// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2011 the V8 project authors. All rights reserved.
// A light-weight IA32 Assembler.
#ifndef V8_IA32_ASSEMBLER_IA32_H_
#define V8_IA32_ASSEMBLER_IA32_H_
#include "isolate.h"
#include "serialize.h"
namespace v8 {
namespace internal {
// CPU Registers.
//
// 1) We would prefer to use an enum, but enum values are assignment-
// compatible with int, which has caused code-generation bugs.
//
// 2) We would prefer to use a class instead of a struct but we don't like
// the register initialization to depend on the particular initialization
// order (which appears to be different on OS X, Linux, and Windows for the
// installed versions of C++ we tried). Using a struct permits C-style
// "initialization". Also, the Register objects cannot be const as this
// forces initialization stubs in MSVC, making us dependent on initialization
// order.
//
// 3) By not using an enum, we are possibly preventing the compiler from
// doing certain constant folds, which may significantly reduce the
// code generated for some assembly instructions (because they boil down
// to a few constants). If this is a problem, we could change the code
// such that we use an enum in optimized mode, and the struct in debug
// mode. This way we get the compile-time error checking in debug mode
// and best performance in optimized code.
//
struct Register {
static const int kNumAllocatableRegisters = 6;
static const int kNumRegisters = 8;
static inline const char* AllocationIndexToString(int index);
static inline int ToAllocationIndex(Register reg);
static inline Register FromAllocationIndex(int index);
static Register from_code(int code) {
ASSERT(code >= 0);
ASSERT(code < kNumRegisters);
Register r = { code };
return r;
}
bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
bool is(Register reg) const { return code_ == reg.code_; }
// eax, ebx, ecx and edx are byte registers, the rest are not.
bool is_byte_register() const { return code_ <= 3; }
int code() const {
ASSERT(is_valid());
return code_;
}
int bit() const {
ASSERT(is_valid());
return 1 << code_;
}
// Unfortunately we can't make this private in a struct.
int code_;
};
const int kRegister_eax_Code = 0;
const int kRegister_ecx_Code = 1;
const int kRegister_edx_Code = 2;
const int kRegister_ebx_Code = 3;
const int kRegister_esp_Code = 4;
const int kRegister_ebp_Code = 5;
const int kRegister_esi_Code = 6;
const int kRegister_edi_Code = 7;
const int kRegister_no_reg_Code = -1;
const Register eax = { kRegister_eax_Code };
const Register ecx = { kRegister_ecx_Code };
const Register edx = { kRegister_edx_Code };
const Register ebx = { kRegister_ebx_Code };
const Register esp = { kRegister_esp_Code };
const Register ebp = { kRegister_ebp_Code };
const Register esi = { kRegister_esi_Code };
const Register edi = { kRegister_edi_Code };
const Register no_reg = { kRegister_no_reg_Code };
inline const char* Register::AllocationIndexToString(int index) {
ASSERT(index >= 0 && index < kNumAllocatableRegisters);
// This is the mapping of allocation indices to registers.
const char* const kNames[] = { "eax", "ecx", "edx", "ebx", "esi", "edi" };
return kNames[index];
}
inline int Register::ToAllocationIndex(Register reg) {
ASSERT(reg.is_valid() && !reg.is(esp) && !reg.is(ebp));
return (reg.code() >= 6) ? reg.code() - 2 : reg.code();
}
inline Register Register::FromAllocationIndex(int index) {
ASSERT(index >= 0 && index < kNumAllocatableRegisters);
return (index >= 4) ? from_code(index + 2) : from_code(index);
}
struct XMMRegister {
static const int kNumAllocatableRegisters = 7;
static const int kNumRegisters = 8;
static int ToAllocationIndex(XMMRegister reg) {
ASSERT(reg.code() != 0);
return reg.code() - 1;
}
static XMMRegister FromAllocationIndex(int index) {
ASSERT(index >= 0 && index < kNumAllocatableRegisters);
return from_code(index + 1);
}
static const char* AllocationIndexToString(int index) {
ASSERT(index >= 0 && index < kNumAllocatableRegisters);
const char* const names[] = {
"xmm1",
"xmm2",
"xmm3",
"xmm4",
"xmm5",
"xmm6",
"xmm7"
};
return names[index];
}
static XMMRegister from_code(int code) {
XMMRegister r = { code };
return r;
}
bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
bool is(XMMRegister reg) const { return code_ == reg.code_; }
int code() const {
ASSERT(is_valid());
return code_;
}
int code_;
};
const XMMRegister xmm0 = { 0 };
const XMMRegister xmm1 = { 1 };
const XMMRegister xmm2 = { 2 };
const XMMRegister xmm3 = { 3 };
const XMMRegister xmm4 = { 4 };
const XMMRegister xmm5 = { 5 };
const XMMRegister xmm6 = { 6 };
const XMMRegister xmm7 = { 7 };
typedef XMMRegister DoubleRegister;
enum Condition {
// any value < 0 is considered no_condition
no_condition = -1,
overflow = 0,
no_overflow = 1,
below = 2,
above_equal = 3,
equal = 4,
not_equal = 5,
below_equal = 6,
above = 7,
negative = 8,
positive = 9,
parity_even = 10,
parity_odd = 11,
less = 12,
greater_equal = 13,
less_equal = 14,
greater = 15,
// aliases
carry = below,
not_carry = above_equal,
zero = equal,
not_zero = not_equal,
sign = negative,
not_sign = positive
};
// Returns the equivalent of !cc.
