/*
* Copyright (C) 2010, 2011 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "Region.h"
// A region class based on the paper "Scanline Coherent Shape Algebra"
// by Jonathan E. Steinhart from the book "Graphics Gems II".
//
// This implementation uses two vectors instead of linked list, and
// also compresses regions when possible.
using namespace WebCore;
namespace WebKit {
Region::Region()
{
}
Region::Region(const IntRect& rect)
: m_bounds(rect)
, m_shape(rect)
{
}
Vector<IntRect> Region::rects() const
{
Vector<IntRect> rects;
for (Shape::SpanIterator span = m_shape.spans_begin(), end = m_shape.spans_end(); span != end && span + 1 != end; ++span) {
int y = span->y;
int height = (span + 1)->y - y;
for (Shape::SegmentIterator segment = m_shape.segments_begin(span), end = m_shape.segments_end(span); segment != end && segment + 1 != end; segment += 2) {
int x = *segment;
int width = *(segment + 1) - x;
rects.append(IntRect(x, y, width, height));
}
}
return rects;
}
Region::Shape::Shape()
{
}
Region::Shape::Shape(const IntRect& rect)
{
appendSpan(rect.y());
appendSegment(rect.x());
appendSegment(rect.maxX());
appendSpan(rect.maxY());
}
void Region::Shape::appendSpan(int y)
{
m_spans.append(Span(y, m_segments.size()));
}
bool Region::Shape::canCoalesce(SegmentIterator begin, SegmentIterator end)
{
if (m_spans.isEmpty())
return false;
SegmentIterator lastSpanBegin = m_segments.data() + m_spans.last().segmentIndex;
SegmentIterator lastSpanEnd = m_segments.data() + m_segments.size();
// Check if both spans have an equal number of segments.
if (lastSpanEnd - lastSpanBegin != end - begin)
return false;
// Check if both spans are equal.
if (!std::equal(begin, end, lastSpanBegin))
return false;
// Since the segments are equal the second segment can just be ignored.
return true;
}
void Region::Shape::appendSpan(int y, SegmentIterator begin, SegmentIterator end)
{
if (canCoalesce(begin, end))
return;
appendSpan(y);
m_segments.appendRange(begin, end);
}
void Region::Shape::appendSpans(const Shape& shape, SpanIterator begin, SpanIterator end)
{
for (SpanIterator it = begin; it != end; ++it)
appendSpan(it->y, shape.segments_begin(it), shape.segments_end(it));
}
void Region::Shape::appendSegment(int x)
{
m_segments.append(x);
}
Region::Shape::SpanIterator Region::Shape::spans_begin() const
{
return m_spans.data();
}
Region::Shape::SpanIterator Region::Shape::spans_end() const
{
return m_spans.data() + m_spans.size();
}
Region::Shape::SegmentIterator Region::Shape::segments_begin(SpanIterator it) const
{
ASSERT(it >= m_spans.data());
ASSERT(it < m_spans.data() + m_spans.size());
// Check if this span has any segments.
if (it->segmentIndex == m_segments.size())
return 0;
return &m_segments[it->segmentIndex];
}
Region::Shape::SegmentIterator Region::Shape::segments_end(SpanIterator it) const
{
ASSERT(it >= m_spans.data());
ASSERT(it < m_spans.data() + m_spans.size());
// Check if this span has any segments.
