// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATRIX_SQUARE_ROOT
#define EIGEN_MATRIX_SQUARE_ROOT
namespace Eigen {
/** \ingroup MatrixFunctions_Module
* \brief Class for computing matrix square roots of upper quasi-triangular matrices.
* \tparam MatrixType type of the argument of the matrix square root,
* expected to be an instantiation of the Matrix class template.
*
* This class computes the square root of the upper quasi-triangular
* matrix stored in the upper Hessenberg part of the matrix passed to
* the constructor.
*
* \sa MatrixSquareRoot, MatrixSquareRootTriangular
*/
template <typename MatrixType>
class MatrixSquareRootQuasiTriangular
{
public:
/** \brief Constructor.
*
* \param[in] A upper quasi-triangular matrix whose square root
* is to be computed.
*
* The class stores a reference to \p A, so it should not be
* changed (or destroyed) before compute() is called.
*/
MatrixSquareRootQuasiTriangular(const MatrixType& A)
: m_A(A)
{
eigen_assert(A.rows() == A.cols());
}
/** \brief Compute the matrix square root
*
* \param[out] result square root of \p A, as specified in the constructor.
*
* Only the upper Hessenberg part of \p result is updated, the
* rest is not touched. See MatrixBase::sqrt() for details on
* how this computation is implemented.
*/
template <typename ResultType> void compute(ResultType &result);
private:
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
void computeDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T);
void computeOffDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T);
void compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i);
void compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
typename MatrixType::Index i, typename MatrixType::Index j);
void compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
typename MatrixType::Index i, typename MatrixType::Index j);
void compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
typename MatrixType::Index i, typename MatrixType::Index j);
void compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
typename MatrixType::Index i, typename MatrixType::Index j);
template <typename SmallMatrixType>
static void solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A,
const SmallMatrixType& B, const SmallMatrixType& C);
const MatrixType& m_A;
};
template <typename MatrixType>
template <typename ResultType>
void MatrixSquareRootQuasiTriangular<MatrixType>::compute(ResultType &result)
{
// Compute Schur decomposition of m_A
const RealSchur<MatrixType> schurOfA(m_A);
const MatrixType& T = schurOfA.matrixT();
const MatrixType& U = schurOfA.matrixU();
// Compute square root of T
MatrixType sqrtT = MatrixType::Zero(m_A.rows(), m_A.rows());
computeDiagonalPartOfSqrt(sqrtT, T);
computeOffDiagonalPartOfSqrt(sqrtT, T);
// Compute square root of m_A
result = U * sqrtT * U.adjoint();
}
// pre: T is quasi-upper-triangular and sqrtT is a zero matrix of the same size
// post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T
template <typename MatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>::computeDiagonalPartOfSqrt(MatrixType& sqrtT,
const MatrixType& T)
{
const Index size = m_A.rows();
for (Index i = 0; i < size; i++) {
if (i == size - 1 || T.coeff(i+1, i) == 0) {
eigen_assert(T(i,i) > 0);
sqrtT.coeffRef(i,i) = internal::sqrt(T.coeff(i,i));
}
else {
compute2x2diagonalBlock(sqrtT, T, i);
++i;
}
}
}
// pre: T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T.
// post: sqrtT is the square root of T.
template <typename MatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>::computeOffDiagonalPartOfSqrt(MatrixType& sqrtT,
const MatrixType& T)
{
const Index size = m_A.rows();
for (Index j = 1; j < size; j++) {
if (T.coeff(j, j-1) != 0) // if T(j-1:j, j-1:j) is a 2-by-2 block
continue;
for (Index i = j-1; i >= 0; i--) {
if (i > 0 && T.coeff(i, i-1) != 0) // if T(i-1:i, i-1:i) is a 2-by-2 block
continue;
bool iBlockIs2x2 = (i < size - 1) && (T.coeff(i+1, i) != 0);
bool jBlockIs2x2 = (j < size - 1) && (T.coeff(j+1, j) != 0);
if (iBlockIs2x2 && jBlockIs2x2)
compute2x2offDiagonalBlock(sqrtT, T, i, j);
else if (iBlockIs2x2 && !jBlockIs2x2)
compute2x1offDiagonalBlock(sqrtT, T, i, j);
else if (!iBlockIs2x2 && jBlockIs2x2)
compute1x2offDiagonalBlock(sqrtT, T, i, j);
else if (!iBlockIs2x2 && !jBlockIs2x2)
compute1x1offDiagonalBlock(sqrtT, T, i, j);
}
}
}
// pre: T.block(i,i,2,2) has complex conjugate eigenvalues
// post: sqrtT.block(i,i,2,2) is square root of T.block(i,i,2,2)
template <typename MatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>
::compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i)
{
// TODO: This case (2-by-2 blocks with complex conjugate eigenvalues) is probably hidden somewhere
// in EigenSolver. If we expose it, we could call it directly from here.