// Negation of the default no_condition (-1) results in a non-default
// no_condition value (-2). As long as tests for no_condition check
// for condition < 0, this will work as expected.
inline Condition NegateCondition(Condition cc) {
return static_cast<Condition>(cc ^ 1);
}
// Corresponds to transposing the operands of a comparison.
inline Condition ReverseCondition(Condition cc) {
switch (cc) {
case below:
return above;
case above:
return below;
case above_equal:
return below_equal;
case below_equal:
return above_equal;
case less:
return greater;
case greater:
return less;
case greater_equal:
return less_equal;
case less_equal:
return greater_equal;
default:
return cc;
};
}
// -----------------------------------------------------------------------------
// Machine instruction Immediates
class Immediate BASE_EMBEDDED {
public:
inline explicit Immediate(int x);
inline explicit Immediate(const ExternalReference& ext);
inline explicit Immediate(Handle<Object> handle);
inline explicit Immediate(Smi* value);
inline explicit Immediate(Address addr);
static Immediate CodeRelativeOffset(Label* label) {
return Immediate(label);
}
bool is_zero() const { return x_ == 0 && rmode_ == RelocInfo::NONE; }
bool is_int8() const {
return -128 <= x_ && x_ < 128 && rmode_ == RelocInfo::NONE;
}
bool is_int16() const {
return -32768 <= x_ && x_ < 32768 && rmode_ == RelocInfo::NONE;
}
private:
inline explicit Immediate(Label* value);
int x_;
RelocInfo::Mode rmode_;
friend class Assembler;
friend class MacroAssembler;
};
// -----------------------------------------------------------------------------
// Machine instruction Operands
enum ScaleFactor {
times_1 = 0,
times_2 = 1,
times_4 = 2,
times_8 = 3,
times_int_size = times_4,
times_half_pointer_size = times_2,
times_pointer_size = times_4,
times_twice_pointer_size = times_8
};
class Operand BASE_EMBEDDED {
public:
// XMM reg
INLINE(explicit Operand(XMMRegister xmm_reg));
// [disp/r]
INLINE(explicit Operand(int32_t disp, RelocInfo::Mode rmode));
// disp only must always be relocated
// [base + disp/r]
explicit Operand(Register base, int32_t disp,
RelocInfo::Mode rmode = RelocInfo::NONE);
// [base + index*scale + disp/r]
explicit Operand(Register base,
Register index,
ScaleFactor scale,
int32_t disp,
RelocInfo::Mode rmode = RelocInfo::NONE);
// [index*scale + disp/r]
explicit Operand(Register index,
ScaleFactor scale,
int32_t disp,
RelocInfo::Mode rmode = RelocInfo::NONE);
static Operand StaticVariable(const ExternalReference& ext) {
return Operand(reinterpret_cast<int32_t>(ext.address()),
RelocInfo::EXTERNAL_REFERENCE);
}
static Operand StaticArray(Register index,
ScaleFactor scale,
const ExternalReference& arr) {
return Operand(index, scale, reinterpret_cast<int32_t>(arr.address()),
RelocInfo::EXTERNAL_REFERENCE);
}
static Operand Cell(Handle<JSGlobalPropertyCell> cell) {
return Operand(reinterpret_cast<int32_t>(cell.location()),
RelocInfo::GLOBAL_PROPERTY_CELL);
}
// Returns true if this Operand is a wrapper for the specified register.
bool is_reg(Register reg) const;
// Returns true if this Operand is a wrapper for one register.
bool is_reg_only() const;
// Asserts that this Operand is a wrapper for one register and returns the
// register.
