/*
* Copyright (C) 2010, Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(WEB_AUDIO)
#include "JavaScriptAudioNode.h"
#include "AudioBuffer.h"
#include "AudioBus.h"
#include "AudioContext.h"
#include "AudioNodeInput.h"
#include "AudioNodeOutput.h"
#include "AudioProcessingEvent.h"
#include "Document.h"
#include "Float32Array.h"
#include <wtf/MainThread.h>
namespace WebCore {
const size_t DefaultBufferSize = 4096;
PassRefPtr<JavaScriptAudioNode> JavaScriptAudioNode::create(AudioContext* context, double sampleRate, size_t bufferSize, unsigned numberOfInputs, unsigned numberOfOutputs)
{
return adoptRef(new JavaScriptAudioNode(context, sampleRate, bufferSize, numberOfInputs, numberOfOutputs));
}
JavaScriptAudioNode::JavaScriptAudioNode(AudioContext* context, double sampleRate, size_t bufferSize, unsigned numberOfInputs, unsigned numberOfOutputs)
: AudioNode(context, sampleRate)
, m_doubleBufferIndex(0)
, m_doubleBufferIndexForEvent(0)
, m_bufferSize(bufferSize)
, m_bufferReadWriteIndex(0)
, m_isRequestOutstanding(false)
{
// Check for valid buffer size.
switch (bufferSize) {
case 256:
case 512:
case 1024:
case 2048:
case 4096:
case 8192:
case 16384:
m_bufferSize = bufferSize;
break;
default:
m_bufferSize = DefaultBufferSize;
}
// Regardless of the allowed buffer sizes above, we still need to process at the granularity of the AudioNode.
if (m_bufferSize < AudioNode::ProcessingSizeInFrames)
m_bufferSize = AudioNode::ProcessingSizeInFrames;
// FIXME: Right now we're hardcoded to single input and single output.
// Although the specification says this is OK for a simple implementation, multiple inputs and outputs would be good.
ASSERT_UNUSED(numberOfInputs, numberOfInputs == 1);
ASSERT_UNUSED(numberOfOutputs, numberOfOutputs == 1);
addInput(adoptPtr(new AudioNodeInput(this)));
addOutput(adoptPtr(new AudioNodeOutput(this, 2)));
setType(NodeTypeJavaScript);
initialize();
}
JavaScriptAudioNode::~JavaScriptAudioNode()
{
uninitialize();
}
void JavaScriptAudioNode::initialize()
{
if (isInitialized())
return;
double sampleRate = context()->sampleRate();
// Create double buffers on both the input and output sides.
// These AudioBuffers will be directly accessed in the main thread by JavaScript.
for (unsigned i = 0; i < 2; ++i) {
m_inputBuffers.append(AudioBuffer::create(2, bufferSize(), sampleRate));
m_outputBuffers.append(AudioBuffer::create(2, bufferSize(), sampleRate));
}
AudioNode::initialize();
}
void JavaScriptAudioNode::uninitialize()
{
if (!isInitialized())
return;
m_inputBuffers.clear();
m_outputBuffers.clear();
AudioNode::uninitialize();
}
JavaScriptAudioNode* JavaScriptAudioNode::toJavaScriptAudioNode()
{
return this;
}
void JavaScriptAudioNode::process(size_t framesToProcess)
{
// Discussion about inputs and outputs:
// As in other AudioNodes, JavaScriptAudioNode uses an AudioBus for its input and output (see inputBus and outputBus below).
// Additionally, there is a double-buffering for input and output which is exposed directly to JavaScript (see inputBuffer and outputBuffer below).
// This node is the producer for inputBuffer and the consumer for outputBuffer.
// The JavaScript code is the consumer of inputBuffer and the producer for outputBuffer.
// Get input and output busses.
AudioBus* inputBus = this->input(0)->bus();
AudioBus* outputBus = this->output(0)->bus();
// Get input and output buffers. We double-buffer both the input and output sides.
unsigned doubleBufferIndex = this->doubleBufferIndex();
bool isDoubleBufferIndexGood = doubleBufferIndex < 2 && doubleBufferIndex < m_inputBuffers.size() && doubleBufferIndex < m_outputBuffers.size();
ASSERT(isDoubleBufferIndexGood);
if (!isDoubleBufferIndexGood)
return;
AudioBuffer* inputBuffer = m_inputBuffers[doubleBufferIndex].get();
AudioBuffer* outputBuffer = m_outputBuffers[doubleBufferIndex].get();
// Check the consistency of input and output buffers.
bool buffersAreGood = inputBuffer && outputBuffer && bufferSize() == inputBuffer->length() && bufferSize() == outputBuffer->length()
&& m_bufferReadWriteIndex + framesToProcess <= bufferSize();
ASSERT(buffersAreGood);
if (!buffersAreGood)
return;
// We assume that bufferSize() is evenly divisible by framesToProcess - should always be true, but we should still check.