Matrix<Scalar,2,2> block = T.template block<2,2>(i,i);
EigenSolver<Matrix<Scalar,2,2> > es(block);
sqrtT.template block<2,2>(i,i)
= (es.eigenvectors() * es.eigenvalues().cwiseSqrt().asDiagonal() * es.eigenvectors().inverse()).real();
}
// pre: block structure of T is such that (i,j) is a 1x1 block,
// all blocks of sqrtT to left of and below (i,j) are correct
// post: sqrtT(i,j) has the correct value
template <typename MatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>
::compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
typename MatrixType::Index i, typename MatrixType::Index j)
{
Scalar tmp = (sqrtT.row(i).segment(i+1,j-i-1) * sqrtT.col(j).segment(i+1,j-i-1)).value();
sqrtT.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (sqrtT.coeff(i,i) + sqrtT.coeff(j,j));
}
// similar to compute1x1offDiagonalBlock()
template <typename MatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>
::compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
typename MatrixType::Index i, typename MatrixType::Index j)
{
Matrix<Scalar,1,2> rhs = T.template block<1,2>(i,j);
if (j-i > 1)
rhs -= sqrtT.block(i, i+1, 1, j-i-1) * sqrtT.block(i+1, j, j-i-1, 2);
Matrix<Scalar,2,2> A = sqrtT.coeff(i,i) * Matrix<Scalar,2,2>::Identity();
A += sqrtT.template block<2,2>(j,j).transpose();
sqrtT.template block<1,2>(i,j).transpose() = A.fullPivLu().solve(rhs.transpose());
}
// similar to compute1x1offDiagonalBlock()
template <typename MatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>
::compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
typename MatrixType::Index i, typename MatrixType::Index j)
{
Matrix<Scalar,2,1> rhs = T.template block<2,1>(i,j);
if (j-i > 2)
rhs -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 1);
Matrix<Scalar,2,2> A = sqrtT.coeff(j,j) * Matrix<Scalar,2,2>::Identity();
A += sqrtT.template block<2,2>(i,i);
sqrtT.template block<2,1>(i,j) = A.fullPivLu().solve(rhs);
}
// similar to compute1x1offDiagonalBlock()
template <typename MatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>
::compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
typename MatrixType::Index i, typename MatrixType::Index j)
{
Matrix<Scalar,2,2> A = sqrtT.template block<2,2>(i,i);
Matrix<Scalar,2,2> B = sqrtT.template block<2,2>(j,j);
Matrix<Scalar,2,2> C = T.template block<2,2>(i,j);
if (j-i > 2)
C -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 2);
Matrix<Scalar,2,2> X;
solveAuxiliaryEquation(X, A, B, C);
sqrtT.template block<2,2>(i,j) = X;
}
// solves the equation A X + X B = C where all matrices are 2-by-2
template <typename MatrixType>
template <typename SmallMatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>
::solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A,
const SmallMatrixType& B, const SmallMatrixType& C)
{
EIGEN_STATIC_ASSERT((internal::is_same<SmallMatrixType, Matrix<Scalar,2,2> >::value),
EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT);
Matrix<Scalar,4,4> coeffMatrix = Matrix<Scalar,4,4>::Zero();
coeffMatrix.coeffRef(0,0) = A.coeff(0,0) + B.coeff(0,0);
coeffMatrix.coeffRef(1,1) = A.coeff(0,0) + B.coeff(1,1);
coeffMatrix.coeffRef(2,2) = A.coeff(1,1) + B.coeff(0,0);
coeffMatrix.coeffRef(3,3) = A.coeff(1,1) + B.coeff(1,1);