Register reg() const;
private:
// reg
INLINE(explicit Operand(Register reg));
// Set the ModRM byte without an encoded 'reg' register. The
// register is encoded later as part of the emit_operand operation.
inline void set_modrm(int mod, Register rm);
inline void set_sib(ScaleFactor scale, Register index, Register base);
inline void set_disp8(int8_t disp);
inline void set_dispr(int32_t disp, RelocInfo::Mode rmode);
byte buf_[6];
// The number of bytes in buf_.
unsigned int len_;
// Only valid if len_ > 4.
RelocInfo::Mode rmode_;
friend class Assembler;
friend class MacroAssembler;
friend class LCodeGen;
};
// -----------------------------------------------------------------------------
// A Displacement describes the 32bit immediate field of an instruction which
// may be used together with a Label in order to refer to a yet unknown code
// position. Displacements stored in the instruction stream are used to describe
// the instruction and to chain a list of instructions using the same Label.
// A Displacement contains 2 different fields:
//
// next field: position of next displacement in the chain (0 = end of list)
// type field: instruction type
//
// A next value of null (0) indicates the end of a chain (note that there can
// be no displacement at position zero, because there is always at least one
// instruction byte before the displacement).
//
// Displacement _data field layout
//
// |31.....2|1......0|
// [ next | type |
class Displacement BASE_EMBEDDED {
public:
enum Type {
UNCONDITIONAL_JUMP,
CODE_RELATIVE,
OTHER
};
int data() const { return data_; }
Type type() const { return TypeField::decode(data_); }
void next(Label* L) const {
int n = NextField::decode(data_);
n > 0 ? L->link_to(n) : L->Unuse();
}
void link_to(Label* L) { init(L, type()); }
explicit Displacement(int data) { data_ = data; }
Displacement(Label* L, Type type) { init(L, type); }
void print() {
PrintF("%s (%x) ", (type() == UNCONDITIONAL_JUMP ? "jmp" : "[other]"),
NextField::decode(data_));
}
private:
int data_;
class TypeField: public BitField<Type, 0, 2> {};
class NextField: public BitField<int, 2, 32-2> {};
void init(Label* L, Type type);
};
// CpuFeatures keeps track of which features are supported by the target CPU.
// Supported features must be enabled by a Scope before use.
// Example:
// if (CpuFeatures::IsSupported(SSE2)) {
// CpuFeatures::Scope fscope(SSE2);
// // Generate SSE2 floating point code.
// } else {
// // Generate standard x87 floating point code.
// }
class CpuFeatures : public AllStatic {
public:
// Detect features of the target CPU. Set safe defaults if the serializer
// is enabled (snapshots must be portable).
static void Probe();
// Check whether a feature is supported by the target CPU.
static bool IsSupported(CpuFeature f) {
ASSERT(initialized_);
if (f == SSE2 && !FLAG_enable_sse2) return false;
if (f == SSE3 && !FLAG_enable_sse3) return false;
if (f == SSE4_1 && !FLAG_enable_sse4_1) return false;
if (f == CMOV && !FLAG_enable_cmov) return false;
if (f == RDTSC && !FLAG_enable_rdtsc) return false;
return (supported_ & (static_cast<uint64_t>(1) << f)) != 0;
}
#ifdef DEBUG
// Check whether a feature is currently enabled.
static bool IsEnabled(CpuFeature f) {
ASSERT(initialized_);
Isolate* isolate = Isolate::UncheckedCurrent();
if (isolate == NULL) {
// When no isolate is available, work as if we're running in
// release mode.
return IsSupported(f);
}
uint64_t enabled = isolate->enabled_cpu_features();
return (enabled & (static_cast<uint64_t>(1) << f)) != 0;
}
#endif
// Enable a specified feature within a scope.
class Scope BASE_EMBEDDED {
#ifdef DEBUG
public:
explicit Scope(CpuFeature f) {
uint64_t mask = static_cast<uint64_t>(1) << f;
ASSERT(CpuFeatures::IsSupported(f));
ASSERT(!Serializer::enabled() ||
(CpuFeatures::found_by_runtime_probing_ & mask) == 0);
isolate_ = Isolate::UncheckedCurrent();
old_enabled_ = 0;
if (isolate_ != NULL) {
old_enabled_ = isolate_->enabled_cpu_features();
isolate_->set_enabled_cpu_features(old_enabled_ | mask);
}
}
~Scope() {
ASSERT_EQ(Isolate::UncheckedCurrent(), isolate_);
if (isolate_ != NULL) {
isolate_->set_enabled_cpu_features(old_enabled_);
}
}
private:
Isolate* isolate_;
uint64_t old_enabled_;
#else
public:
explicit Scope(CpuFeature f) {}
#endif
};
class TryForceFeatureScope BASE_EMBEDDED {
public:
explicit TryForceFeatureScope(CpuFeature f)
: old_supported_(CpuFeatures::supported_) {
if (CanForce()) {
CpuFeatures::supported_ |= (static_cast<uint64_t>(1) << f);
}
}
~TryForceFeatureScope() {
if (CanForce()) {
CpuFeatures::supported_ = old_supported_;
}
}
private:
static bool CanForce() {
// It's only safe to temporarily force support of CPU features
// when there's only a single isolate, which is guaranteed when
// the serializer is enabled.
