/*
* Copyright (C) 2008, 2009, 2010 Apple Inc. All rights reserved.
* Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "CodeBlock.h"
#include "BytecodeGenerator.h"
#include "Debugger.h"
#include "Interpreter.h"
#include "JIT.h"
#include "JSActivation.h"
#include "JSFunction.h"
#include "JSStaticScopeObject.h"
#include "JSValue.h"
#include "UStringConcatenate.h"
#include <stdio.h>
#include <wtf/StringExtras.h>
#define DUMP_CODE_BLOCK_STATISTICS 0
namespace JSC {
#if !defined(NDEBUG) || ENABLE(OPCODE_SAMPLING)
static UString escapeQuotes(const UString& str)
{
UString result = str;
size_t pos = 0;
while ((pos = result.find('\"', pos)) != notFound) {
result = makeUString(result.substringSharingImpl(0, pos), "\"\\\"\"", result.substringSharingImpl(pos + 1));
pos += 4;
}
return result;
}
static UString valueToSourceString(ExecState* exec, JSValue val)
{
if (!val)
return "0";
if (val.isString())
return makeUString("\"", escapeQuotes(val.toString(exec)), "\"");
return val.toString(exec);
}
static CString constantName(ExecState* exec, int k, JSValue value)
{
return makeUString(valueToSourceString(exec, value), "(@k", UString::number(k - FirstConstantRegisterIndex), ")").utf8();
}
static CString idName(int id0, const Identifier& ident)
{
return makeUString(ident.ustring(), "(@id", UString::number(id0), ")").utf8();
}
CString CodeBlock::registerName(ExecState* exec, int r) const
{
if (r == missingThisObjectMarker())
return "<null>";
if (isConstantRegisterIndex(r))
return constantName(exec, r, getConstant(r));
return makeUString("r", UString::number(r)).utf8();
}
static UString regexpToSourceString(RegExp* regExp)
{
char postfix[5] = { '/', 0, 0, 0, 0 };
int index = 1;
if (regExp->global())
postfix[index++] = 'g';
if (regExp->ignoreCase())
postfix[index++] = 'i';
if (regExp->multiline())
postfix[index] = 'm';
return makeUString("/", regExp->pattern(), postfix);
}
static CString regexpName(int re, RegExp* regexp)
{
return makeUString(regexpToSourceString(regexp), "(@re", UString::number(re), ")").utf8();
}
static UString pointerToSourceString(void* p)
{
char buffer[2 + 2 * sizeof(void*) + 1]; // 0x [two characters per byte] \0
snprintf(buffer, sizeof(buffer), "%p", p);
return buffer;
}
NEVER_INLINE static const char* debugHookName(int debugHookID)
{
switch (static_cast<DebugHookID>(debugHookID)) {
case DidEnterCallFrame:
return "didEnterCallFrame";
case WillLeaveCallFrame:
return "willLeaveCallFrame";
case WillExecuteStatement:
return "willExecuteStatement";
case WillExecuteProgram:
return "willExecuteProgram";
case DidExecuteProgram:
return "didExecuteProgram";
case DidReachBreakpoint:
return "didReachBreakpoint";
}
ASSERT_NOT_REACHED();
return "";
}
void CodeBlock::printUnaryOp(ExecState* exec, int location, Vector<Instruction>::const_iterator& it, const char* op) const
{
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
printf("[%4d] %s\t\t %s, %s\n", location, op, registerName(exec, r0).data(), registerName(exec, r1).data());
}
void CodeBlock::printBinaryOp(ExecState* exec, int location, Vector<Instruction>::const_iterator& it, const char* op) const
{
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
printf("[%4d] %s\t\t %s, %s, %s\n", location, op, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data());
}
void CodeBlock::printConditionalJump(ExecState* exec, const Vector<Instruction>::const_iterator&, Vector<Instruction>::const_iterator& it, int location, const char* op) const
{
int r0 = (++it)->u.operand;
int offset = (++it)->u.operand;
printf("[%4d] %s\t\t %s, %d(->%d)\n", location, op, registerName(exec, r0).data(), offset, location + offset);
}
void CodeBlock::printGetByIdOp(ExecState* exec, int location, Vector<Instruction>::const_iterator& it, const char* op) const
{
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int id0 = (++it)->u.operand;
printf("[%4d] %s\t %s, %s, %s\n", location, op, registerName(exec, r0).data(), registerName(exec, r1).data(), idName(id0, m_identifiers[id0]).data());
it += 4;
}
void CodeBlock::printPutByIdOp(ExecState* exec, int location, Vector<Instruction>::const_iterator& it, const char* op) const
{
int r0 = (++it)->u.operand;
int id0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
printf("[%4d] %s\t %s, %s, %s\n", location, op, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), registerName(exec, r1).data());
it += 5;
}
#if ENABLE(JIT)
static bool isGlobalResolve(OpcodeID opcodeID)
{
return opcodeID == op_resolve_global || opcodeID == op_resolve_global_dynamic;
}
static bool isPropertyAccess(OpcodeID opcodeID)
{
switch (opcodeID) {
case op_get_by_id_self:
case op_get_by_id_proto:
case op_get_by_id_chain:
case op_get_by_id_self_list:
case op_get_by_id_proto_list:
case op_put_by_id_transition:
case op_put_by_id_replace:
case op_get_by_id:
case op_put_by_id:
case op_get_by_id_generic:
case op_put_by_id_generic:
case op_get_array_length:
case op_get_string_length:
return true;
default:
return false;
}
}
static unsigned instructionOffsetForNth(ExecState* exec, const Vector<Instruction>& instructions, int nth, bool (*predicate)(OpcodeID))
{
size_t i = 0;
while (i < instructions.size()) {
OpcodeID currentOpcode = exec->interpreter()->getOpcodeID(instructions[i].u.opcode);
if (predicate(currentOpcode)) {
if (!--nth)
return i;
}
i += opcodeLengths[currentOpcode];
}
ASSERT_NOT_REACHED();
return 0;
}
static void printGlobalResolveInfo(const GlobalResolveInfo& resolveInfo, unsigned instructionOffset)
{
printf(" [%4d] %s: %s\n", instructionOffset, "resolve_global", pointerToSourceString(resolveInfo.structure).utf8().data());
}
static void printStructureStubInfo(const StructureStubInfo& stubInfo, unsigned instructionOffset)
{
switch (stubInfo.accessType) {
case access_get_by_id_self:
printf(" [%4d] %s: %s\n", instructionOffset, "get_by_id_self", pointerToSourceString(stubInfo.u.getByIdSelf.baseObjectStructure).utf8().data());
return;
case access_get_by_id_proto:
printf(" [%4d] %s: %s, %s\n", instructionOffset, "get_by_id_proto", pointerToSourceString(stubInfo.u.getByIdProto.baseObjectStructure).utf8().data(), pointerToSourceString(stubInfo.u.getByIdProto.prototypeStructure).utf8().data());
return;
case access_get_by_id_chain:
