// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#ifdef __linux__
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#endif
#include "v8.h"
#include "global-handles.h"
#include "snapshot.h"
#include "cctest.h"
using namespace v8::internal;
static v8::Persistent<v8::Context> env;
static void InitializeVM() {
if (env.IsEmpty()) env = v8::Context::New();
v8::HandleScope scope;
env->Enter();
}
TEST(MarkingDeque) {
int mem_size = 20 * kPointerSize;
byte* mem = NewArray<byte>(20*kPointerSize);
Address low = reinterpret_cast<Address>(mem);
Address high = low + mem_size;
MarkingDeque s;
s.Initialize(low, high);
Address address = NULL;
while (!s.IsFull()) {
s.PushBlack(HeapObject::FromAddress(address));
address += kPointerSize;
}
while (!s.IsEmpty()) {
Address value = s.Pop()->address();
address -= kPointerSize;
CHECK_EQ(address, value);
}
CHECK_EQ(NULL, address);
DeleteArray(mem);
}
TEST(Promotion) {
// This test requires compaction. If compaction is turned off, we
// skip the entire test.
if (FLAG_never_compact) return;
// Ensure that we get a compacting collection so that objects are promoted
// from new space.
FLAG_gc_global = true;
FLAG_always_compact = true;
HEAP->ConfigureHeap(2*256*KB, 8*MB, 8*MB);
InitializeVM();
v8::HandleScope sc;
// Allocate a fixed array in the new space.
int array_size =
(Page::kMaxNonCodeHeapObjectSize - FixedArray::kHeaderSize) /
(kPointerSize * 4);
Object* obj = HEAP->AllocateFixedArray(array_size)->ToObjectChecked();
Handle<FixedArray> array(FixedArray::cast(obj));
// Array should be in the new space.
CHECK(HEAP->InSpace(*array, NEW_SPACE));
// Call the m-c collector, so array becomes an old object.
HEAP->CollectGarbage(OLD_POINTER_SPACE);
// Array now sits in the old space
CHECK(HEAP->InSpace(*array, OLD_POINTER_SPACE));
}
TEST(NoPromotion) {
HEAP->ConfigureHeap(2*256*KB, 8*MB, 8*MB);
// Test the situation that some objects in new space are promoted to
// the old space
InitializeVM();
v8::HandleScope sc;
// Do a mark compact GC to shrink the heap.
HEAP->CollectGarbage(OLD_POINTER_SPACE);
// Allocate a big Fixed array in the new space.
int max_size =
Min(Page::kMaxNonCodeHeapObjectSize, HEAP->MaxObjectSizeInNewSpace());
int length = (max_size - FixedArray::kHeaderSize) / (2*kPointerSize);
Object* obj = i::Isolate::Current()->heap()->AllocateFixedArray(length)->
ToObjectChecked();
Handle<FixedArray> array(FixedArray::cast(obj));
// Array still stays in the new space.
CHECK(HEAP->InSpace(*array, NEW_SPACE));
// Allocate objects in the old space until out of memory.
FixedArray* host = *array;
while (true) {
Object* obj;
{ MaybeObject* maybe_obj = HEAP->AllocateFixedArray(100, TENURED);
if (!maybe_obj->ToObject(&obj)) break;
}
host->set(0, obj);
host = FixedArray::cast(obj);
}
// Call mark compact GC, and it should pass.