return Serializer::enabled();
}
const uint64_t old_supported_;
};
private:
#ifdef DEBUG
static bool initialized_;
#endif
static uint64_t supported_;
static uint64_t found_by_runtime_probing_;
DISALLOW_COPY_AND_ASSIGN(CpuFeatures);
};
class Assembler : public AssemblerBase {
private:
// We check before assembling an instruction that there is sufficient
// space to write an instruction and its relocation information.
// The relocation writer's position must be kGap bytes above the end of
// the generated instructions. This leaves enough space for the
// longest possible ia32 instruction, 15 bytes, and the longest possible
// relocation information encoding, RelocInfoWriter::kMaxLength == 16.
// (There is a 15 byte limit on ia32 instruction length that rules out some
// otherwise valid instructions.)
// This allows for a single, fast space check per instruction.
static const int kGap = 32;
public:
// Create an assembler. Instructions and relocation information are emitted
// into a buffer, with the instructions starting from the beginning and the
// relocation information starting from the end of the buffer. See CodeDesc
// for a detailed comment on the layout (globals.h).
//
// If the provided buffer is NULL, the assembler allocates and grows its own
// buffer, and buffer_size determines the initial buffer size. The buffer is
// owned by the assembler and deallocated upon destruction of the assembler.
//
// If the provided buffer is not NULL, the assembler uses the provided buffer
// for code generation and assumes its size to be buffer_size. If the buffer
// is too small, a fatal error occurs. No deallocation of the buffer is done
// upon destruction of the assembler.
// TODO(vitalyr): the assembler does not need an isolate.
Assembler(Isolate* isolate, void* buffer, int buffer_size);
~Assembler();
// Overrides the default provided by FLAG_debug_code.
void set_emit_debug_code(bool value) { emit_debug_code_ = value; }
// GetCode emits any pending (non-emitted) code and fills the descriptor
// desc. GetCode() is idempotent; it returns the same result if no other
// Assembler functions are invoked in between GetCode() calls.
void GetCode(CodeDesc* desc);
// Read/Modify the code target in the branch/call instruction at pc.
inline static Address target_address_at(Address pc);
inline static void set_target_address_at(Address pc, Address target);
// This sets the branch destination (which is in the instruction on x86).
// This is for calls and branches within generated code.
inline static void deserialization_set_special_target_at(
Address instruction_payload, Address target) {
set_target_address_at(instruction_payload, target);
}
// This sets the branch destination (which is in the instruction on x86).
// This is for calls and branches to runtime code.
inline static void set_external_target_at(Address instruction_payload,
Address target) {
set_target_address_at(instruction_payload, target);
}
static const int kSpecialTargetSize = kPointerSize;
// Distance between the address of the code target in the call instruction
// and the return address
static const int kCallTargetAddressOffset = kPointerSize;
// Distance between start of patched return sequence and the emitted address
// to jump to.
static const int kPatchReturnSequenceAddressOffset = 1; // JMP imm32.
// Distance between start of patched debug break slot and the emitted address
// to jump to.
static const int kPatchDebugBreakSlotAddressOffset = 1; // JMP imm32.
static const int kCallInstructionLength = 5;
static const int kJSReturnSequenceLength = 6;
// The debug break slot must be able to contain a call instruction.
static const int kDebugBreakSlotLength = kCallInstructionLength;
// One byte opcode for test al, 0xXX.
static const byte kTestAlByte = 0xA8;
// One byte opcode for nop.
static const byte kNopByte = 0x90;
// One byte opcode for a short unconditional jump.
static const byte kJmpShortOpcode = 0xEB;
// One byte prefix for a short conditional jump.
static const byte kJccShortPrefix = 0x70;
static const byte kJncShortOpcode = kJccShortPrefix | not_carry;
static const byte kJcShortOpcode = kJccShortPrefix | carry;
// ---------------------------------------------------------------------------
// Code generation
//
// - function names correspond one-to-one to ia32 instruction mnemonics
// - unless specified otherwise, instructions operate on 32bit operands
// - instructions on 8bit (byte) operands/registers have a trailing '_b'
// - instructions on 16bit (word) operands/registers have a trailing '_w'
// - naming conflicts with C++ keywords are resolved via a trailing '_'
// NOTE ON INTERFACE: Currently, the interface is not very consistent
// in the sense that some operations (e.g. mov()) can be called in more
// the one way to generate the same instruction: The Register argument
// can in some cases be replaced with an Operand(Register) argument.