printf(" [%4d] %s: %s, %s\n", instructionOffset, "get_by_id_chain", pointerToSourceString(stubInfo.u.getByIdChain.baseObjectStructure).utf8().data(), pointerToSourceString(stubInfo.u.getByIdChain.chain).utf8().data());
return;
case access_get_by_id_self_list:
printf(" [%4d] %s: %s (%d)\n", instructionOffset, "op_get_by_id_self_list", pointerToSourceString(stubInfo.u.getByIdSelfList.structureList).utf8().data(), stubInfo.u.getByIdSelfList.listSize);
return;
case access_get_by_id_proto_list:
printf(" [%4d] %s: %s (%d)\n", instructionOffset, "op_get_by_id_proto_list", pointerToSourceString(stubInfo.u.getByIdProtoList.structureList).utf8().data(), stubInfo.u.getByIdProtoList.listSize);
return;
case access_put_by_id_transition:
printf(" [%4d] %s: %s, %s, %s\n", instructionOffset, "put_by_id_transition", pointerToSourceString(stubInfo.u.putByIdTransition.previousStructure).utf8().data(), pointerToSourceString(stubInfo.u.putByIdTransition.structure).utf8().data(), pointerToSourceString(stubInfo.u.putByIdTransition.chain).utf8().data());
return;
case access_put_by_id_replace:
printf(" [%4d] %s: %s\n", instructionOffset, "put_by_id_replace", pointerToSourceString(stubInfo.u.putByIdReplace.baseObjectStructure).utf8().data());
return;
case access_get_by_id:
printf(" [%4d] %s\n", instructionOffset, "get_by_id");
return;
case access_put_by_id:
printf(" [%4d] %s\n", instructionOffset, "put_by_id");
return;
case access_get_by_id_generic:
printf(" [%4d] %s\n", instructionOffset, "op_get_by_id_generic");
return;
case access_put_by_id_generic:
printf(" [%4d] %s\n", instructionOffset, "op_put_by_id_generic");
return;
case access_get_array_length:
printf(" [%4d] %s\n", instructionOffset, "op_get_array_length");
return;
case access_get_string_length:
printf(" [%4d] %s\n", instructionOffset, "op_get_string_length");
return;
default:
ASSERT_NOT_REACHED();
}
}
#endif
void CodeBlock::printStructure(const char* name, const Instruction* vPC, int operand) const
{
unsigned instructionOffset = vPC - m_instructions.begin();
printf(" [%4d] %s: %s\n", instructionOffset, name, pointerToSourceString(vPC[operand].u.structure).utf8().data());
}
void CodeBlock::printStructures(const Instruction* vPC) const
{
Interpreter* interpreter = m_globalData->interpreter;
unsigned instructionOffset = vPC - m_instructions.begin();
if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id)) {
printStructure("get_by_id", vPC, 4);
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_self)) {
printStructure("get_by_id_self", vPC, 4);
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_proto)) {
printf(" [%4d] %s: %s, %s\n", instructionOffset, "get_by_id_proto", pointerToSourceString(vPC[4].u.structure).utf8().data(), pointerToSourceString(vPC[5].u.structure).utf8().data());
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_transition)) {
printf(" [%4d] %s: %s, %s, %s\n", instructionOffset, "put_by_id_transition", pointerToSourceString(vPC[4].u.structure).utf8().data(), pointerToSourceString(vPC[5].u.structure).utf8().data(), pointerToSourceString(vPC[6].u.structureChain).utf8().data());
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_chain)) {
printf(" [%4d] %s: %s, %s\n", instructionOffset, "get_by_id_chain", pointerToSourceString(vPC[4].u.structure).utf8().data(), pointerToSourceString(vPC[5].u.structureChain).utf8().data());
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id)) {
printStructure("put_by_id", vPC, 4);
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_replace)) {
printStructure("put_by_id_replace", vPC, 4);
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_resolve_global)) {
printStructure("resolve_global", vPC, 4);
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_resolve_global_dynamic)) {
printStructure("resolve_global_dynamic", vPC, 4);
return;
}
// These m_instructions doesn't ref Structures.
ASSERT(vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_call) || vPC[0].u.opcode == interpreter->getOpcode(op_call_eval) || vPC[0].u.opcode == interpreter->getOpcode(op_construct));
}
void CodeBlock::dump(ExecState* exec) const
{
if (m_instructions.isEmpty()) {
printf("No instructions available.\n");
return;
}
size_t instructionCount = 0;
for (size_t i = 0; i < m_instructions.size(); i += opcodeLengths[exec->interpreter()->getOpcodeID(m_instructions[i].u.opcode)])
++instructionCount;
printf("%lu m_instructions; %lu bytes at %p; %d parameter(s); %d callee register(s)\n\n",
static_cast<unsigned long>(instructionCount),
static_cast<unsigned long>(m_instructions.size() * sizeof(Instruction)),
this, m_numParameters, m_numCalleeRegisters);
Vector<Instruction>::const_iterator begin = m_instructions.begin();
Vector<Instruction>::const_iterator end = m_instructions.end();
for (Vector<Instruction>::const_iterator it = begin; it != end; ++it)
dump(exec, begin, it);
if (!m_identifiers.isEmpty()) {
printf("\nIdentifiers:\n");
size_t i = 0;
do {
printf(" id%u = %s\n", static_cast<unsigned>(i), m_identifiers[i].ustring().utf8().data());
++i;
} while (i != m_identifiers.size());
}
if (!m_constantRegisters.isEmpty()) {
printf("\nConstants:\n");
unsigned registerIndex = m_numVars;
size_t i = 0;
do {
printf(" k%u = %s\n", registerIndex, valueToSourceString(exec, m_constantRegisters[i].get()).utf8().data());
++i;
++registerIndex;
} while (i < m_constantRegisters.size());
}
if (m_rareData && !m_rareData->m_regexps.isEmpty()) {
printf("\nm_regexps:\n");
size_t i = 0;
do {
printf(" re%u = %s\n", static_cast<unsigned>(i), regexpToSourceString(m_rareData->m_regexps[i].get()).utf8().data());
++i;
} while (i < m_rareData->m_regexps.size());
}
#if ENABLE(JIT)
if (!m_globalResolveInfos.isEmpty() || !m_structureStubInfos.isEmpty())
printf("\nStructures:\n");
if (!m_globalResolveInfos.isEmpty()) {
size_t i = 0;
do {
printGlobalResolveInfo(m_globalResolveInfos[i], instructionOffsetForNth(exec, m_instructions, i + 1, isGlobalResolve));
++i;
} while (i < m_globalResolveInfos.size());
}
if (!m_structureStubInfos.isEmpty()) {
size_t i = 0;
do {
printStructureStubInfo(m_structureStubInfos[i], instructionOffsetForNth(exec, m_instructions, i + 1, isPropertyAccess));
++i;
} while (i < m_structureStubInfos.size());
}
#else