if (it->segmentIndex == m_segments.size())
return 0;
ASSERT(it + 1 < m_spans.data() + m_spans.size());
size_t segmentIndex = (it + 1)->segmentIndex;
ASSERT(segmentIndex <= m_segments.size());
return m_segments.data() + segmentIndex;
}
#ifndef NDEBUG
void Region::Shape::dump() const
{
for (Shape::SpanIterator span = spans_begin(), end = spans_end(); span != end; ++span) {
printf("%6d: (", span->y);
for (Shape::SegmentIterator segment = segments_begin(span), end = segments_end(span); segment != end; ++segment)
printf("%d ", *segment);
printf(")\n");
}
printf("\n");
}
#endif
IntRect Region::Shape::bounds() const
{
if (isEmpty())
return IntRect();
SpanIterator span = spans_begin();
int minY = span->y;
SpanIterator lastSpan = spans_end() - 1;
int maxY = lastSpan->y;
int minX = std::numeric_limits<int>::max();
int maxX = std::numeric_limits<int>::min();
while (span != lastSpan) {
SegmentIterator firstSegment = segments_begin(span);
SegmentIterator lastSegment = segments_end(span) - 1;
if (firstSegment && lastSegment) {
ASSERT(firstSegment != lastSegment);
if (*firstSegment < minX)
minX = *firstSegment;
if (*lastSegment > maxX)
maxX = *lastSegment;
}
++span;
}
ASSERT(minX <= maxX);
ASSERT(minY <= maxY);
return IntRect(minX, minY, maxX - minX, maxY - minY);
}
void Region::Shape::translate(const IntSize& offset)
{
for (size_t i = 0; i < m_segments.size(); ++i)
m_segments[i] += offset.width();
for (size_t i = 0; i < m_spans.size(); ++i)
m_spans[i].y += offset.height();
}
void Region::Shape::swap(Shape& other)
{
m_segments.swap(other.m_segments);
m_spans.swap(other.m_spans);
}
enum {
Shape1,
Shape2,
};
template<typename Operation>
Region::Shape Region::Shape::shapeOperation(const Shape& shape1, const Shape& shape2)
{
COMPILE_ASSERT(!(!Operation::shouldAddRemainingSegmentsFromSpan1 && Operation::shouldAddRemainingSegmentsFromSpan2), invalid_segment_combination);
COMPILE_ASSERT(!(!Operation::shouldAddRemainingSpansFromShape1 && Operation::shouldAddRemainingSpansFromShape2), invalid_span_combination);
Shape result;
if (Operation::trySimpleOperation(shape1, shape2, result))
return result;
SpanIterator spans1 = shape1.spans_begin();
SpanIterator spans1End = shape1.spans_end();
SpanIterator spans2 = shape2.spans_begin();
SpanIterator spans2End = shape2.spans_end();
SegmentIterator segments1 = 0;
SegmentIterator segments1End = 0;
SegmentIterator segments2 = 0;
SegmentIterator segments2End = 0;
// Iterate over all spans.
while (spans1 != spans1End && spans2 != spans2End) {
int y = 0;
int test = spans1->y - spans2->y;
if (test <= 0) {
y = spans1->y;
segments1 = shape1.segments_begin(spans1);
segments1End = shape1.segments_end(spans1);
++spans1;
}
if (test >= 0) {
y = spans2->y;
segments2 = shape2.segments_begin(spans2);
segments2End = shape2.segments_end(spans2);
++spans2;
}
int flag = 0;
int oldFlag = 0;
SegmentIterator s1 = segments1;
SegmentIterator s2 = segments2;
Vector<int> segments;
// Now iterate over the segments in each span and construct a new vector of segments.
while (s1 != segments1End && s2 != segments2End) {
int test = *s1 - *s2;
int x;
if (test <= 0) {
x = *s1;
flag = flag ^ 1;
++s1;
}
if (test >= 0) {
x = *s2;
flag = flag ^ 2;
++s2;
}
if (flag == Operation::opCode || oldFlag == Operation::opCode)
segments.append(x);
oldFlag = flag;
}
// Add any remaining segments.
if (Operation::shouldAddRemainingSegmentsFromSpan1 && s1 != segments1End)
segments.appendRange(s1, segments1End);
else if (Operation::shouldAddRemainingSegmentsFromSpan2 && s2 != segments2End)
segments.appendRange(s2, segments2End);
// Add the span.