// This should be cleaned up and made more orthogonal. The questions
// is: should we always use Operands instead of Registers where an
// Operand is possible, or should we have a Register (overloaded) form
// instead? We must be careful to make sure that the selected instruction
// is obvious from the parameters to avoid hard-to-find code generation
// bugs.
// Insert the smallest number of nop instructions
// possible to align the pc offset to a multiple
// of m. m must be a power of 2.
void Align(int m);
void Nop(int bytes = 1);
// Aligns code to something that's optimal for a jump target for the platform.
void CodeTargetAlign();
// Stack
void pushad();
void popad();
void pushfd();
void popfd();
void push(const Immediate& x);
void push_imm32(int32_t imm32);
void push(Register src);
void push(const Operand& src);
void pop(Register dst);
void pop(const Operand& dst);
void enter(const Immediate& size);
void leave();
// Moves
void mov_b(Register dst, Register src) { mov_b(dst, Operand(src)); }
void mov_b(Register dst, const Operand& src);
void mov_b(Register dst, int8_t imm8) { mov_b(Operand(dst), imm8); }
void mov_b(const Operand& dst, int8_t imm8);
void mov_b(const Operand& dst, Register src);
void mov_w(Register dst, const Operand& src);
void mov_w(const Operand& dst, Register src);
void mov(Register dst, int32_t imm32);
void mov(Register dst, const Immediate& x);
void mov(Register dst, Handle<Object> handle);
void mov(Register dst, const Operand& src);
void mov(Register dst, Register src);
void mov(const Operand& dst, const Immediate& x);
void mov(const Operand& dst, Handle<Object> handle);
void mov(const Operand& dst, Register src);
void movsx_b(Register dst, Register src) { movsx_b(dst, Operand(src)); }
void movsx_b(Register dst, const Operand& src);
void movsx_w(Register dst, Register src) { movsx_w(dst, Operand(src)); }
void movsx_w(Register dst, const Operand& src);
void movzx_b(Register dst, Register src) { movzx_b(dst, Operand(src)); }
void movzx_b(Register dst, const Operand& src);
void movzx_w(Register dst, Register src) { movzx_w(dst, Operand(src)); }
void movzx_w(Register dst, const Operand& src);
// Conditional moves
void cmov(Condition cc, Register dst, Register src) {
cmov(cc, dst, Operand(src));
}
void cmov(Condition cc, Register dst, const Operand& src);
// Flag management.
void cld();
// Repetitive string instructions.
void rep_movs();
void rep_stos();
void stos();
// Exchange two registers
void xchg(Register dst, Register src);
// Arithmetics
void adc(Register dst, int32_t imm32);
void adc(Register dst, const Operand& src);
void add(Register dst, Register src) { add(dst, Operand(src)); }
void add(Register dst, const Operand& src);
void add(const Operand& dst, Register src);
void add(Register dst, const Immediate& imm) { add(Operand(dst), imm); }
void add(const Operand& dst, const Immediate& x);
void and_(Register dst, int32_t imm32);
void and_(Register dst, const Immediate& x);
void and_(Register dst, Register src) { and_(dst, Operand(src)); }
void and_(Register dst, const Operand& src);
void and_(const Operand& dst, Register src);
void and_(const Operand& dst, const Immediate& x);
void cmpb(Register reg, int8_t imm8) { cmpb(Operand(reg), imm8); }
void cmpb(const Operand& op, int8_t imm8);
void cmpb(Register reg, const Operand& op);
void cmpb(const Operand& op, Register reg);
void cmpb_al(const Operand& op);
void cmpw_ax(const Operand& op);
void cmpw(const Operand& op, Immediate imm16);
void cmp(Register reg, int32_t imm32);
void cmp(Register reg, Handle<Object> handle);
void cmp(Register reg0, Register reg1) { cmp(reg0, Operand(reg1)); }
void cmp(Register reg, const Operand& op);
void cmp(Register reg, const Immediate& imm) { cmp(Operand(reg), imm); }
void cmp(const Operand& op, const Immediate& imm);
void cmp(const Operand& op, Handle<Object> handle);
void dec_b(Register dst);
void dec_b(const Operand& dst);
void dec(Register dst);
void dec(const Operand& dst);
void cdq();
void idiv(Register src);
// Signed multiply instructions.
void imul(Register src); // edx:eax = eax * src.