if (!m_globalResolveInstructions.isEmpty() || !m_propertyAccessInstructions.isEmpty())
printf("\nStructures:\n");
if (!m_globalResolveInstructions.isEmpty()) {
size_t i = 0;
do {
printStructures(&m_instructions[m_globalResolveInstructions[i]]);
++i;
} while (i < m_globalResolveInstructions.size());
}
if (!m_propertyAccessInstructions.isEmpty()) {
size_t i = 0;
do {
printStructures(&m_instructions[m_propertyAccessInstructions[i]]);
++i;
} while (i < m_propertyAccessInstructions.size());
}
#endif
if (m_rareData && !m_rareData->m_exceptionHandlers.isEmpty()) {
printf("\nException Handlers:\n");
unsigned i = 0;
do {
printf("\t %d: { start: [%4d] end: [%4d] target: [%4d] }\n", i + 1, m_rareData->m_exceptionHandlers[i].start, m_rareData->m_exceptionHandlers[i].end, m_rareData->m_exceptionHandlers[i].target);
++i;
} while (i < m_rareData->m_exceptionHandlers.size());
}
if (m_rareData && !m_rareData->m_immediateSwitchJumpTables.isEmpty()) {
printf("Immediate Switch Jump Tables:\n");
unsigned i = 0;
do {
printf(" %1d = {\n", i);
int entry = 0;
Vector<int32_t>::const_iterator end = m_rareData->m_immediateSwitchJumpTables[i].branchOffsets.end();
for (Vector<int32_t>::const_iterator iter = m_rareData->m_immediateSwitchJumpTables[i].branchOffsets.begin(); iter != end; ++iter, ++entry) {
if (!*iter)
continue;
printf("\t\t%4d => %04d\n", entry + m_rareData->m_immediateSwitchJumpTables[i].min, *iter);
}
printf(" }\n");
++i;
} while (i < m_rareData->m_immediateSwitchJumpTables.size());
}
if (m_rareData && !m_rareData->m_characterSwitchJumpTables.isEmpty()) {
printf("\nCharacter Switch Jump Tables:\n");
unsigned i = 0;
do {
printf(" %1d = {\n", i);
int entry = 0;
Vector<int32_t>::const_iterator end = m_rareData->m_characterSwitchJumpTables[i].branchOffsets.end();
for (Vector<int32_t>::const_iterator iter = m_rareData->m_characterSwitchJumpTables[i].branchOffsets.begin(); iter != end; ++iter, ++entry) {
if (!*iter)
continue;
ASSERT(!((i + m_rareData->m_characterSwitchJumpTables[i].min) & ~0xFFFF));
UChar ch = static_cast<UChar>(entry + m_rareData->m_characterSwitchJumpTables[i].min);
printf("\t\t\"%s\" => %04d\n", UString(&ch, 1).utf8().data(), *iter);
}
printf(" }\n");
++i;
} while (i < m_rareData->m_characterSwitchJumpTables.size());
}
if (m_rareData && !m_rareData->m_stringSwitchJumpTables.isEmpty()) {
printf("\nString Switch Jump Tables:\n");
unsigned i = 0;
do {
printf(" %1d = {\n", i);
StringJumpTable::StringOffsetTable::const_iterator end = m_rareData->m_stringSwitchJumpTables[i].offsetTable.end();
for (StringJumpTable::StringOffsetTable::const_iterator iter = m_rareData->m_stringSwitchJumpTables[i].offsetTable.begin(); iter != end; ++iter)
printf("\t\t\"%s\" => %04d\n", UString(iter->first).utf8().data(), iter->second.branchOffset);
printf(" }\n");
++i;
} while (i < m_rareData->m_stringSwitchJumpTables.size());
}
printf("\n");
}
void CodeBlock::dump(ExecState* exec, const Vector<Instruction>::const_iterator& begin, Vector<Instruction>::const_iterator& it) const
{
int location = it - begin;
switch (exec->interpreter()->getOpcodeID(it->u.opcode)) {
case op_enter: {
printf("[%4d] enter\n", location);
break;
}
case op_create_activation: {
int r0 = (++it)->u.operand;
printf("[%4d] create_activation %s\n", location, registerName(exec, r0).data());
break;
}
case op_create_arguments: {
int r0 = (++it)->u.operand;
printf("[%4d] create_arguments\t %s\n", location, registerName(exec, r0).data());
break;
}
case op_init_lazy_reg: {
int r0 = (++it)->u.operand;
printf("[%4d] init_lazy_reg\t %s\n", location, registerName(exec, r0).data());
break;
}
case op_get_callee: {
int r0 = (++it)->u.operand;
printf("[%4d] op_get_callee %s\n", location, registerName(exec, r0).data());
break;
}
case op_create_this: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
printf("[%4d] create_this %s %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data());
break;
}
case op_convert_this: {
int r0 = (++it)->u.operand;
printf("[%4d] convert_this %s\n", location, registerName(exec, r0).data());
break;
}
case op_convert_this_strict: {
int r0 = (++it)->u.operand;
printf("[%4d] convert_this_strict %s\n", location, registerName(exec, r0).data());
break;
}
case op_new_object: {
int r0 = (++it)->u.operand;
printf("[%4d] new_object\t %s\n", location, registerName(exec, r0).data());
break;
}
case op_new_array: {
int dst = (++it)->u.operand;
int argv = (++it)->u.operand;
int argc = (++it)->u.operand;
printf("[%4d] new_array\t %s, %s, %d\n", location, registerName(exec, dst).data(), registerName(exec, argv).data(), argc);
break;
}
case op_new_regexp: {
int r0 = (++it)->u.operand;
int re0 = (++it)->u.operand;
printf("[%4d] new_regexp\t %s, %s\n", location, registerName(exec, r0).data(), regexpName(re0, regexp(re0)).data());
break;
}
case op_mov: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
printf("[%4d] mov\t\t %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data());
break;
}
case op_not: {
printUnaryOp(exec, location, it, "not");
break;
}
case op_eq: {
printBinaryOp(exec, location, it, "eq");
break;
}
case op_eq_null: {
printUnaryOp(exec, location, it, "eq_null");
break;
}
case op_neq: {
printBinaryOp(exec, location, it, "neq");
break;
}
case op_neq_null: {
printUnaryOp(exec, location, it, "neq_null");
break;
}
case op_stricteq: {
printBinaryOp(exec, location, it, "stricteq");
break;
}
case op_nstricteq: {
printBinaryOp(exec, location, it, "nstricteq");
break;
}
case op_less: {
printBinaryOp(exec, location, it, "less");
break;
}
case op_lesseq: {
printBinaryOp(exec, location, it, "lesseq");
break;
}
case op_pre_inc: {
int r0 = (++it)->u.operand;
printf("[%4d] pre_inc\t\t %s\n", location, registerName(exec, r0).data());
break;
}
case op_pre_dec: {
int r0 = (++it)->u.operand;
printf("[%4d] pre_dec\t\t %s\n", location, registerName(exec, r0).data());
break;
}
case op_post_inc: {
printUnaryOp(exec, location, it, "post_inc");
break;
}
case op_post_dec: {
printUnaryOp(exec, location, it, "post_dec");
break;
}
case op_to_jsnumber: {
printUnaryOp(exec, location, it, "to_jsnumber");
break;
}
case op_negate: {
printUnaryOp(exec, location, it, "negate");
break;
}
case op_add: {
printBinaryOp(exec, location, it, "add");
++it;
break;
}
case op_mul: {
printBinaryOp(exec, location, it, "mul");