bool isFramesToProcessGood = framesToProcess && bufferSize() >= framesToProcess && !(bufferSize() % framesToProcess);
ASSERT(isFramesToProcessGood);
if (!isFramesToProcessGood)
return;
unsigned numberOfInputChannels = inputBus->numberOfChannels();
bool channelsAreGood = (numberOfInputChannels == 1 || numberOfInputChannels == 2) && outputBus->numberOfChannels() == 2;
ASSERT(channelsAreGood);
if (!channelsAreGood)
return;
float* sourceL = inputBus->channel(0)->data();
float* sourceR = numberOfInputChannels > 1 ? inputBus->channel(1)->data() : 0;
float* destinationL = outputBus->channel(0)->data();
float* destinationR = outputBus->channel(1)->data();
// Copy from the input to the input buffer. See "buffersAreGood" check above for safety.
size_t bytesToCopy = sizeof(float) * framesToProcess;
memcpy(inputBuffer->getChannelData(0)->data() + m_bufferReadWriteIndex, sourceL, bytesToCopy);
if (numberOfInputChannels == 2)
memcpy(inputBuffer->getChannelData(1)->data() + m_bufferReadWriteIndex, sourceR, bytesToCopy);
else if (numberOfInputChannels == 1) {
// If the input is mono, then also copy the mono input to the right channel of the AudioBuffer which the AudioProcessingEvent uses.
// FIXME: it is likely the audio API will evolve to present an AudioBuffer with the same number of channels as our input.
memcpy(inputBuffer->getChannelData(1)->data() + m_bufferReadWriteIndex, sourceL, bytesToCopy);
}
// Copy from the output buffer to the output. See "buffersAreGood" check above for safety.
memcpy(destinationL, outputBuffer->getChannelData(0)->data() + m_bufferReadWriteIndex, bytesToCopy);
memcpy(destinationR, outputBuffer->getChannelData(1)->data() + m_bufferReadWriteIndex, bytesToCopy);
// Update the buffering index.
m_bufferReadWriteIndex = (m_bufferReadWriteIndex + framesToProcess) % bufferSize();
// m_bufferReadWriteIndex will wrap back around to 0 when the current input and output buffers are full.
// When this happens, fire an event and swap buffers.
if (!m_bufferReadWriteIndex) {
// Avoid building up requests on the main thread to fire process events when they're not being handled.
// This could be a problem if the main thread is very busy doing other things and is being held up handling previous requests.
if (m_isRequestOutstanding) {
// We're late in handling the previous request. The main thread must be very busy.
// The best we can do is clear out the buffer ourself here.
outputBuffer->zero();
} else {
// Reference ourself so we don't accidentally get deleted before fireProcessEvent() gets called.
ref();
// Fire the event on the main thread, not this one (which is the realtime audio thread).
m_doubleBufferIndexForEvent = m_doubleBufferIndex;
m_isRequestOutstanding = true;
callOnMainThread(fireProcessEventDispatch, this);
}
swapBuffers();
}
}
void JavaScriptAudioNode::fireProcessEventDispatch(void* userData)
{
JavaScriptAudioNode* jsAudioNode = static_cast<JavaScriptAudioNode*>(userData);
ASSERT(jsAudioNode);
if (!jsAudioNode)
return;
jsAudioNode->fireProcessEvent();
// De-reference to match the ref() call in process().
jsAudioNode->deref();
}
void JavaScriptAudioNode::fireProcessEvent()
{
ASSERT(isMainThread() && m_isRequestOutstanding);
bool isIndexGood = m_doubleBufferIndexForEvent < 2;
ASSERT(isIndexGood);
if (!isIndexGood)
return;
AudioBuffer* inputBuffer = m_inputBuffers[m_doubleBufferIndexForEvent].get();
AudioBuffer* outputBuffer = m_outputBuffers[m_doubleBufferIndexForEvent].get();
ASSERT(inputBuffer && outputBuffer);
if (!inputBuffer || !outputBuffer)
return;
// Avoid firing the event if the document has already gone away.
if (context()->hasDocument()) {
// Let the audio thread know we've gotten to the point where it's OK for it to make another request.
m_isRequestOutstanding = false;
// Call the JavaScript event handler which will do the audio processing.
dispatchEvent(AudioProcessingEvent::create(inputBuffer, outputBuffer));
}
}
void JavaScriptAudioNode::reset()
{
m_bufferReadWriteIndex = 0;
m_doubleBufferIndex = 0;
for (unsigned i = 0; i < 2; ++i) {
m_inputBuffers[i]->zero();
m_outputBuffers[i]->zero();
}
}
ScriptExecutionContext* JavaScriptAudioNode::scriptExecutionContext() const
{
return const_cast<JavaScriptAudioNode*>(this)->context()->document();
}
} // namespace WebCore
#endif // ENABLE(WEB_AUDIO)