HEAP->CollectGarbage(OLD_POINTER_SPACE);
}
TEST(MarkCompactCollector) {
InitializeVM();
v8::HandleScope sc;
// call mark-compact when heap is empty
HEAP->CollectGarbage(OLD_POINTER_SPACE);
// keep allocating garbage in new space until it fails
const int ARRAY_SIZE = 100;
Object* array;
MaybeObject* maybe_array;
do {
maybe_array = HEAP->AllocateFixedArray(ARRAY_SIZE);
} while (maybe_array->ToObject(&array));
HEAP->CollectGarbage(NEW_SPACE);
array = HEAP->AllocateFixedArray(ARRAY_SIZE)->ToObjectChecked();
// keep allocating maps until it fails
Object* mapp;
MaybeObject* maybe_mapp;
do {
maybe_mapp = HEAP->AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
} while (maybe_mapp->ToObject(&mapp));
HEAP->CollectGarbage(MAP_SPACE);
mapp = HEAP->AllocateMap(JS_OBJECT_TYPE,
JSObject::kHeaderSize)->ToObjectChecked();
// allocate a garbage
String* func_name =
String::cast(HEAP->LookupAsciiSymbol("theFunction")->ToObjectChecked());
SharedFunctionInfo* function_share = SharedFunctionInfo::cast(
HEAP->AllocateSharedFunctionInfo(func_name)->ToObjectChecked());
JSFunction* function = JSFunction::cast(
HEAP->AllocateFunction(*Isolate::Current()->function_map(),
function_share,
HEAP->undefined_value())->ToObjectChecked());
Map* initial_map =
Map::cast(HEAP->AllocateMap(JS_OBJECT_TYPE,
JSObject::kHeaderSize)->ToObjectChecked());
function->set_initial_map(initial_map);
Isolate::Current()->context()->global()->SetProperty(
func_name, function, NONE, kNonStrictMode)->ToObjectChecked();
JSObject* obj = JSObject::cast(
HEAP->AllocateJSObject(function)->ToObjectChecked());
HEAP->CollectGarbage(OLD_POINTER_SPACE);
func_name =
String::cast(HEAP->LookupAsciiSymbol("theFunction")->ToObjectChecked());
CHECK(Isolate::Current()->context()->global()->HasLocalProperty(func_name));
Object* func_value = Isolate::Current()->context()->global()->
GetProperty(func_name)->ToObjectChecked();
CHECK(func_value->IsJSFunction());
function = JSFunction::cast(func_value);
obj = JSObject::cast(HEAP->AllocateJSObject(function)->ToObjectChecked());
String* obj_name =
String::cast(HEAP->LookupAsciiSymbol("theObject")->ToObjectChecked());
Isolate::Current()->context()->global()->SetProperty(
obj_name, obj, NONE, kNonStrictMode)->ToObjectChecked();
String* prop_name =
String::cast(HEAP->LookupAsciiSymbol("theSlot")->ToObjectChecked());
obj->SetProperty(prop_name,
Smi::FromInt(23),
NONE,
kNonStrictMode)->ToObjectChecked();
HEAP->CollectGarbage(OLD_POINTER_SPACE);
obj_name =
String::cast(HEAP->LookupAsciiSymbol("theObject")->ToObjectChecked());
CHECK(Isolate::Current()->context()->global()->HasLocalProperty(obj_name));
CHECK(Isolate::Current()->context()->global()->
GetProperty(obj_name)->ToObjectChecked()->IsJSObject());
obj = JSObject::cast(Isolate::Current()->context()->global()->
GetProperty(obj_name)->ToObjectChecked());
prop_name =
String::cast(HEAP->LookupAsciiSymbol("theSlot")->ToObjectChecked());
CHECK(obj->GetProperty(prop_name) == Smi::FromInt(23));
}
// TODO(1600): compaction of map space is temporary removed from GC.
#if 0
static Handle<Map> CreateMap() {
return FACTORY->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
}
TEST(MapCompact) {
FLAG_max_map_space_pages = 16;
InitializeVM();
{
v8::HandleScope sc;
// keep allocating maps while pointers are still encodable and thus
// mark compact is permitted.
Handle<JSObject> root = FACTORY->NewJSObjectFromMap(CreateMap());
do {
Handle<Map> map = CreateMap();
map->set_prototype(*root);
root = FACTORY->NewJSObjectFromMap(map);
} while (HEAP->map_space()->MapPointersEncodable());
}
// Now, as we don't have any handles to just allocated maps, we should
// be able to trigger map compaction.
// To give an additional chance to fail, try to force compaction which
// should be impossible right now.
HEAP->CollectAllGarbage(Heap::kForceCompactionMask);
// And now map pointers should be encodable again.
CHECK(HEAP->map_space()->MapPointersEncodable());
}
#endif
static int gc_starts = 0;
static int gc_ends = 0;
static void GCPrologueCallbackFunc() {
CHECK(gc_starts == gc_ends);
gc_starts++;
}
static void GCEpilogueCallbackFunc() {
CHECK(gc_starts == gc_ends + 1);
gc_ends++;
}
TEST(GCCallback) {
InitializeVM();
HEAP->SetGlobalGCPrologueCallback(&GCPrologueCallbackFunc);
HEAP->SetGlobalGCEpilogueCallback(&GCEpilogueCallbackFunc);
// Scavenge does not call GC callback functions.