++it;
break;
}
case op_div: {
printBinaryOp(exec, location, it, "div");
++it;
break;
}
case op_mod: {
printBinaryOp(exec, location, it, "mod");
break;
}
case op_sub: {
printBinaryOp(exec, location, it, "sub");
++it;
break;
}
case op_lshift: {
printBinaryOp(exec, location, it, "lshift");
break;
}
case op_rshift: {
printBinaryOp(exec, location, it, "rshift");
break;
}
case op_urshift: {
printBinaryOp(exec, location, it, "urshift");
break;
}
case op_bitand: {
printBinaryOp(exec, location, it, "bitand");
++it;
break;
}
case op_bitxor: {
printBinaryOp(exec, location, it, "bitxor");
++it;
break;
}
case op_bitor: {
printBinaryOp(exec, location, it, "bitor");
++it;
break;
}
case op_bitnot: {
printUnaryOp(exec, location, it, "bitnot");
break;
}
case op_check_has_instance: {
int base = (++it)->u.operand;
printf("[%4d] check_has_instance\t\t %s\n", location, registerName(exec, base).data());
break;
}
case op_instanceof: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
int r3 = (++it)->u.operand;
printf("[%4d] instanceof\t\t %s, %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data(), registerName(exec, r3).data());
break;
}
case op_typeof: {
printUnaryOp(exec, location, it, "typeof");
break;
}
case op_is_undefined: {
printUnaryOp(exec, location, it, "is_undefined");
break;
}
case op_is_boolean: {
printUnaryOp(exec, location, it, "is_boolean");
break;
}
case op_is_number: {
printUnaryOp(exec, location, it, "is_number");
break;
}
case op_is_string: {
printUnaryOp(exec, location, it, "is_string");
break;
}
case op_is_object: {
printUnaryOp(exec, location, it, "is_object");
break;
}
case op_is_function: {
printUnaryOp(exec, location, it, "is_function");
break;
}
case op_in: {
printBinaryOp(exec, location, it, "in");
break;
}
case op_resolve: {
int r0 = (++it)->u.operand;
int id0 = (++it)->u.operand;
printf("[%4d] resolve\t\t %s, %s\n", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data());
break;
}
case op_resolve_skip: {
int r0 = (++it)->u.operand;
int id0 = (++it)->u.operand;
int skipLevels = (++it)->u.operand;
printf("[%4d] resolve_skip\t %s, %s, %d\n", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), skipLevels);
break;
}
case op_resolve_global: {
int r0 = (++it)->u.operand;
int id0 = (++it)->u.operand;
printf("[%4d] resolve_global\t %s, %s\n", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data());
it += 2;
break;
}
case op_resolve_global_dynamic: {
int r0 = (++it)->u.operand;
int id0 = (++it)->u.operand;
JSValue scope = JSValue((++it)->u.jsCell.get());
++it;
int depth = (++it)->u.operand;
printf("[%4d] resolve_global_dynamic\t %s, %s, %s, %d\n", location, registerName(exec, r0).data(), valueToSourceString(exec, scope).utf8().data(), idName(id0, m_identifiers[id0]).data(), depth);
break;
}
case op_get_scoped_var: {
int r0 = (++it)->u.operand;
int index = (++it)->u.operand;
int skipLevels = (++it)->u.operand;
printf("[%4d] get_scoped_var\t %s, %d, %d\n", location, registerName(exec, r0).data(), index, skipLevels);
break;
}
case op_put_scoped_var: {
int index = (++it)->u.operand;
int skipLevels = (++it)->u.operand;
int r0 = (++it)->u.operand;
printf("[%4d] put_scoped_var\t %d, %d, %s\n", location, index, skipLevels, registerName(exec, r0).data());
break;
}
case op_get_global_var: {
int r0 = (++it)->u.operand;
int index = (++it)->u.operand;
printf("[%4d] get_global_var\t %s, %d\n", location, registerName(exec, r0).data(), index);
break;
}
case op_put_global_var: {
int index = (++it)->u.operand;
int r0 = (++it)->u.operand;
printf("[%4d] put_global_var\t %d, %s\n", location, index, registerName(exec, r0).data());
break;
}
case op_resolve_base: {
int r0 = (++it)->u.operand;
int id0 = (++it)->u.operand;
int isStrict = (++it)->u.operand;
printf("[%4d] resolve_base%s\t %s, %s\n", location, isStrict ? "_strict" : "", registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data());
break;
}
case op_ensure_property_exists: {
int r0 = (++it)->u.operand;
int id0 = (++it)->u.operand;
printf("[%4d] ensure_property_exists\t %s, %s\n", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data());
break;
}
case op_resolve_with_base: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int id0 = (++it)->u.operand;
printf("[%4d] resolve_with_base %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), idName(id0, m_identifiers[id0]).data());
break;
}
case op_get_by_id: {
printGetByIdOp(exec, location, it, "get_by_id");
break;
}
case op_get_by_id_self: {
printGetByIdOp(exec, location, it, "get_by_id_self");
break;
}
case op_get_by_id_self_list: {
printGetByIdOp(exec, location, it, "get_by_id_self_list");
break;
}
case op_get_by_id_proto: {
printGetByIdOp(exec, location, it, "get_by_id_proto");
break;
}
case op_get_by_id_proto_list: {
printGetByIdOp(exec, location, it, "op_get_by_id_proto_list");
break;
}
case op_get_by_id_chain: {
printGetByIdOp(exec, location, it, "get_by_id_chain");
break;
}
case op_get_by_id_getter_self: {
printGetByIdOp(exec, location, it, "get_by_id_getter_self");
break;
}
case op_get_by_id_getter_self_list: {
printGetByIdOp(exec, location, it, "get_by_id_getter_self_list");
break;
}
case op_get_by_id_getter_proto: {
printGetByIdOp(exec, location, it, "get_by_id_getter_proto");
break;
}
case op_get_by_id_getter_proto_list: {
printGetByIdOp(exec, location, it, "get_by_id_getter_proto_list");
break;
}
case op_get_by_id_getter_chain: {
printGetByIdOp(exec, location, it, "get_by_id_getter_chain");
break;
}
case op_get_by_id_custom_self: {
printGetByIdOp(exec, location, it, "get_by_id_custom_self");
break;
}
case op_get_by_id_custom_self_list: {
printGetByIdOp(exec, location, it, "get_by_id_custom_self_list");
break;
}
case op_get_by_id_custom_proto: {
printGetByIdOp(exec, location, it, "get_by_id_custom_proto");
break;
}
case op_get_by_id_custom_proto_list: {
printGetByIdOp(exec, location, it, "get_by_id_custom_proto_list");
break;
}
case op_get_by_id_custom_chain: {
printGetByIdOp(exec, location, it, "get_by_id_custom_chain");
break;
}
case op_get_by_id_generic: {
printGetByIdOp(exec, location, it, "get_by_id_generic");
break;
}
case op_get_array_length: {
printGetByIdOp(exec, location, it, "get_array_length");
break;
}
case op_get_string_length: {
