/*
* Copyright (C) 2006 Samuel Weinig (sam.weinig@gmail.com)
* Copyright (C) 2004, 2005, 2006, 2008 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "BitmapImage.h"
#include "FloatRect.h"
#include "ImageObserver.h"
#include "IntRect.h"
#include "MIMETypeRegistry.h"
#include "PlatformString.h"
#include "Timer.h"
#include <wtf/CurrentTime.h>
#include <wtf/Vector.h>
namespace WebCore {
static int frameBytes(const IntSize& frameSize)
{
return frameSize.width() * frameSize.height() * 4;
}
BitmapImage::BitmapImage(ImageObserver* observer)
: Image(observer)
, m_currentFrame(0)
, m_frames(0)
, m_frameTimer(0)
, m_repetitionCount(cAnimationNone)
, m_repetitionCountStatus(Unknown)
, m_repetitionsComplete(0)
, m_desiredFrameStartTime(0)
, m_isSolidColor(false)
, m_checkedForSolidColor(false)
, m_animationFinished(false)
, m_allDataReceived(false)
, m_haveSize(false)
, m_sizeAvailable(false)
, m_hasUniformFrameSize(true)
, m_decodedSize(0)
, m_haveFrameCount(false)
, m_frameCount(0)
{
initPlatformData();
}
BitmapImage::~BitmapImage()
{
invalidatePlatformData();
stopAnimation();
}
void BitmapImage::destroyDecodedData(bool destroyAll)
{
int framesCleared = 0;
const size_t clearBeforeFrame = destroyAll ? m_frames.size() : m_currentFrame;
for (size_t i = 0; i < clearBeforeFrame; ++i) {
// The underlying frame isn't actually changing (we're just trying to
// save the memory for the framebuffer data), so we don't need to clear
// the metadata.
if (m_frames[i].clear(false))
++framesCleared;
}
destroyMetadataAndNotify(framesCleared);
m_source.clear(destroyAll, clearBeforeFrame, data(), m_allDataReceived);
return;
}
void BitmapImage::destroyDecodedDataIfNecessary(bool destroyAll)
{
// Animated images >5MB are considered large enough that we'll only hang on
// to one frame at a time.
static const unsigned cLargeAnimationCutoff = 5242880;
if (m_frames.size() * frameBytes(m_size) > cLargeAnimationCutoff)
destroyDecodedData(destroyAll);
}
void BitmapImage::destroyMetadataAndNotify(int framesCleared)
{
m_isSolidColor = false;
invalidatePlatformData();
const int deltaBytes = framesCleared * -frameBytes(m_size);
m_decodedSize += deltaBytes;
if (deltaBytes && imageObserver())
imageObserver()->decodedSizeChanged(this, deltaBytes);
}
void BitmapImage::cacheFrame(size_t index)
{
size_t numFrames = frameCount();
ASSERT(m_decodedSize == 0 || numFrames > 1);
if (m_frames.size() < numFrames)
m_frames.grow(numFrames);
m_frames[index].m_frame = m_source.createFrameAtIndex(index);
if (numFrames == 1 && m_frames[index].m_frame)
checkForSolidColor();
m_frames[index].m_haveMetadata = true;
m_frames[index].m_isComplete = m_source.frameIsCompleteAtIndex(index);
if (repetitionCount(false) != cAnimationNone)
m_frames[index].m_duration = m_source.frameDurationAtIndex(index);
m_frames[index].m_hasAlpha = m_source.frameHasAlphaAtIndex(index);
const IntSize frameSize(index ? m_source.frameSizeAtIndex(index) : m_size);
if (frameSize != m_size)
m_hasUniformFrameSize = false;
if (m_frames[index].m_frame) {
const int deltaBytes = frameBytes(frameSize);
m_decodedSize += deltaBytes;
if (imageObserver())
imageObserver()->decodedSizeChanged(this, deltaBytes);
}
}
IntSize BitmapImage::size() const
{
if (m_sizeAvailable && !m_haveSize) {
m_size = m_source.size();
m_haveSize = true;
}
return m_size;
}
IntSize BitmapImage::currentFrameSize() const
{
if (!m_currentFrame || m_hasUniformFrameSize)
return size();
return m_source.frameSizeAtIndex(m_currentFrame);
}
bool BitmapImage::dataChanged(bool allDataReceived)
{
// Because we're modifying the current frame, clear its (now possibly
// inaccurate) metadata as well.
destroyMetadataAndNotify((!m_frames.isEmpty() && m_frames[m_frames.size() - 1].clear(true)) ? 1 : 0);
// Feed all the data we've seen so far to the image decoder.