void imul(Register dst, Register src) { imul(dst, Operand(src)); }
void imul(Register dst, const Operand& src); // dst = dst * src.
void imul(Register dst, Register src, int32_t imm32); // dst = src * imm32.
void inc(Register dst);
void inc(const Operand& dst);
void lea(Register dst, const Operand& src);
// Unsigned multiply instruction.
void mul(Register src); // edx:eax = eax * reg.
void neg(Register dst);
void not_(Register dst);
void or_(Register dst, int32_t imm32);
void or_(Register dst, Register src) { or_(dst, Operand(src)); }
void or_(Register dst, const Operand& src);
void or_(const Operand& dst, Register src);
void or_(Register dst, const Immediate& imm) { or_(Operand(dst), imm); }
void or_(const Operand& dst, const Immediate& x);
void rcl(Register dst, uint8_t imm8);
void rcr(Register dst, uint8_t imm8);
void sar(Register dst, uint8_t imm8);
void sar_cl(Register dst);
void sbb(Register dst, const Operand& src);
void shld(Register dst, Register src) { shld(dst, Operand(src)); }
void shld(Register dst, const Operand& src);
void shl(Register dst, uint8_t imm8);
void shl_cl(Register dst);
void shrd(Register dst, Register src) { shrd(dst, Operand(src)); }
void shrd(Register dst, const Operand& src);
void shr(Register dst, uint8_t imm8);
void shr_cl(Register dst);
void sub(Register dst, const Immediate& imm) { sub(Operand(dst), imm); }
void sub(const Operand& dst, const Immediate& x);
void sub(Register dst, Register src) { sub(dst, Operand(src)); }
void sub(Register dst, const Operand& src);
void sub(const Operand& dst, Register src);
void test(Register reg, const Immediate& imm);
void test(Register reg0, Register reg1) { test(reg0, Operand(reg1)); }
void test(Register reg, const Operand& op);
void test_b(Register reg, const Operand& op);
void test(const Operand& op, const Immediate& imm);
void test_b(Register reg, uint8_t imm8) { test_b(Operand(reg), imm8); }
void test_b(const Operand& op, uint8_t imm8);
void xor_(Register dst, int32_t imm32);
void xor_(Register dst, Register src) { xor_(dst, Operand(src)); }
void xor_(Register dst, const Operand& src);
void xor_(const Operand& dst, Register src);
void xor_(Register dst, const Immediate& imm) { xor_(Operand(dst), imm); }
void xor_(const Operand& dst, const Immediate& x);
// Bit operations.
void bt(const Operand& dst, Register src);
void bts(Register dst, Register src) { bts(Operand(dst), src); }
void bts(const Operand& dst, Register src);
// Miscellaneous
void hlt();
void int3();
void nop();
void rdtsc();
void ret(int imm16);
// Label operations & relative jumps (PPUM Appendix D)
//
// Takes a branch opcode (cc) and a label (L) and generates
// either a backward branch or a forward branch and links it
// to the label fixup chain. Usage:
//
// Label L; // unbound label
// j(cc, &L); // forward branch to unbound label
// bind(&L); // bind label to the current pc
// j(cc, &L); // backward branch to bound label
// bind(&L); // illegal: a label may be bound only once
//
// Note: The same Label can be used for forward and backward branches
// but it may be bound only once.
void bind(Label* L); // binds an unbound label L to the current code position
// Calls
void call(Label* L);
void call(byte* entry, RelocInfo::Mode rmode);
int CallSize(const Operand& adr);
void call(Register reg) { call(Operand(reg)); }
void call(const Operand& adr);
int CallSize(Handle<Code> code, RelocInfo::Mode mode);
void call(Handle<Code> code,
RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
unsigned ast_id = kNoASTId);
// Jumps
// unconditional jump to L
void jmp(Label* L, Label::Distance distance = Label::kFar);
void jmp(byte* entry, RelocInfo::Mode rmode);
void jmp(Register reg) { jmp(Operand(reg)); }
void jmp(const Operand& adr);
void jmp(Handle<Code> code, RelocInfo::Mode rmode);
// Conditional jumps
void j(Condition cc,
Label* L,
Label::Distance distance = Label::kFar);
void j(Condition cc, byte* entry, RelocInfo::Mode rmode);
void j(Condition cc, Handle<Code> code);
// Floating-point operations
void fld(int i);
void fstp(int i);
void fld1();
void fldz();
void fldpi();
void fldln2();
void fld_s(const Operand& adr);
void fld_d(const Operand& adr);
void fstp_s(const Operand& adr);
void fstp_d(const Operand& adr);
void fst_d(const Operand& adr);
void fild_s(const Operand& adr);
void fild_d(const Operand& adr);
void fist_s(const Operand& adr);
void fistp_s(const Operand& adr);
void fistp_d(const Operand& adr);
// The fisttp instructions require SSE3.