printGetByIdOp(exec, location, it, "get_string_length");
break;
}
case op_get_arguments_length: {
printUnaryOp(exec, location, it, "get_arguments_length");
it++;
break;
}
case op_put_by_id: {
printPutByIdOp(exec, location, it, "put_by_id");
break;
}
case op_put_by_id_replace: {
printPutByIdOp(exec, location, it, "put_by_id_replace");
break;
}
case op_put_by_id_transition: {
printPutByIdOp(exec, location, it, "put_by_id_transition");
break;
}
case op_put_by_id_generic: {
printPutByIdOp(exec, location, it, "put_by_id_generic");
break;
}
case op_put_getter: {
int r0 = (++it)->u.operand;
int id0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
printf("[%4d] put_getter\t %s, %s, %s\n", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), registerName(exec, r1).data());
break;
}
case op_put_setter: {
int r0 = (++it)->u.operand;
int id0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
printf("[%4d] put_setter\t %s, %s, %s\n", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), registerName(exec, r1).data());
break;
}
case op_method_check: {
printf("[%4d] method_check\n", location);
break;
}
case op_del_by_id: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int id0 = (++it)->u.operand;
printf("[%4d] del_by_id\t %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), idName(id0, m_identifiers[id0]).data());
break;
}
case op_get_by_val: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
printf("[%4d] get_by_val\t %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data());
break;
}
case op_get_argument_by_val: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
printf("[%4d] get_argument_by_val\t %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data());
break;
}
case op_get_by_pname: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
int r3 = (++it)->u.operand;
int r4 = (++it)->u.operand;
int r5 = (++it)->u.operand;
printf("[%4d] get_by_pname\t %s, %s, %s, %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data(), registerName(exec, r3).data(), registerName(exec, r4).data(), registerName(exec, r5).data());
break;
}
case op_put_by_val: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
printf("[%4d] put_by_val\t %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data());
break;
}
case op_del_by_val: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
printf("[%4d] del_by_val\t %s, %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data());
break;
}
case op_put_by_index: {
int r0 = (++it)->u.operand;
unsigned n0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
printf("[%4d] put_by_index\t %s, %u, %s\n", location, registerName(exec, r0).data(), n0, registerName(exec, r1).data());
break;
}
case op_jmp: {
int offset = (++it)->u.operand;
printf("[%4d] jmp\t\t %d(->%d)\n", location, offset, location + offset);
break;
}
case op_loop: {
int offset = (++it)->u.operand;
printf("[%4d] loop\t\t %d(->%d)\n", location, offset, location + offset);
break;
}
case op_jtrue: {
printConditionalJump(exec, begin, it, location, "jtrue");
break;
}
case op_loop_if_true: {
printConditionalJump(exec, begin, it, location, "loop_if_true");
break;
}
case op_loop_if_false: {
printConditionalJump(exec, begin, it, location, "loop_if_false");
break;
}
case op_jfalse: {
printConditionalJump(exec, begin, it, location, "jfalse");
break;
}
case op_jeq_null: {
printConditionalJump(exec, begin, it, location, "jeq_null");
break;
}
case op_jneq_null: {
printConditionalJump(exec, begin, it, location, "jneq_null");
break;
}
case op_jneq_ptr: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
printf("[%4d] jneq_ptr\t\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset);
break;
}
case op_jnless: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
printf("[%4d] jnless\t\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset);
break;
}
case op_jnlesseq: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
printf("[%4d] jnlesseq\t\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset);
break;
}
case op_loop_if_less: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
printf("[%4d] loop_if_less\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset);
break;
}
case op_jless: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
printf("[%4d] jless\t\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset);
break;
}
case op_jlesseq: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
printf("[%4d] jlesseq\t\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset);
break;
}
case op_loop_if_lesseq: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
printf("[%4d] loop_if_lesseq\t %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset);
break;
}
case op_switch_imm: {
int tableIndex = (++it)->u.operand;
int defaultTarget = (++it)->u.operand;
int scrutineeRegister = (++it)->u.operand;
printf("[%4d] switch_imm\t %d, %d(->%d), %s\n", location, tableIndex, defaultTarget, location + defaultTarget, registerName(exec, scrutineeRegister).data());
break;
}
case op_switch_char: {
int tableIndex = (++it)->u.operand;
int defaultTarget = (++it)->u.operand;
int scrutineeRegister = (++it)->u.operand;
printf("[%4d] switch_char\t %d, %d(->%d), %s\n", location, tableIndex, defaultTarget, location + defaultTarget, registerName(exec, scrutineeRegister).data());
break;
}
case op_switch_string: {
int tableIndex = (++it)->u.operand;
int defaultTarget = (++it)->u.operand;
int scrutineeRegister = (++it)->u.operand;
printf("[%4d] switch_string\t %d, %d(->%d), %s\n", location, tableIndex, defaultTarget, location + defaultTarget, registerName(exec, scrutineeRegister).data());
break;
}
case op_new_func: {
int r0 = (++it)->u.operand;
int f0 = (++it)->u.operand;
int shouldCheck = (++it)->u.operand;
printf("[%4d] new_func\t\t %s, f%d, %s\n", location, registerName(exec, r0).data(), f0, shouldCheck ? "<Checked>" : "<Unchecked>");
break;
}
case op_new_func_exp: {
int r0 = (++it)->u.operand;
int f0 = (++it)->u.operand;
printf("[%4d] new_func_exp\t %s, f%d\n", location, registerName(exec, r0).data(), f0);
break;
}
case op_call: {
int func = (++it)->u.operand;
int argCount = (++it)->u.operand;
int registerOffset = (++it)->u.operand;
printf("[%4d] call\t\t %s, %d, %d\n", location, registerName(exec, func).data(), argCount, registerOffset);