HEAP->PerformScavenge();
CHECK_EQ(0, gc_starts);
CHECK_EQ(gc_ends, gc_starts);
HEAP->CollectGarbage(OLD_POINTER_SPACE);
CHECK_EQ(1, gc_starts);
CHECK_EQ(gc_ends, gc_starts);
}
static int NumberOfWeakCalls = 0;
static void WeakPointerCallback(v8::Persistent<v8::Value> handle, void* id) {
ASSERT(id == reinterpret_cast<void*>(1234));
NumberOfWeakCalls++;
handle.Dispose();
}
TEST(ObjectGroups) {
InitializeVM();
GlobalHandles* global_handles = Isolate::Current()->global_handles();
NumberOfWeakCalls = 0;
v8::HandleScope handle_scope;
Handle<Object> g1s1 =
global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
Handle<Object> g1s2 =
global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
Handle<Object> g1c1 =
global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
global_handles->MakeWeak(g1s1.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
global_handles->MakeWeak(g1s2.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
global_handles->MakeWeak(g1c1.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
Handle<Object> g2s1 =
global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
Handle<Object> g2s2 =
global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
Handle<Object> g2c1 =
global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
global_handles->MakeWeak(g2s1.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
global_handles->MakeWeak(g2s2.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
global_handles->MakeWeak(g2c1.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
Handle<Object> root = global_handles->Create(*g1s1); // make a root.
// Connect group 1 and 2, make a cycle.
Handle<FixedArray>::cast(g1s2)->set(0, *g2s2);
Handle<FixedArray>::cast(g2s1)->set(0, *g1s1);
{
Object** g1_objects[] = { g1s1.location(), g1s2.location() };
Object** g1_children[] = { g1c1.location() };
Object** g2_objects[] = { g2s1.location(), g2s2.location() };
Object** g2_children[] = { g2c1.location() };
global_handles->AddObjectGroup(g1_objects, 2, NULL);
global_handles->AddImplicitReferences(
Handle<HeapObject>::cast(g1s1).location(), g1_children, 1);
global_handles->AddObjectGroup(g2_objects, 2, NULL);
global_handles->AddImplicitReferences(
Handle<HeapObject>::cast(g2s2).location(), g2_children, 1);
}
// Do a full GC
HEAP->CollectGarbage(OLD_POINTER_SPACE);
// All object should be alive.
CHECK_EQ(0, NumberOfWeakCalls);
// Weaken the root.
global_handles->MakeWeak(root.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
// But make children strong roots---all the objects (except for children)
// should be collectable now.
global_handles->ClearWeakness(g1c1.location());
global_handles->ClearWeakness(g2c1.location());
// Groups are deleted, rebuild groups.
{
Object** g1_objects[] = { g1s1.location(), g1s2.location() };
Object** g1_children[] = { g1c1.location() };
Object** g2_objects[] = { g2s1.location(), g2s2.location() };
Object** g2_children[] = { g2c1.location() };
global_handles->AddObjectGroup(g1_objects, 2, NULL);
global_handles->AddImplicitReferences(
Handle<HeapObject>::cast(g1s1).location(), g1_children, 1);
global_handles->AddObjectGroup(g2_objects, 2, NULL);
global_handles->AddImplicitReferences(
Handle<HeapObject>::cast(g2s2).location(), g2_children, 1);
}
HEAP->CollectGarbage(OLD_POINTER_SPACE);
// All objects should be gone. 5 global handles in total.
CHECK_EQ(5, NumberOfWeakCalls);
// And now make children weak again and collect them.