if (!segments.isEmpty() || !result.isEmpty())
result.appendSpan(y, segments.data(), segments.data() + segments.size());
}
// Add any remaining spans.
if (Operation::shouldAddRemainingSpansFromShape1 && spans1 != spans1End)
result.appendSpans(shape1, spans1, spans1End);
else if (Operation::shouldAddRemainingSpansFromShape2 && spans2 != spans2End)
result.appendSpans(shape2, spans2, spans2End);
return result;
}
struct Region::Shape::UnionOperation {
static bool trySimpleOperation(const Shape& shape1, const Shape& shape2, Shape& result)
{
if (shape1.isEmpty()) {
result = shape2;
return true;
}
if (shape2.isEmpty()) {
result = shape1;
return true;
}
return false;
}
static const int opCode = 0;
static const bool shouldAddRemainingSegmentsFromSpan1 = true;
static const bool shouldAddRemainingSegmentsFromSpan2 = true;
static const bool shouldAddRemainingSpansFromShape1 = true;
static const bool shouldAddRemainingSpansFromShape2 = true;
};
Region::Shape Region::Shape::unionShapes(const Shape& shape1, const Shape& shape2)
{
return shapeOperation<UnionOperation>(shape1, shape2);
}
struct Region::Shape::IntersectOperation {
static bool trySimpleOperation(const Shape& shape1, const Shape& shape2, Shape& result)
{
if (shape1.isEmpty()) {
result = Shape();
return true;
}
if (shape2.isEmpty()) {
result = shape1;
return true;
}
return false;
}
static const int opCode = 3;
static const bool shouldAddRemainingSegmentsFromSpan1 = false;
static const bool shouldAddRemainingSegmentsFromSpan2 = false;
static const bool shouldAddRemainingSpansFromShape1 = false;
static const bool shouldAddRemainingSpansFromShape2 = false;
};
Region::Shape Region::Shape::intersectShapes(const Shape& shape1, const Shape& shape2)
{
return shapeOperation<IntersectOperation>(shape1, shape2);
}
struct Region::Shape::SubtractOperation {
static bool trySimpleOperation(const Shape& shape1, const Shape& shape2, Region::Shape& result)
{
if (shape1.isEmpty() || shape2.isEmpty()) {
result = Shape();
return true;
}
return false;
}
static const int opCode = 1;
static const bool shouldAddRemainingSegmentsFromSpan1 = true;
static const bool shouldAddRemainingSegmentsFromSpan2 = false;
static const bool shouldAddRemainingSpansFromShape1 = true;
static const bool shouldAddRemainingSpansFromShape2 = false;
};
Region::Shape Region::Shape::subtractShapes(const Shape& shape1, const Shape& shape2)
{
return shapeOperation<SubtractOperation>(shape1, shape2);
}
#ifndef NDEBUG
void Region::dump() const
{
printf("Bounds: (%d, %d, %d, %d)\n",
m_bounds.x(), m_bounds.y(), m_bounds.width(), m_bounds.height());
m_shape.dump();
}
#endif
void Region::intersect(const Region& region)
{
if (!m_bounds.intersects(region.m_bounds)) {
m_shape = Shape();
m_bounds = IntRect();
return;
}
Shape intersectedShape = Shape::intersectShapes(m_shape, region.m_shape);
m_shape.swap(intersectedShape);
m_bounds = m_shape.bounds();
}
void Region::unite(const Region& region)
{
Shape unitedShape = Shape::unionShapes(m_shape, region.m_shape);
m_shape.swap(unitedShape);
m_bounds.unite(region.m_bounds);
}
void Region::subtract(const Region& region)
{
Shape subtractedShape = Shape::subtractShapes(m_shape, region.m_shape);
m_shape.swap(subtractedShape);
m_bounds = m_shape.bounds();
}
void Region::translate(const IntSize& offset)
{
m_bounds.move(offset);
m_shape.translate(offset);
}
} // namespace WebKit