if(isDecompNo && start<indexes[Normalizer2Impl::IX_MIN_DECOMP_NO_CP]) {
indexes[Normalizer2Impl::IX_MIN_DECOMP_NO_CP]=start;
}
if(isCompNoMaybe && start<indexes[Normalizer2Impl::IX_MIN_COMP_NO_MAYBE_CP]) {
indexes[Normalizer2Impl::IX_MIN_COMP_NO_MAYBE_CP]=start;
}
}
}
void Normalizer2DataBuilder::setHangulData() {
HangulIterator hi;
const HangulIterator::Range *range;
// Check that none of the Hangul/Jamo code points have data.
while((range=hi.nextRange())!=NULL) {
for(UChar32 c=range->start; c<range->limit; ++c) {
if(utrie2_get32(norm16Trie, c)!=0) {
fprintf(stderr,
"gennorm2 error: "
"illegal mapping/composition/ccc data for Hangul or Jamo U+%04lX\n",
(long)c);
exit(U_INVALID_FORMAT_ERROR);
}
}
}
// Set data for algorithmic runtime handling.
IcuToolErrorCode errorCode("gennorm2/setHangulData()");
hi.reset();
while((range=hi.nextRange())!=NULL) {
uint16_t norm16=range->norm16;
if(norm16==0) {
norm16=(uint16_t)indexes[Normalizer2Impl::IX_MIN_YES_NO]; // Hangul LV/LVT encoded as minYesNo
if(range->start<indexes[Normalizer2Impl::IX_MIN_DECOMP_NO_CP]) {
indexes[Normalizer2Impl::IX_MIN_DECOMP_NO_CP]=range->start;
}
} else {
if(range->start<indexes[Normalizer2Impl::IX_MIN_COMP_NO_MAYBE_CP]) { // Jamo V/T are maybeYes
indexes[Normalizer2Impl::IX_MIN_COMP_NO_MAYBE_CP]=range->start;
}
}
utrie2_setRange32(norm16Trie, range->start, range->limit-1, norm16, TRUE, errorCode);
errorCode.assertSuccess();
}
}
U_CDECL_BEGIN
static UBool U_CALLCONV
enumRangeMaxValue(const void *context, UChar32 /*start*/, UChar32 /*end*/, uint32_t value) {
uint32_t *pMaxValue=(uint32_t *)context;
if(value>*pMaxValue) {
*pMaxValue=value;
}
return TRUE;
}
U_CDECL_END
void Normalizer2DataBuilder::processData() {
IcuToolErrorCode errorCode("gennorm2/processData()");
norm16Trie=utrie2_open(0, 0, errorCode);
errorCode.assertSuccess();
utrie2_enum(normTrie, NULL, enumRangeHandler, CompositionBuilder(*this).ptr());
Decomposer decomposer(*this);
do {
decomposer.didDecompose=FALSE;
utrie2_enum(normTrie, NULL, enumRangeHandler, &decomposer);
} while(decomposer.didDecompose);
BuilderReorderingBuffer buffer;
int32_t normsLength=utm_countItems(normMem);
for(int32_t i=1; i<normsLength; ++i) {
if(norms[i].hasMapping()) {
buffer.reset();
reorder(norms+i, buffer);
norms[i].hasNoCompBoundaryAfter=hasNoCompBoundaryAfter(buffer);
}
}
indexes[Normalizer2Impl::IX_MIN_DECOMP_NO_CP]=0x110000;
indexes[Normalizer2Impl::IX_MIN_COMP_NO_MAYBE_CP]=0x110000;
ExtraDataWriter extraDataWriter(*this);
utrie2_enum(normTrie, NULL, enumRangeHandler, &extraDataWriter);
extraData=extraDataWriter.maybeYesCompositions;
extraData.append(extraDataWriter.yesYesCompositions).
append(extraDataWriter.yesNoData).
append(extraDataWriter.noNoMappings);
// Pad to even length for 4-byte alignment of following data.
if(extraData.length()&1) {
extraData.append((UChar)0);
}
indexes[Normalizer2Impl::IX_MIN_YES_NO]=
extraDataWriter.yesYesCompositions.length();
indexes[Normalizer2Impl::IX_MIN_NO_NO]=
indexes[Normalizer2Impl::IX_MIN_YES_NO]+
extraDataWriter.yesNoData.length();
indexes[Normalizer2Impl::IX_LIMIT_NO_NO]=
indexes[Normalizer2Impl::IX_MIN_NO_NO]+
extraDataWriter.noNoMappings.length();
indexes[Normalizer2Impl::IX_MIN_MAYBE_YES]=
Normalizer2Impl::MIN_NORMAL_MAYBE_YES-
extraDataWriter.maybeYesCompositions.length();
int32_t minNoNoDelta=getCenterNoNoDelta()-Normalizer2Impl::MAX_DELTA;
if(indexes[Normalizer2Impl::IX_LIMIT_NO_NO]>minNoNoDelta) {
fprintf(stderr,
"gennorm2 error: "
"data structure overflow, too much mapping composition data\n");
exit(U_BUFFER_OVERFLOW_ERROR);
}
utrie2_enum(normTrie, NULL, enumRangeHandler, Norm16Writer(*this).ptr());
setHangulData();
// Look for the "worst" norm16 value of any supplementary code point
// corresponding to a lead surrogate, and set it as that surrogate's value.
// Enables quick check inner loops to look at only code units.
//
// We could be more sophisticated:
// We could collect a bit set for whether there are values in the different
// norm16 ranges (yesNo, maybeYes, yesYesWithCC etc.)
// and select the best value that only breaks the composition and/or decomposition
// inner loops if necessary.