global_handles->MakeWeak(g1c1.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
global_handles->MakeWeak(g2c1.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
HEAP->CollectGarbage(OLD_POINTER_SPACE);
CHECK_EQ(7, NumberOfWeakCalls);
}
class TestRetainedObjectInfo : public v8::RetainedObjectInfo {
public:
TestRetainedObjectInfo() : has_been_disposed_(false) {}
bool has_been_disposed() { return has_been_disposed_; }
virtual void Dispose() {
ASSERT(!has_been_disposed_);
has_been_disposed_ = true;
}
virtual bool IsEquivalent(v8::RetainedObjectInfo* other) {
return other == this;
}
virtual intptr_t GetHash() { return 0; }
virtual const char* GetLabel() { return "whatever"; }
private:
bool has_been_disposed_;
};
TEST(EmptyObjectGroups) {
InitializeVM();
GlobalHandles* global_handles = Isolate::Current()->global_handles();
v8::HandleScope handle_scope;
Handle<Object> object =
global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
TestRetainedObjectInfo info;
global_handles->AddObjectGroup(NULL, 0, &info);
ASSERT(info.has_been_disposed());
global_handles->AddImplicitReferences(
Handle<HeapObject>::cast(object).location(), NULL, 0);
}
// Here is a memory use test that uses /proc, and is therefore Linux-only. We
// do not care how much memory the simulator uses, since it is only there for
// debugging purposes.
#if defined(__linux__) && !defined(USE_SIMULATOR)
static uintptr_t ReadLong(char* buffer, intptr_t* position, int base) {
char* end_address = buffer + *position;
uintptr_t result = strtoul(buffer + *position, &end_address, base);
CHECK(result != ULONG_MAX || errno != ERANGE);
CHECK(end_address > buffer + *position);
*position = end_address - buffer;
return result;
}
static intptr_t MemoryInUse() {
intptr_t memory_use = 0;
int fd = open("/proc/self/maps", O_RDONLY);
if (fd < 0) return -1;
const int kBufSize = 10000;
char buffer[kBufSize];
int length = read(fd, buffer, kBufSize);
intptr_t line_start = 0;
CHECK_LT(length, kBufSize); // Make the buffer bigger.
CHECK_GT(length, 0); // We have to find some data in the file.
while (line_start < length) {
if (buffer[line_start] == '\n') {
line_start++;
continue;
}
intptr_t position = line_start;
uintptr_t start = ReadLong(buffer, &position, 16);
CHECK_EQ(buffer[position++], '-');
uintptr_t end = ReadLong(buffer, &position, 16);
CHECK_EQ(buffer[position++], ' ');
CHECK(buffer[position] == '-' || buffer[position] == 'r');
bool read_permission = (buffer[position++] == 'r');
CHECK(buffer[position] == '-' || buffer[position] == 'w');
bool write_permission = (buffer[position++] == 'w');
CHECK(buffer[position] == '-' || buffer[position] == 'x');
bool execute_permission = (buffer[position++] == 'x');
CHECK(buffer[position] == '-' || buffer[position] == 'p');
bool private_mapping = (buffer[position++] == 'p');
CHECK_EQ(buffer[position++], ' ');
uintptr_t offset = ReadLong(buffer, &position, 16);
USE(offset);
CHECK_EQ(buffer[position++], ' ');
uintptr_t major = ReadLong(buffer, &position, 16);
USE(major);
CHECK_EQ(buffer[position++], ':');
uintptr_t minor = ReadLong(buffer, &position, 16);
USE(minor);
CHECK_EQ(buffer[position++], ' ');
uintptr_t inode = ReadLong(buffer, &position, 10);
while (position < length && buffer[position] != '\n') position++;
if ((read_permission || write_permission || execute_permission) &&
private_mapping && inode == 0) {
memory_use += (end - start);
}
line_start = position;
}
close(fd);
return memory_use;
}
TEST(BootUpMemoryUse) {
intptr_t initial_memory = MemoryInUse();
FLAG_crankshaft = false; // Avoid flakiness.
// Only Linux has the proc filesystem and only if it is mapped. If it's not
// there we just skip the test.
if (initial_memory >= 0) {
InitializeVM();
intptr_t booted_memory = MemoryInUse();
if (sizeof(initial_memory) == 8) {
if (v8::internal::Snapshot::IsEnabled()) {
CHECK_LE(booted_memory - initial_memory, 6686 * 1024); // 6476.
} else {
CHECK_LE(booted_memory - initial_memory, 6809 * 1024); // 6628.
}
} else {
if (v8::internal::Snapshot::IsEnabled()) {
CHECK_LE(booted_memory - initial_memory, 6532 * 1024); // 6388.
} else {
CHECK_LE(booted_memory - initial_memory, 6940 * 1024); // 6456
}
}
}
}
#endif // __linux__ and !USE_SIMULATOR