break;
}
case op_call_eval: {
int func = (++it)->u.operand;
int argCount = (++it)->u.operand;
int registerOffset = (++it)->u.operand;
printf("[%4d] call_eval\t %s, %d, %d\n", location, registerName(exec, func).data(), argCount, registerOffset);
break;
}
case op_call_varargs: {
int func = (++it)->u.operand;
int argCount = (++it)->u.operand;
int registerOffset = (++it)->u.operand;
printf("[%4d] call_varargs\t %s, %s, %d\n", location, registerName(exec, func).data(), registerName(exec, argCount).data(), registerOffset);
break;
}
case op_load_varargs: {
printUnaryOp(exec, location, it, "load_varargs");
break;
}
case op_tear_off_activation: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
printf("[%4d] tear_off_activation\t %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data());
break;
}
case op_tear_off_arguments: {
int r0 = (++it)->u.operand;
printf("[%4d] tear_off_arguments\t %s\n", location, registerName(exec, r0).data());
break;
}
case op_ret: {
int r0 = (++it)->u.operand;
printf("[%4d] ret\t\t %s\n", location, registerName(exec, r0).data());
break;
}
case op_call_put_result: {
int r0 = (++it)->u.operand;
printf("[%4d] op_call_put_result\t\t %s\n", location, registerName(exec, r0).data());
break;
}
case op_ret_object_or_this: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
printf("[%4d] constructor_ret\t\t %s %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data());
break;
}
case op_construct: {
int func = (++it)->u.operand;
int argCount = (++it)->u.operand;
int registerOffset = (++it)->u.operand;
printf("[%4d] construct\t %s, %d, %d\n", location, registerName(exec, func).data(), argCount, registerOffset);
break;
}
case op_strcat: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int count = (++it)->u.operand;
printf("[%4d] strcat\t\t %s, %s, %d\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), count);
break;
}
case op_to_primitive: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
printf("[%4d] to_primitive\t %s, %s\n", location, registerName(exec, r0).data(), registerName(exec, r1).data());
break;
}
case op_get_pnames: {
int r0 = it[1].u.operand;
int r1 = it[2].u.operand;
int r2 = it[3].u.operand;
int r3 = it[4].u.operand;
int offset = it[5].u.operand;
printf("[%4d] get_pnames\t %s, %s, %s, %s, %d(->%d)\n", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data(), registerName(exec, r3).data(), offset, location + offset);
it += OPCODE_LENGTH(op_get_pnames) - 1;
break;
}
case op_next_pname: {
int dest = it[1].u.operand;
int base = it[2].u.operand;
int i = it[3].u.operand;
int size = it[4].u.operand;
int iter = it[5].u.operand;
int offset = it[6].u.operand;
printf("[%4d] next_pname\t %s, %s, %s, %s, %s, %d(->%d)\n", location, registerName(exec, dest).data(), registerName(exec, base).data(), registerName(exec, i).data(), registerName(exec, size).data(), registerName(exec, iter).data(), offset, location + offset);
it += OPCODE_LENGTH(op_next_pname) - 1;
break;
}
case op_push_scope: {
int r0 = (++it)->u.operand;
printf("[%4d] push_scope\t %s\n", location, registerName(exec, r0).data());
break;
}
case op_pop_scope: {
printf("[%4d] pop_scope\n", location);
break;
}
case op_push_new_scope: {
int r0 = (++it)->u.operand;
int id0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
printf("[%4d] push_new_scope \t%s, %s, %s\n", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), registerName(exec, r1).data());
break;
}
case op_jmp_scopes: {
int scopeDelta = (++it)->u.operand;
int offset = (++it)->u.operand;
printf("[%4d] jmp_scopes\t^%d, %d(->%d)\n", location, scopeDelta, offset, location + offset);
break;
}
case op_catch: {
int r0 = (++it)->u.operand;
printf("[%4d] catch\t\t %s\n", location, registerName(exec, r0).data());
break;
}
case op_throw: {
int r0 = (++it)->u.operand;
printf("[%4d] throw\t\t %s\n", location, registerName(exec, r0).data());
break;
}
case op_throw_reference_error: {
int k0 = (++it)->u.operand;
printf("[%4d] throw_reference_error\t %s\n", location, constantName(exec, k0, getConstant(k0)).data());
break;
}
case op_jsr: {
int retAddrDst = (++it)->u.operand;
int offset = (++it)->u.operand;
printf("[%4d] jsr\t\t %s, %d(->%d)\n", location, registerName(exec, retAddrDst).data(), offset, location + offset);
break;
}
case op_sret: {
int retAddrSrc = (++it)->u.operand;
printf("[%4d] sret\t\t %s\n", location, registerName(exec, retAddrSrc).data());
break;
}
case op_debug: {
int debugHookID = (++it)->u.operand;
int firstLine = (++it)->u.operand;
int lastLine = (++it)->u.operand;
printf("[%4d] debug\t\t %s, %d, %d\n", location, debugHookName(debugHookID), firstLine, lastLine);
break;
}
case op_profile_will_call: {
int function = (++it)->u.operand;
printf("[%4d] profile_will_call %s\n", location, registerName(exec, function).data());
break;
}
case op_profile_did_call: {
int function = (++it)->u.operand;
printf("[%4d] profile_did_call\t %s\n", location, registerName(exec, function).data());
break;
}
case op_end: {
int r0 = (++it)->u.operand;
printf("[%4d] end\t\t %s\n", location, registerName(exec, r0).data());
break;
}
}
}
#endif // !defined(NDEBUG) || ENABLE(OPCODE_SAMPLING)
#if DUMP_CODE_BLOCK_STATISTICS
static HashSet<CodeBlock*> liveCodeBlockSet;
#endif
#define FOR_EACH_MEMBER_VECTOR(macro) \
macro(instructions) \
macro(globalResolveInfos) \
macro(structureStubInfos) \
macro(callLinkInfos) \
macro(linkedCallerList) \
macro(identifiers) \
macro(functionExpressions) \
macro(constantRegisters)
#define FOR_EACH_MEMBER_VECTOR_RARE_DATA(macro) \
macro(regexps) \
macro(functions) \
macro(exceptionHandlers) \
macro(immediateSwitchJumpTables) \
macro(characterSwitchJumpTables) \
macro(stringSwitchJumpTables) \
macro(evalCodeCache) \
macro(expressionInfo) \
macro(lineInfo) \
macro(callReturnIndexVector)
template<typename T>
static size_t sizeInBytes(const Vector<T>& vector)
{
return vector.capacity() * sizeof(T);
}
void CodeBlock::dumpStatistics()
{
#if DUMP_CODE_BLOCK_STATISTICS
#define DEFINE_VARS(name) size_t name##IsNotEmpty = 0; size_t name##TotalSize = 0;
FOR_EACH_MEMBER_VECTOR(DEFINE_VARS)
FOR_EACH_MEMBER_VECTOR_RARE_DATA(DEFINE_VARS)
#undef DEFINE_VARS
// Non-vector data members
size_t evalCodeCacheIsNotEmpty = 0;
size_t symbolTableIsNotEmpty = 0;