coeffMatrix.coeffRef(0,1) = B.coeff(1,0);
coeffMatrix.coeffRef(0,2) = A.coeff(0,1);
coeffMatrix.coeffRef(1,0) = B.coeff(0,1);
coeffMatrix.coeffRef(1,3) = A.coeff(0,1);
coeffMatrix.coeffRef(2,0) = A.coeff(1,0);
coeffMatrix.coeffRef(2,3) = B.coeff(1,0);
coeffMatrix.coeffRef(3,1) = A.coeff(1,0);
coeffMatrix.coeffRef(3,2) = B.coeff(0,1);
Matrix<Scalar,4,1> rhs;
rhs.coeffRef(0) = C.coeff(0,0);
rhs.coeffRef(1) = C.coeff(0,1);
rhs.coeffRef(2) = C.coeff(1,0);
rhs.coeffRef(3) = C.coeff(1,1);
Matrix<Scalar,4,1> result;
result = coeffMatrix.fullPivLu().solve(rhs);
X.coeffRef(0,0) = result.coeff(0);
X.coeffRef(0,1) = result.coeff(1);
X.coeffRef(1,0) = result.coeff(2);
X.coeffRef(1,1) = result.coeff(3);
}
/** \ingroup MatrixFunctions_Module
* \brief Class for computing matrix square roots of upper triangular matrices.
* \tparam MatrixType type of the argument of the matrix square root,
* expected to be an instantiation of the Matrix class template.
*
* This class computes the square root of the upper triangular matrix
* stored in the upper triangular part (including the diagonal) of
* the matrix passed to the constructor.
*
* \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular
*/
template <typename MatrixType>
class MatrixSquareRootTriangular
{
public:
MatrixSquareRootTriangular(const MatrixType& A)
: m_A(A)
{
eigen_assert(A.rows() == A.cols());
}
/** \brief Compute the matrix square root
*
* \param[out] result square root of \p A, as specified in the constructor.
*
* Only the upper triangular part (including the diagonal) of
* \p result is updated, the rest is not touched. See
* MatrixBase::sqrt() for details on how this computation is
* implemented.
*/
template <typename ResultType> void compute(ResultType &result);
private:
const MatrixType& m_A;
};
template <typename MatrixType>
template <typename ResultType>
void MatrixSquareRootTriangular<MatrixType>::compute(ResultType &result)
{
// Compute Schur decomposition of m_A
const ComplexSchur<MatrixType> schurOfA(m_A);
const MatrixType& T = schurOfA.matrixT();
const MatrixType& U = schurOfA.matrixU();
// Compute square root of T and store it in upper triangular part of result
// This uses that the square root of triangular matrices can be computed directly.
result.resize(m_A.rows(), m_A.cols());
typedef typename MatrixType::Index Index;
for (Index i = 0; i < m_A.rows(); i++) {
result.coeffRef(i,i) = internal::sqrt(T.coeff(i,i));
}
for (Index j = 1; j < m_A.cols(); j++) {
for (Index i = j-1; i >= 0; i--) {
typedef typename MatrixType::Scalar Scalar;
// if i = j-1, then segment has length 0 so tmp = 0
Scalar tmp = (result.row(i).segment(i+1,j-i-1) * result.col(j).segment(i+1,j-i-1)).value();
// denominator may be zero if original matrix is singular
result.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (result.coeff(i,i) + result.coeff(j,j));
}
}
// Compute square root of m_A as U * result * U.adjoint()
MatrixType tmp;
tmp.noalias() = U * result.template triangularView<Upper>();
result.noalias() = tmp * U.adjoint();
}
/** \ingroup MatrixFunctions_Module
* \brief Class for computing matrix square roots of general matrices.
* \tparam MatrixType type of the argument of the matrix square root,
* expected to be an instantiation of the Matrix class template.