m_allDataReceived = allDataReceived;
m_source.setData(data(), allDataReceived);
// Clear the frame count.
m_haveFrameCount = false;
m_hasUniformFrameSize = true;
// Image properties will not be available until the first frame of the file
// reaches kCGImageStatusIncomplete.
return isSizeAvailable();
}
String BitmapImage::filenameExtension() const
{
return m_source.filenameExtension();
}
size_t BitmapImage::frameCount()
{
if (!m_haveFrameCount) {
m_haveFrameCount = true;
m_frameCount = m_source.frameCount();
}
return m_frameCount;
}
bool BitmapImage::isSizeAvailable()
{
if (m_sizeAvailable)
return true;
m_sizeAvailable = m_source.isSizeAvailable();
return m_sizeAvailable;
}
NativeImagePtr BitmapImage::frameAtIndex(size_t index)
{
if (index >= frameCount())
return 0;
if (index >= m_frames.size() || !m_frames[index].m_frame)
cacheFrame(index);
return m_frames[index].m_frame;
}
bool BitmapImage::frameIsCompleteAtIndex(size_t index)
{
if (index >= frameCount())
return true;
if (index >= m_frames.size() || !m_frames[index].m_haveMetadata)
cacheFrame(index);
return m_frames[index].m_isComplete;
}
float BitmapImage::frameDurationAtIndex(size_t index)
{
if (index >= frameCount())
return 0;
if (index >= m_frames.size() || !m_frames[index].m_haveMetadata)
cacheFrame(index);
return m_frames[index].m_duration;
}
bool BitmapImage::frameHasAlphaAtIndex(size_t index)
{
if (index >= frameCount())
return true;
if (index >= m_frames.size() || !m_frames[index].m_haveMetadata)
cacheFrame(index);
return m_frames[index].m_hasAlpha;
}
int BitmapImage::repetitionCount(bool imageKnownToBeComplete)
{
if ((m_repetitionCountStatus == Unknown) || ((m_repetitionCountStatus == Uncertain) && imageKnownToBeComplete)) {
// Snag the repetition count. If |imageKnownToBeComplete| is false, the
// repetition count may not be accurate yet for GIFs; in this case the
// decoder will default to cAnimationLoopOnce, and we'll try and read
// the count again once the whole image is decoded.
m_repetitionCount = m_source.repetitionCount();
m_repetitionCountStatus = (imageKnownToBeComplete || m_repetitionCount == cAnimationNone) ? Certain : Uncertain;
}
return m_repetitionCount;
}
bool BitmapImage::shouldAnimate()
{
return (repetitionCount(false) != cAnimationNone && !m_animationFinished && imageObserver());
}
void BitmapImage::startAnimation(bool catchUpIfNecessary)
{
#ifdef ANDROID_ANIMATED_GIF
// We can't ever seem to keep up, so always let us just show the next frame
catchUpIfNecessary = false;
#endif
if (m_frameTimer || !shouldAnimate() || frameCount() <= 1)
return;
// Determine time for next frame to start. By ignoring paint and timer lag
// in this calculation, we make the animation appear to run at its desired
// rate regardless of how fast it's being repainted.
const double currentDuration = frameDurationAtIndex(m_currentFrame);
const double time = currentTime();
if (m_desiredFrameStartTime == 0) {
m_desiredFrameStartTime = time + currentDuration;
} else {
m_desiredFrameStartTime += currentDuration;
// When an animated image is more than five minutes out of date, the
// user probably doesn't care about resyncing and we could burn a lot of
// time looping through frames below. Just reset the timings.
const double cAnimationResyncCutoff = 5 * 60;
if ((time - m_desiredFrameStartTime) > cAnimationResyncCutoff)
m_desiredFrameStartTime = time + currentDuration;
}
// Don't advance the animation to an incomplete frame.
size_t nextFrame = (m_currentFrame + 1) % frameCount();
if (!m_allDataReceived && !frameIsCompleteAtIndex(nextFrame))
return;
// Don't advance past the last frame if we haven't decoded the whole image
// yet and our repetition count is potentially unset. The repetition count
// in a GIF can potentially come after all the rest of the image data, so
// wait on it.
if (!m_allDataReceived && repetitionCount(false) == cAnimationLoopOnce && m_currentFrame >= (frameCount() - 1))
return;
// The image may load more slowly than it's supposed to animate, so that by
// the time we reach the end of the first repetition, we're well behind.