size_t symbolTableTotalSize = 0;
size_t hasRareData = 0;
size_t isFunctionCode = 0;
size_t isGlobalCode = 0;
size_t isEvalCode = 0;
HashSet<CodeBlock*>::const_iterator end = liveCodeBlockSet.end();
for (HashSet<CodeBlock*>::const_iterator it = liveCodeBlockSet.begin(); it != end; ++it) {
CodeBlock* codeBlock = *it;
#define GET_STATS(name) if (!codeBlock->m_##name.isEmpty()) { name##IsNotEmpty++; name##TotalSize += sizeInBytes(codeBlock->m_##name); }
FOR_EACH_MEMBER_VECTOR(GET_STATS)
#undef GET_STATS
if (!codeBlock->m_symbolTable.isEmpty()) {
symbolTableIsNotEmpty++;
symbolTableTotalSize += (codeBlock->m_symbolTable.capacity() * (sizeof(SymbolTable::KeyType) + sizeof(SymbolTable::MappedType)));
}
if (codeBlock->m_rareData) {
hasRareData++;
#define GET_STATS(name) if (!codeBlock->m_rareData->m_##name.isEmpty()) { name##IsNotEmpty++; name##TotalSize += sizeInBytes(codeBlock->m_rareData->m_##name); }
FOR_EACH_MEMBER_VECTOR_RARE_DATA(GET_STATS)
#undef GET_STATS
if (!codeBlock->m_rareData->m_evalCodeCache.isEmpty())
evalCodeCacheIsNotEmpty++;
}
switch (codeBlock->codeType()) {
case FunctionCode:
++isFunctionCode;
break;
case GlobalCode:
++isGlobalCode;
break;
case EvalCode:
++isEvalCode;
break;
}
}
size_t totalSize = 0;
#define GET_TOTAL_SIZE(name) totalSize += name##TotalSize;
FOR_EACH_MEMBER_VECTOR(GET_TOTAL_SIZE)
FOR_EACH_MEMBER_VECTOR_RARE_DATA(GET_TOTAL_SIZE)
#undef GET_TOTAL_SIZE
totalSize += symbolTableTotalSize;
totalSize += (liveCodeBlockSet.size() * sizeof(CodeBlock));
printf("Number of live CodeBlocks: %d\n", liveCodeBlockSet.size());
printf("Size of a single CodeBlock [sizeof(CodeBlock)]: %zu\n", sizeof(CodeBlock));
printf("Size of all CodeBlocks: %zu\n", totalSize);
printf("Average size of a CodeBlock: %zu\n", totalSize / liveCodeBlockSet.size());
printf("Number of FunctionCode CodeBlocks: %zu (%.3f%%)\n", isFunctionCode, static_cast<double>(isFunctionCode) * 100.0 / liveCodeBlockSet.size());
printf("Number of GlobalCode CodeBlocks: %zu (%.3f%%)\n", isGlobalCode, static_cast<double>(isGlobalCode) * 100.0 / liveCodeBlockSet.size());
printf("Number of EvalCode CodeBlocks: %zu (%.3f%%)\n", isEvalCode, static_cast<double>(isEvalCode) * 100.0 / liveCodeBlockSet.size());
printf("Number of CodeBlocks with rare data: %zu (%.3f%%)\n", hasRareData, static_cast<double>(hasRareData) * 100.0 / liveCodeBlockSet.size());
#define PRINT_STATS(name) printf("Number of CodeBlocks with " #name ": %zu\n", name##IsNotEmpty); printf("Size of all " #name ": %zu\n", name##TotalSize);
FOR_EACH_MEMBER_VECTOR(PRINT_STATS)
FOR_EACH_MEMBER_VECTOR_RARE_DATA(PRINT_STATS)
#undef PRINT_STATS
printf("Number of CodeBlocks with evalCodeCache: %zu\n", evalCodeCacheIsNotEmpty);
printf("Number of CodeBlocks with symbolTable: %zu\n", symbolTableIsNotEmpty);
printf("Size of all symbolTables: %zu\n", symbolTableTotalSize);
#else
printf("Dumping CodeBlock statistics is not enabled.\n");
#endif
}
CodeBlock::CodeBlock(ScriptExecutable* ownerExecutable, CodeType codeType, JSGlobalObject *globalObject, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset, SymbolTable* symTab, bool isConstructor)
: m_globalObject(globalObject->globalData(), ownerExecutable, globalObject)
, m_heap(&m_globalObject->globalData().heap)
, m_numCalleeRegisters(0)
, m_numVars(0)
, m_numParameters(0)
, m_isConstructor(isConstructor)
, m_ownerExecutable(globalObject->globalData(), ownerExecutable, ownerExecutable)
, m_globalData(0)
#ifndef NDEBUG
, m_instructionCount(0)
#endif
, m_argumentsRegister(-1)
, m_needsFullScopeChain(ownerExecutable->needsActivation())
, m_usesEval(ownerExecutable->usesEval())
, m_isNumericCompareFunction(false)
, m_isStrictMode(ownerExecutable->isStrictMode())
, m_codeType(codeType)
, m_source(sourceProvider)
, m_sourceOffset(sourceOffset)
, m_symbolTable(symTab)
{
ASSERT(m_source);
#if DUMP_CODE_BLOCK_STATISTICS
liveCodeBlockSet.add(this);
#endif
}
CodeBlock::~CodeBlock()
{
#if ENABLE(JIT)
for (size_t size = m_structureStubInfos.size(), i = 0; i < size; ++i)
m_structureStubInfos[i].deref();
#endif // ENABLE(JIT)
#if DUMP_CODE_BLOCK_STATISTICS
liveCodeBlockSet.remove(this);
#endif
}
void CodeBlock::markStructures(MarkStack& markStack, Instruction* vPC) const
{
Interpreter* interpreter = m_globalData->interpreter;
if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_self) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_self) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_self)) {
markStack.append(&vPC[4].u.structure);
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_proto) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_proto) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_proto)) {
markStack.append(&vPC[4].u.structure);
markStack.append(&vPC[5].u.structure);
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_chain) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_chain) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_chain)) {
markStack.append(&vPC[4].u.structure);
markStack.append(&vPC[5].u.structureChain);
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_transition)) {
markStack.append(&vPC[4].u.structure);
markStack.append(&vPC[5].u.structure);
markStack.append(&vPC[6].u.structureChain);
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_replace)) {
markStack.append(&vPC[4].u.structure);
return;
}
if (vPC[0].u.opcode == interpreter->getOpcode(op_resolve_global) || vPC[0].u.opcode == interpreter->getOpcode(op_resolve_global_dynamic)) {
if (vPC[3].u.structure)
markStack.append(&vPC[3].u.structure);
return;
}
if ((vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_proto_list))
|| (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_self_list))
|| (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_proto_list))
|| (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_self_list))
|| (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_proto_list))
|| (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_self_list))) {
PolymorphicAccessStructureList* polymorphicStructures = vPC[4].u.polymorphicStructures;
polymorphicStructures->markAggregate(markStack, vPC[5].u.operand);
delete polymorphicStructures;
return;
}
// These instructions don't ref their Structures.
