// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ROTATIONBASE_H
#define EIGEN_ROTATIONBASE_H
namespace Eigen {
// forward declaration
namespace internal {
template<typename RotationDerived, typename MatrixType, bool IsVector=MatrixType::IsVectorAtCompileTime>
struct rotation_base_generic_product_selector;
}
/** \class RotationBase
*
* \brief Common base class for compact rotation representations
*
* \param Derived is the derived type, i.e., a rotation type
* \param _Dim the dimension of the space
*/
template<typename Derived, int _Dim>
class RotationBase
{
public:
enum { Dim = _Dim };
/** the scalar type of the coefficients */
typedef typename internal::traits<Derived>::Scalar Scalar;
/** corresponding linear transformation matrix type */
typedef Matrix<Scalar,Dim,Dim> RotationMatrixType;
typedef Matrix<Scalar,Dim,1> VectorType;
public:
inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
inline Derived& derived() { return *static_cast<Derived*>(this); }
/** \returns an equivalent rotation matrix */
inline RotationMatrixType toRotationMatrix() const { return derived().toRotationMatrix(); }
/** \returns an equivalent rotation matrix
* This function is added to be conform with the Transform class' naming scheme.
*/
inline RotationMatrixType matrix() const { return derived().toRotationMatrix(); }
/** \returns the inverse rotation */
inline Derived inverse() const { return derived().inverse(); }
/** \returns the concatenation of the rotation \c *this with a translation \a t */
inline Transform<Scalar,Dim,Isometry> operator*(const Translation<Scalar,Dim>& t) const
{ return Transform<Scalar,Dim,Isometry>(*this) * t; }
/** \returns the concatenation of the rotation \c *this with a uniform scaling \a s */
inline RotationMatrixType operator*(const UniformScaling<Scalar>& s) const
{ return toRotationMatrix() * s.factor(); }
/** \returns the concatenation of the rotation \c *this with a generic expression \a e
* \a e can be:
* - a DimxDim linear transformation matrix
* - a DimxDim diagonal matrix (axis aligned scaling)
* - a vector of size Dim
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE typename internal::rotation_base_generic_product_selector<Derived,OtherDerived,OtherDerived::IsVectorAtCompileTime>::ReturnType
operator*(const EigenBase<OtherDerived>& e) const
{ return internal::rotation_base_generic_product_selector<Derived,OtherDerived>::run(derived(), e.derived()); }
/** \returns the concatenation of a linear transformation \a l with the rotation \a r */
template<typename OtherDerived> friend
inline RotationMatrixType operator*(const EigenBase<OtherDerived>& l, const Derived& r)
{ return l.derived() * r.toRotationMatrix(); }
/** \returns the concatenation of a scaling \a l with the rotation \a r */
friend inline Transform<Scalar,Dim,Affine> operator*(const DiagonalMatrix<Scalar,Dim>& l, const Derived& r)
{
Transform<Scalar,Dim,Affine> res(r);
res.linear().applyOnTheLeft(l);
return res;
}
/** \returns the concatenation of the rotation \c *this with a transformation \a t */
template<int Mode, int Options>
inline Transform<Scalar,Dim,Mode> operator*(const Transform<Scalar,Dim,Mode,Options>& t) const
{ return toRotationMatrix() * t; }
template<typename OtherVectorType>
inline VectorType _transformVector(const OtherVectorType& v) const
{ return toRotationMatrix() * v; }
};
namespace internal {
// implementation of the generic product rotation * matrix
template<typename RotationDerived, typename MatrixType>
struct rotation_base_generic_product_selector<RotationDerived,MatrixType,false>
{
enum { Dim = RotationDerived::Dim };
typedef Matrix<typename RotationDerived::Scalar,Dim,Dim> ReturnType;
static inline ReturnType run(const RotationDerived& r, const MatrixType& m)
{ return r.toRotationMatrix() * m; }
};
template<typename RotationDerived, typename Scalar, int Dim, int MaxDim>
struct rotation_base_generic_product_selector< RotationDerived, DiagonalMatrix<Scalar,Dim,MaxDim>, false >
{
typedef Transform<Scalar,Dim,Affine> ReturnType;
static inline ReturnType run(const RotationDerived& r, const DiagonalMatrix<Scalar,Dim,MaxDim>& m)
{
ReturnType res(r);
res.linear() *= m;
return res;
}
};
template<typename RotationDerived,typename OtherVectorType>
struct rotation_base_generic_product_selector<RotationDerived,OtherVectorType,true>
{
enum { Dim = RotationDerived::Dim };
typedef Matrix<typename RotationDerived::Scalar,Dim,1> ReturnType;
static EIGEN_STRONG_INLINE ReturnType run(const RotationDerived& r, const OtherVectorType& v)
{
return r._transformVector(v);
}
};
} // end namespace internal
/** \geometry_module
*
* \brief Constructs a Dim x Dim rotation matrix from the rotation \a r
*/
template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols>
template<typename OtherDerived>
Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>
::Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r)
{
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim))
*this = r.toRotationMatrix();
}
/** \geometry_module
*
* \brief Set a Dim x Dim rotation matrix from the rotation \a r
*/
template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols>
template<typename OtherDerived>
Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>&
Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>
::operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r)
{
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim))
return *this = r.toRotationMatrix();
}
namespace internal {
/** \internal
*
* Helper function to return an arbitrary rotation object to a rotation matrix.
*
* \param Scalar the numeric type of the matrix coefficients
* \param Dim the dimension of the current space
*
* It returns a Dim x Dim fixed size matrix.
*
* Default specializations are provided for:
* - any scalar type (2D),
* - any matrix expression,
* - any type based on RotationBase (e.g., Quaternion, AngleAxis, Rotation2D)
*
* Currently toRotationMatrix is only used by Transform.
*
* \sa class Transform, class Rotation2D, class Quaternion, class AngleAxis
*/
template<typename Scalar, int Dim>
static inline Matrix<Scalar,2,2> toRotationMatrix(const Scalar& s)
{
EIGEN_STATIC_ASSERT(Dim==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
return Rotation2D<Scalar>(s).toRotationMatrix();
}
template<typename Scalar, int Dim, typename OtherDerived>
static inline Matrix<Scalar,Dim,Dim> toRotationMatrix(const RotationBase<OtherDerived,Dim>& r)
{
return r.toRotationMatrix();
}
template<typename Scalar, int Dim, typename OtherDerived>
static inline const MatrixBase<OtherDerived>& toRotationMatrix(const MatrixBase<OtherDerived>& mat)
{
EIGEN_STATIC_ASSERT(OtherDerived::RowsAtCompileTime==Dim && OtherDerived::ColsAtCompileTime==Dim,
YOU_MADE_A_PROGRAMMING_MISTAKE)
return mat;
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_ROTATIONBASE_H