// Clamp the desired frame start time in this case, so that we don't skip
// frames (or whole iterations) trying to "catch up". This is a tradeoff:
// It guarantees users see the whole animation the second time through and
// don't miss any repetitions, and is closer to what other browsers do; on
// the other hand, it makes animations "less accurate" for pages that try to
// sync an image and some other resource (e.g. audio), especially if users
// switch tabs (and thus stop drawing the animation, which will pause it)
// during that initial loop, then switch back later.
if (nextFrame == 0 && m_repetitionsComplete == 0 && m_desiredFrameStartTime < time)
m_desiredFrameStartTime = time;
if (!catchUpIfNecessary || time < m_desiredFrameStartTime) {
// Haven't yet reached time for next frame to start; delay until then.
m_frameTimer = new Timer<BitmapImage>(this, &BitmapImage::advanceAnimation);
m_frameTimer->startOneShot(std::max(m_desiredFrameStartTime - time, 0.));
} else {
// We've already reached or passed the time for the next frame to start.
// See if we've also passed the time for frames after that to start, in
// case we need to skip some frames entirely. Remember not to advance
// to an incomplete frame.
for (size_t frameAfterNext = (nextFrame + 1) % frameCount(); frameIsCompleteAtIndex(frameAfterNext); frameAfterNext = (nextFrame + 1) % frameCount()) {
// Should we skip the next frame?
double frameAfterNextStartTime = m_desiredFrameStartTime + frameDurationAtIndex(nextFrame);
if (time < frameAfterNextStartTime)
break;
// Yes; skip over it without notifying our observers.
if (!internalAdvanceAnimation(true))
return;
m_desiredFrameStartTime = frameAfterNextStartTime;
nextFrame = frameAfterNext;
}
// Draw the next frame immediately. Note that m_desiredFrameStartTime
// may be in the past, meaning the next time through this function we'll
// kick off the next advancement sooner than this frame's duration would
// suggest.
if (internalAdvanceAnimation(false)) {
// The image region has been marked dirty, but once we return to our
// caller, draw() will clear it, and nothing will cause the
// animation to advance again. We need to start the timer for the
// next frame running, or the animation can hang. (Compare this
// with when advanceAnimation() is called, and the region is dirtied
// while draw() is not in the callstack, meaning draw() gets called
// to update the region and thus startAnimation() is reached again.)
// NOTE: For large images with slow or heavily-loaded systems,
// throwing away data as we go (see destroyDecodedData()) means we
// can spend so much time re-decoding data above that by the time we
// reach here we're behind again. If we let startAnimation() run
// the catch-up code again, we can get long delays without painting
// as we race the timer, or even infinite recursion. In this
// situation the best we can do is to simply change frames as fast
// as possible, so force startAnimation() to set a zero-delay timer
// and bail out if we're not caught up.
startAnimation(false);
}
}
}
void BitmapImage::stopAnimation()
{
// This timer is used to animate all occurrences of this image. Don't invalidate
// the timer unless all renderers have stopped drawing.
delete m_frameTimer;
m_frameTimer = 0;
}
void BitmapImage::resetAnimation()
{
stopAnimation();
m_currentFrame = 0;
m_repetitionsComplete = 0;
m_desiredFrameStartTime = 0;
m_animationFinished = false;
// For extremely large animations, when the animation is reset, we just throw everything away.
destroyDecodedDataIfNecessary(true);
}
void BitmapImage::advanceAnimation(Timer<BitmapImage>*)
{
internalAdvanceAnimation(false);
// At this point the image region has been marked dirty, and if it's
// onscreen, we'll soon make a call to draw(), which will call
// startAnimation() again to keep the animation moving.
}
bool BitmapImage::internalAdvanceAnimation(bool skippingFrames)
{
// Stop the animation.
stopAnimation();
// See if anyone is still paying attention to this animation. If not, we don't
// advance and will remain suspended at the current frame until the animation is resumed.
if (!skippingFrames && imageObserver()->shouldPauseAnimation(this))
return false;
++m_currentFrame;
bool advancedAnimation = true;
bool destroyAll = false;
if (m_currentFrame >= frameCount()) {
++m_repetitionsComplete;
// Get the repetition count again. If we weren't able to get a
// repetition count before, we should have decoded the whole image by
// now, so it should now be available.
if (repetitionCount(true) && m_repetitionsComplete >= m_repetitionCount) {
m_animationFinished = true;
m_desiredFrameStartTime = 0;
--m_currentFrame;
advancedAnimation = false;
} else {
m_currentFrame = 0;
destroyAll = true;
}
}
destroyDecodedDataIfNecessary(destroyAll);
// We need to draw this frame if we advanced to it while not skipping, or if
// while trying to skip frames we hit the last frame and thus had to stop.
if (skippingFrames != advancedAnimation)
imageObserver()->animationAdvanced(this);
return advancedAnimation;
}
}