ASSERT(vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id) || vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_get_array_length) || vPC[0].u.opcode == interpreter->getOpcode(op_get_string_length));
}
void EvalCodeCache::markAggregate(MarkStack& markStack)
{
EvalCacheMap::iterator end = m_cacheMap.end();
for (EvalCacheMap::iterator ptr = m_cacheMap.begin(); ptr != end; ++ptr)
markStack.append(&ptr->second);
}
void CodeBlock::markAggregate(MarkStack& markStack)
{
markStack.append(&m_globalObject);
markStack.append(&m_ownerExecutable);
if (m_rareData)
m_rareData->m_evalCodeCache.markAggregate(markStack);
markStack.appendValues(m_constantRegisters.data(), m_constantRegisters.size());
for (size_t i = 0; i < m_functionExprs.size(); ++i)
markStack.append(&m_functionExprs[i]);
for (size_t i = 0; i < m_functionDecls.size(); ++i)
markStack.append(&m_functionDecls[i]);
#if ENABLE(JIT_OPTIMIZE_CALL)
for (unsigned i = 0; i < numberOfCallLinkInfos(); ++i)
if (callLinkInfo(i).isLinked())
markStack.append(&callLinkInfo(i).callee);
#endif
#if ENABLE(INTERPRETER)
for (size_t size = m_propertyAccessInstructions.size(), i = 0; i < size; ++i)
markStructures(markStack, &m_instructions[m_propertyAccessInstructions[i]]);
#endif
#if ENABLE(JIT)
for (size_t size = m_globalResolveInfos.size(), i = 0; i < size; ++i) {
if (m_globalResolveInfos[i].structure)
markStack.append(&m_globalResolveInfos[i].structure);
}
for (size_t size = m_structureStubInfos.size(), i = 0; i < size; ++i)
m_structureStubInfos[i].markAggregate(markStack);
for (size_t size = m_methodCallLinkInfos.size(), i = 0; i < size; ++i) {
if (m_methodCallLinkInfos[i].cachedStructure) {
// Both members must be filled at the same time
markStack.append(&m_methodCallLinkInfos[i].cachedStructure);
ASSERT(!!m_methodCallLinkInfos[i].cachedPrototypeStructure);
markStack.append(&m_methodCallLinkInfos[i].cachedPrototypeStructure);
}
}
#endif
}
HandlerInfo* CodeBlock::handlerForBytecodeOffset(unsigned bytecodeOffset)
{
ASSERT(bytecodeOffset < m_instructionCount);
if (!m_rareData)
return 0;
Vector<HandlerInfo>& exceptionHandlers = m_rareData->m_exceptionHandlers;
for (size_t i = 0; i < exceptionHandlers.size(); ++i) {
// Handlers are ordered innermost first, so the first handler we encounter
// that contains the source address is the correct handler to use.
if (exceptionHandlers[i].start <= bytecodeOffset && exceptionHandlers[i].end >= bytecodeOffset)
return &exceptionHandlers[i];
}
return 0;
}
int CodeBlock::lineNumberForBytecodeOffset(unsigned bytecodeOffset)
{
ASSERT(bytecodeOffset < m_instructionCount);
if (!m_rareData)
return m_ownerExecutable->source().firstLine();
Vector<LineInfo>& lineInfo = m_rareData->m_lineInfo;
int low = 0;
int high = lineInfo.size();
while (low < high) {
int mid = low + (high - low) / 2;
if (lineInfo[mid].instructionOffset <= bytecodeOffset)
low = mid + 1;
else
high = mid;
}
if (!low)
return m_ownerExecutable->source().firstLine();
return lineInfo[low - 1].lineNumber;
}
void CodeBlock::expressionRangeForBytecodeOffset(unsigned bytecodeOffset, int& divot, int& startOffset, int& endOffset)
{
ASSERT(bytecodeOffset < m_instructionCount);
if (!m_rareData) {
startOffset = 0;
endOffset = 0;
divot = 0;
return;
}
Vector<ExpressionRangeInfo>& expressionInfo = m_rareData->m_expressionInfo;
int low = 0;
int high = expressionInfo.size();
while (low < high) {
int mid = low + (high - low) / 2;
if (expressionInfo[mid].instructionOffset <= bytecodeOffset)
low = mid + 1;
else
high = mid;
}
ASSERT(low);
if (!low) {
startOffset = 0;
endOffset = 0;
divot = 0;
return;
}
startOffset = expressionInfo[low - 1].startOffset;
endOffset = expressionInfo[low - 1].endOffset;
divot = expressionInfo[low - 1].divotPoint + m_sourceOffset;
return;
}
#if ENABLE(INTERPRETER)
bool CodeBlock::hasGlobalResolveInstructionAtBytecodeOffset(unsigned bytecodeOffset)
{
if (m_globalResolveInstructions.isEmpty())
return false;
int low = 0;
int high = m_globalResolveInstructions.size();
while (low < high) {
int mid = low + (high - low) / 2;
if (m_globalResolveInstructions[mid] <= bytecodeOffset)
low = mid + 1;
else
high = mid;
}
if (!low || m_globalResolveInstructions[low - 1] != bytecodeOffset)
return false;
return true;
}
#endif
#if ENABLE(JIT)
bool CodeBlock::hasGlobalResolveInfoAtBytecodeOffset(unsigned bytecodeOffset)
{
if (m_globalResolveInfos.isEmpty())
return false;
int low = 0;
int high = m_globalResolveInfos.size();
while (low < high) {
int mid = low + (high - low) / 2;
if (m_globalResolveInfos[mid].bytecodeOffset <= bytecodeOffset)
low = mid + 1;
else
high = mid;
}
if (!low || m_globalResolveInfos[low - 1].bytecodeOffset != bytecodeOffset)
return false;
return true;
}
#endif
void CodeBlock::shrinkToFit()
{
m_instructions.shrinkToFit();
#if ENABLE(INTERPRETER)
m_propertyAccessInstructions.shrinkToFit();
m_globalResolveInstructions.shrinkToFit();
#endif
#if ENABLE(JIT)
m_structureStubInfos.shrinkToFit();
m_globalResolveInfos.shrinkToFit();
m_callLinkInfos.shrinkToFit();
#endif
m_identifiers.shrinkToFit();
m_functionDecls.shrinkToFit();
m_functionExprs.shrinkToFit();
m_constantRegisters.shrinkToFit();
if (m_rareData) {
m_rareData->m_exceptionHandlers.shrinkToFit();
m_rareData->m_regexps.shrinkToFit();
m_rareData->m_immediateSwitchJumpTables.shrinkToFit();
m_rareData->m_characterSwitchJumpTables.shrinkToFit();
m_rareData->m_stringSwitchJumpTables.shrinkToFit();
m_rareData->m_expressionInfo.shrinkToFit();
m_rareData->m_lineInfo.shrinkToFit();
}
}
void CodeBlock::createActivation(CallFrame* callFrame)
{
ASSERT(codeType() == FunctionCode);
ASSERT(needsFullScopeChain());
ASSERT(!callFrame->uncheckedR(activationRegister()).jsValue());
JSActivation* activation = new (callFrame) JSActivation(callFrame, static_cast<FunctionExecutable*>(ownerExecutable()));
callFrame->uncheckedR(activationRegister()) = JSValue(activation);
callFrame->setScopeChain(callFrame->scopeChain()->push(activation));
}
} // namespace JSC