// However, that seems like overkill for an optimization for supplementary characters.
for(UChar lead=0xd800; lead<0xdc00; ++lead) {
uint32_t maxValue=utrie2_get32(norm16Trie, lead);
utrie2_enumForLeadSurrogate(norm16Trie, lead, NULL, enumRangeMaxValue, &maxValue);
if( maxValue>=(uint32_t)indexes[Normalizer2Impl::IX_LIMIT_NO_NO] &&
maxValue>(uint32_t)indexes[Normalizer2Impl::IX_MIN_NO_NO]
) {
// Set noNo ("worst" value) if it got into "less-bad" maybeYes or ccc!=0.
// Otherwise it might end up at something like JAMO_VT which stays in
// the inner decomposition quick check loop.
maxValue=(uint32_t)indexes[Normalizer2Impl::IX_LIMIT_NO_NO]-1;
}
utrie2_set32ForLeadSurrogateCodeUnit(norm16Trie, lead, maxValue, errorCode);
}
// Adjust supplementary minimum code points to break quick check loops at their lead surrogates.
// For an empty data file, minCP=0x110000 turns into 0xdc00 (first trail surrogate)
// which is harmless.
// As a result, the minimum code points are always BMP code points.
int32_t minCP=indexes[Normalizer2Impl::IX_MIN_DECOMP_NO_CP];
if(minCP>=0x10000) {
indexes[Normalizer2Impl::IX_MIN_DECOMP_NO_CP]=U16_LEAD(minCP);
}
minCP=indexes[Normalizer2Impl::IX_MIN_COMP_NO_MAYBE_CP];
if(minCP>=0x10000) {
indexes[Normalizer2Impl::IX_MIN_COMP_NO_MAYBE_CP]=U16_LEAD(minCP);
}
}
void Normalizer2DataBuilder::writeBinaryFile(const char *filename) {
processData();
IcuToolErrorCode errorCode("gennorm2/writeBinaryFile()");
utrie2_freeze(norm16Trie, UTRIE2_16_VALUE_BITS, errorCode);
int32_t norm16TrieLength=utrie2_serialize(norm16Trie, NULL, 0, errorCode);
if(errorCode.get()!=U_BUFFER_OVERFLOW_ERROR) {
fprintf(stderr, "gennorm2 error: unable to freeze/serialize the normalization trie - %s\n",
errorCode.errorName());
exit(errorCode.reset());
}
errorCode.reset();
LocalArray<uint8_t> norm16TrieBytes(new uint8_t[norm16TrieLength]);
utrie2_serialize(norm16Trie, norm16TrieBytes.getAlias(), norm16TrieLength, errorCode);
errorCode.assertSuccess();
int32_t offset=(int32_t)sizeof(indexes);
indexes[Normalizer2Impl::IX_NORM_TRIE_OFFSET]=offset;
offset+=norm16TrieLength;
indexes[Normalizer2Impl::IX_EXTRA_DATA_OFFSET]=offset;
int32_t totalSize=offset+=extraData.length()*2;
for(int32_t i=Normalizer2Impl::IX_RESERVED2_OFFSET; i<=Normalizer2Impl::IX_TOTAL_SIZE; ++i) {
indexes[i]=totalSize;
}
if(beVerbose) {
printf("size of normalization trie: %5ld bytes\n", (long)norm16TrieLength);
printf("size of 16-bit extra data: %5ld uint16_t\n", (long)extraData.length());
printf("size of binary data file contents: %5ld bytes\n", (long)totalSize);
printf("minDecompNoCodePoint: U+%04lX\n", (long)indexes[Normalizer2Impl::IX_MIN_DECOMP_NO_CP]);
printf("minCompNoMaybeCodePoint: U+%04lX\n", (long)indexes[Normalizer2Impl::IX_MIN_COMP_NO_MAYBE_CP]);
printf("minYesNo: 0x%04x\n", (int)indexes[Normalizer2Impl::IX_MIN_YES_NO]);
printf("minNoNo: 0x%04x\n", (int)indexes[Normalizer2Impl::IX_MIN_NO_NO]);
printf("limitNoNo: 0x%04x\n", (int)indexes[Normalizer2Impl::IX_LIMIT_NO_NO]);
printf("minMaybeYes: 0x%04x\n", (int)indexes[Normalizer2Impl::IX_MIN_MAYBE_YES]);
}
memcpy(dataInfo.dataVersion, unicodeVersion, 4);
UNewDataMemory *pData=
udata_create(NULL, NULL, filename, &dataInfo,
haveCopyright ? U_COPYRIGHT_STRING : NULL, errorCode);
if(errorCode.isFailure()) {
fprintf(stderr, "gennorm2 error: unable to create the output file %s - %s\n",
filename, errorCode.errorName());
exit(errorCode.reset());
}
udata_writeBlock(pData, indexes, sizeof(indexes));
udata_writeBlock(pData, norm16TrieBytes.getAlias(), norm16TrieLength);
udata_writeUString(pData, extraData.getBuffer(), extraData.length());
int32_t writtenSize=udata_finish(pData, errorCode);
if(errorCode.isFailure()) {
fprintf(stderr, "gennorm2: error %s writing the output file\n", errorCode.errorName());
exit(errorCode.reset());
}
if(writtenSize!=totalSize) {
fprintf(stderr, "gennorm2 error: written size %ld != calculated size %ld\n",
(long)writtenSize, (long)totalSize);
exit(U_INTERNAL_PROGRAM_ERROR);
}
}
U_NAMESPACE_END
#endif /* #if !UCONFIG_NO_NORMALIZATION */
/*
* Hey, Emacs, please set the following:
*
* Local Variables:
* indent-tabs-mode: nil
* End:
*/