*
* \sa MatrixSquareRootTriangular, MatrixSquareRootQuasiTriangular, MatrixBase::sqrt()
*/
template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
class MatrixSquareRoot
{
public:
/** \brief Constructor.
*
* \param[in] A matrix whose square root is to be computed.
*
* The class stores a reference to \p A, so it should not be
* changed (or destroyed) before compute() is called.
*/
MatrixSquareRoot(const MatrixType& A);
/** \brief Compute the matrix square root
*
* \param[out] result square root of \p A, as specified in the constructor.
*
* See MatrixBase::sqrt() for details on how this computation is
* implemented.
*/
template <typename ResultType> void compute(ResultType &result);
};
// ********** Partial specialization for real matrices **********
template <typename MatrixType>
class MatrixSquareRoot<MatrixType, 0>
{
public:
MatrixSquareRoot(const MatrixType& A)
: m_A(A)
{
eigen_assert(A.rows() == A.cols());
}
template <typename ResultType> void compute(ResultType &result)
{
// Compute Schur decomposition of m_A
const RealSchur<MatrixType> schurOfA(m_A);
const MatrixType& T = schurOfA.matrixT();
const MatrixType& U = schurOfA.matrixU();
// Compute square root of T
MatrixSquareRootQuasiTriangular<MatrixType> tmp(T);
MatrixType sqrtT = MatrixType::Zero(m_A.rows(), m_A.rows());
tmp.compute(sqrtT);
// Compute square root of m_A
result = U * sqrtT * U.adjoint();
}
private:
const MatrixType& m_A;
};
// ********** Partial specialization for complex matrices **********
template <typename MatrixType>
class MatrixSquareRoot<MatrixType, 1>
{
public:
MatrixSquareRoot(const MatrixType& A)
: m_A(A)
{
eigen_assert(A.rows() == A.cols());
}
template <typename ResultType> void compute(ResultType &result)
{
// Compute Schur decomposition of m_A
const ComplexSchur<MatrixType> schurOfA(m_A);
const MatrixType& T = schurOfA.matrixT();
const MatrixType& U = schurOfA.matrixU();
// Compute square root of T
MatrixSquareRootTriangular<MatrixType> tmp(T);
MatrixType sqrtT = MatrixType::Zero(m_A.rows(), m_A.rows());
tmp.compute(sqrtT);
// Compute square root of m_A
result = U * sqrtT * U.adjoint();
}
private:
const MatrixType& m_A;
};
/** \ingroup MatrixFunctions_Module
*
* \brief Proxy for the matrix square root of some matrix (expression).
*
* \tparam Derived Type of the argument to the matrix square root.
*
* This class holds the argument to the matrix square root until it
* is assigned or evaluated for some other reason (so the argument
* should not be changed in the meantime). It is the return type of
* MatrixBase::sqrt() and most of the time this is the only way it is
* used.
*/
template<typename Derived> class MatrixSquareRootReturnValue
: public ReturnByValue<MatrixSquareRootReturnValue<Derived> >
{
typedef typename Derived::Index Index;
public:
/** \brief Constructor.
*
* \param[in] src %Matrix (expression) forming the argument of the
* matrix square root.
*/
MatrixSquareRootReturnValue(const Derived& src) : m_src(src) { }
/** \brief Compute the matrix square root.
*
* \param[out] result the matrix square root of \p src in the
* constructor.
*/
template <typename ResultType>
inline void evalTo(ResultType& result) const
{
const typename Derived::PlainObject srcEvaluated = m_src.eval();
MatrixSquareRoot<typename Derived::PlainObject> me(srcEvaluated);
me.compute(result);
}
Index rows() const { return m_src.rows(); }
Index cols() const { return m_src.cols(); }
protected:
const Derived& m_src;
private:
MatrixSquareRootReturnValue& operator=(const MatrixSquareRootReturnValue&);
};
namespace internal {
template<typename Derived>
struct traits<MatrixSquareRootReturnValue<Derived> >
{
typedef typename Derived::PlainObject ReturnType;
};
}
template <typename Derived>
const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const
{
eigen_assert(rows() == cols());
return MatrixSquareRootReturnValue<Derived>(derived());
}
} // end namespace Eigen
#endif // EIGEN_MATRIX_FUNCTION