void fisttp_s(const Operand& adr);
void fisttp_d(const Operand& adr);
void fabs();
void fchs();
void fcos();
void fsin();
void fptan();
void fyl2x();
void f2xm1();
void fscale();
void fninit();
void fadd(int i);
void fsub(int i);
void fmul(int i);
void fdiv(int i);
void fisub_s(const Operand& adr);
void faddp(int i = 1);
void fsubp(int i = 1);
void fsubrp(int i = 1);
void fmulp(int i = 1);
void fdivp(int i = 1);
void fprem();
void fprem1();
void fxch(int i = 1);
void fincstp();
void ffree(int i = 0);
void ftst();
void fucomp(int i);
void fucompp();
void fucomi(int i);
void fucomip();
void fcompp();
void fnstsw_ax();
void fwait();
void fnclex();
void frndint();
void sahf();
void setcc(Condition cc, Register reg);
void cpuid();
// SSE2 instructions
void cvttss2si(Register dst, const Operand& src);
void cvttsd2si(Register dst, const Operand& src);
void cvtsi2sd(XMMRegister dst, Register src) { cvtsi2sd(dst, Operand(src)); }
void cvtsi2sd(XMMRegister dst, const Operand& src);
void cvtss2sd(XMMRegister dst, XMMRegister src);
void cvtsd2ss(XMMRegister dst, XMMRegister src);
void addsd(XMMRegister dst, XMMRegister src);
void subsd(XMMRegister dst, XMMRegister src);
void mulsd(XMMRegister dst, XMMRegister src);
void divsd(XMMRegister dst, XMMRegister src);
void xorpd(XMMRegister dst, XMMRegister src);
void xorps(XMMRegister dst, XMMRegister src);
void sqrtsd(XMMRegister dst, XMMRegister src);
void andpd(XMMRegister dst, XMMRegister src);
void ucomisd(XMMRegister dst, XMMRegister src);
void ucomisd(XMMRegister dst, const Operand& src);
enum RoundingMode {
kRoundToNearest = 0x0,
kRoundDown = 0x1,
kRoundUp = 0x2,
kRoundToZero = 0x3
};
void roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode);
void movmskpd(Register dst, XMMRegister src);
void cmpltsd(XMMRegister dst, XMMRegister src);
void movaps(XMMRegister dst, XMMRegister src);
void movdqa(XMMRegister dst, const Operand& src);
void movdqa(const Operand& dst, XMMRegister src);
void movdqu(XMMRegister dst, const Operand& src);
void movdqu(const Operand& dst, XMMRegister src);
// Use either movsd or movlpd.
void movdbl(XMMRegister dst, const Operand& src);
void movdbl(const Operand& dst, XMMRegister src);
void movd(XMMRegister dst, Register src) { movd(dst, Operand(src)); }
void movd(XMMRegister dst, const Operand& src);
void movd(Register dst, XMMRegister src) { movd(Operand(dst), src); }
void movd(const Operand& dst, XMMRegister src);
void movsd(XMMRegister dst, XMMRegister src);
void movss(XMMRegister dst, const Operand& src);
void movss(const Operand& dst, XMMRegister src);
void movss(XMMRegister dst, XMMRegister src);
void extractps(Register dst, XMMRegister src, byte imm8);
void pand(XMMRegister dst, XMMRegister src);
void pxor(XMMRegister dst, XMMRegister src);
void por(XMMRegister dst, XMMRegister src);
void ptest(XMMRegister dst, XMMRegister src);
void psllq(XMMRegister reg, int8_t shift);
void psllq(XMMRegister dst, XMMRegister src);
void psrlq(XMMRegister reg, int8_t shift);
void psrlq(XMMRegister dst, XMMRegister src);
void pshufd(XMMRegister dst, XMMRegister src, int8_t shuffle);
void pextrd(Register dst, XMMRegister src, int8_t offset) {
pextrd(Operand(dst), src, offset);
}
void pextrd(const Operand& dst, XMMRegister src, int8_t offset);
void pinsrd(XMMRegister dst, Register src, int8_t offset) {
pinsrd(dst, Operand(src), offset);
}
void pinsrd(XMMRegister dst, const Operand& src, int8_t offset);
// Parallel XMM operations.
void movntdqa(XMMRegister dst, const Operand& src);
void movntdq(const Operand& dst, XMMRegister src);
// Prefetch src position into cache level.
// Level 1, 2 or 3 specifies CPU cache level. Level 0 specifies a
// non-temporal
void prefetch(const Operand& src, int level);
// TODO(lrn): Need SFENCE for movnt?
// Debugging
void Print();
// Check the code size generated from label to here.
int SizeOfCodeGeneratedSince(Label* label) {
return pc_offset() - label->pos();
}
// Mark address of the ExitJSFrame code.
void RecordJSReturn();
// Mark address of a debug break slot.
void RecordDebugBreakSlot();
// Record a comment relocation entry that can be used by a disassembler.
// Use --code-comments to enable, or provide "force = true" flag to always
// write a comment.
void RecordComment(const char* msg, bool force = false);
// Writes a single byte or word of data in the code stream. Used for
// inline tables, e.g., jump-tables.
void db(uint8_t data);
void dd(uint32_t data);
int pc_offset() const { return pc_ - buffer_; }
// Check if there is less than kGap bytes available in the buffer.
// If this is the case, we need to grow the buffer before emitting
// an instruction or relocation information.
inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
// Get the number of bytes available in the buffer.
inline int available_space() const { return reloc_info_writer.pos() - pc_; }
static bool IsNop(Address addr);
PositionsRecorder* positions_recorder() { return &positions_recorder_; }
int relocation_writer_size() {
return (buffer_ + buffer_size_) - reloc_info_writer.pos();
}
// Avoid overflows for displacements etc.
static const int kMaximalBufferSize = 512*MB;
static const int kMinimalBufferSize = 4*KB;
byte byte_at(int pos) { return buffer_[pos]; }
void set_byte_at(int pos, byte value) { buffer_[pos] = value; }
protected:
bool emit_debug_code() const { return emit_debug_code_; }
void movsd(XMMRegister dst, const Operand& src);
void movsd(const Operand& dst, XMMRegister src);
void emit_sse_operand(XMMRegister reg, const Operand& adr);
void emit_sse_operand(XMMRegister dst, XMMRegister src);
void emit_sse_operand(Register dst, XMMRegister src);
byte* addr_at(int pos) { return buffer_ + pos; }
private:
uint32_t long_at(int pos) {
return *reinterpret_cast<uint32_t*>(addr_at(pos));
}
void long_at_put(int pos, uint32_t x) {
*reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
}
// code emission
void GrowBuffer();
inline void emit(uint32_t x);
inline void emit(Handle<Object> handle);
inline void emit(uint32_t x,
RelocInfo::Mode rmode,
unsigned ast_id = kNoASTId);
inline void emit(const Immediate& x);
inline void emit_w(const Immediate& x);
// Emit the code-object-relative offset of the label's position
inline void emit_code_relative_offset(Label* label);
// instruction generation
void emit_arith_b(int op1, int op2, Register dst, int imm8);
// Emit a basic arithmetic instruction (i.e. first byte of the family is 0x81)
// with a given destination expression and an immediate operand. It attempts
// to use the shortest encoding possible.
// sel specifies the /n in the modrm byte (see the Intel PRM).
void emit_arith(int sel, Operand dst, const Immediate& x);
void emit_operand(Register reg, const Operand& adr);
void emit_farith(int b1, int b2, int i);
// labels
void print(Label* L);
void bind_to(Label* L, int pos);
// displacements
inline Displacement disp_at(Label* L);
inline void disp_at_put(Label* L, Displacement disp);
inline void emit_disp(Label* L, Displacement::Type type);
inline void emit_near_disp(Label* L);
// record reloc info for current pc_
void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
friend class CodePatcher;
friend class EnsureSpace;
// Code buffer:
// The buffer into which code and relocation info are generated.
byte* buffer_;
int buffer_size_;
// True if the assembler owns the buffer, false if buffer is external.
bool own_buffer_;
// code generation
byte* pc_; // the program counter; moves forward
RelocInfoWriter reloc_info_writer;
PositionsRecorder positions_recorder_;
bool emit_debug_code_;
friend class PositionsRecorder;
};
// Helper class that ensures that there is enough space for generating
// instructions and relocation information. The constructor makes
// sure that there is enough space and (in debug mode) the destructor
// checks that we did not generate too much.
class EnsureSpace BASE_EMBEDDED {
public:
explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
if (assembler_->overflow()) assembler_->GrowBuffer();
#ifdef DEBUG
space_before_ = assembler_->available_space();
#endif
}
#ifdef DEBUG
~EnsureSpace() {
int bytes_generated = space_before_ - assembler_->available_space();
ASSERT(bytes_generated < assembler_->kGap);
}
#endif
private:
Assembler* assembler_;
#ifdef DEBUG
int space_before_;
#endif
};
} } // namespace v8::internal
#endif // V8_IA32_ASSEMBLER_IA32_H_