/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dex/compiler_internals.h"
#include "dex_file-inl.h"
#include "gc_map.h"
#include "mapping_table.h"
#include "mir_to_lir-inl.h"
#include "verifier/dex_gc_map.h"
#include "verifier/method_verifier.h"
namespace art {
bool Mir2Lir::IsInexpensiveConstant(RegLocation rl_src) {
bool res = false;
if (rl_src.is_const) {
if (rl_src.wide) {
if (rl_src.fp) {
res = InexpensiveConstantDouble(mir_graph_->ConstantValueWide(rl_src));
} else {
res = InexpensiveConstantLong(mir_graph_->ConstantValueWide(rl_src));
}
} else {
if (rl_src.fp) {
res = InexpensiveConstantFloat(mir_graph_->ConstantValue(rl_src));
} else {
res = InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src));
}
}
}
return res;
}
void Mir2Lir::MarkSafepointPC(LIR* inst) {
inst->def_mask = ENCODE_ALL;
LIR* safepoint_pc = NewLIR0(kPseudoSafepointPC);
DCHECK_EQ(safepoint_pc->def_mask, ENCODE_ALL);
}
bool Mir2Lir::FastInstance(uint32_t field_idx, int& field_offset, bool& is_volatile, bool is_put) {
return cu_->compiler_driver->ComputeInstanceFieldInfo(
field_idx, mir_graph_->GetCurrentDexCompilationUnit(), field_offset, is_volatile, is_put);
}
/* Convert an instruction to a NOP */
void Mir2Lir::NopLIR(LIR* lir) {
lir->flags.is_nop = true;
}
void Mir2Lir::SetMemRefType(LIR* lir, bool is_load, int mem_type) {
uint64_t *mask_ptr;
uint64_t mask = ENCODE_MEM;
DCHECK(GetTargetInstFlags(lir->opcode) & (IS_LOAD | IS_STORE));
if (is_load) {
mask_ptr = &lir->use_mask;
} else {
mask_ptr = &lir->def_mask;
}
/* Clear out the memref flags */
*mask_ptr &= ~mask;
/* ..and then add back the one we need */
switch (mem_type) {
case kLiteral:
DCHECK(is_load);
*mask_ptr |= ENCODE_LITERAL;
break;
case kDalvikReg:
*mask_ptr |= ENCODE_DALVIK_REG;
break;
case kHeapRef:
*mask_ptr |= ENCODE_HEAP_REF;
break;
case kMustNotAlias:
/* Currently only loads can be marked as kMustNotAlias */
DCHECK(!(GetTargetInstFlags(lir->opcode) & IS_STORE));
*mask_ptr |= ENCODE_MUST_NOT_ALIAS;
break;
default:
LOG(FATAL) << "Oat: invalid memref kind - " << mem_type;
}
}
/*
* Mark load/store instructions that access Dalvik registers through the stack.
*/
void Mir2Lir::AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load,
bool is64bit) {
SetMemRefType(lir, is_load, kDalvikReg);
/*
* Store the Dalvik register id in alias_info. Mark the MSB if it is a 64-bit
* access.
*/
lir->alias_info = ENCODE_ALIAS_INFO(reg_id, is64bit);
}
/*
* Debugging macros
*/
#define DUMP_RESOURCE_MASK(X)
/* Pretty-print a LIR instruction */
void Mir2Lir::DumpLIRInsn(LIR* lir, unsigned char* base_addr) {
int offset = lir->offset;
int dest = lir->operands[0];
const bool dump_nop = (cu_->enable_debug & (1 << kDebugShowNops));
/* Handle pseudo-ops individually, and all regular insns as a group */
switch (lir->opcode) {
case kPseudoMethodEntry:
LOG(INFO) << "-------- method entry "
<< PrettyMethod(cu_->method_idx, *cu_->dex_file);
break;
case kPseudoMethodExit:
LOG(INFO) << "-------- Method_Exit";
break;
case kPseudoBarrier:
LOG(INFO) << "-------- BARRIER";
break;
case kPseudoEntryBlock:
LOG(INFO) << "-------- entry offset: 0x" << std::hex << dest;
break;
case kPseudoDalvikByteCodeBoundary:
if (lir->operands[0] == 0) {
lir->operands[0] = reinterpret_cast<uintptr_t>("No instruction string");
}
LOG(INFO) << "-------- dalvik offset: 0x" << std::hex
<< lir->dalvik_offset << " @ " << reinterpret_cast<char*>(lir->operands[0]);
break;
case kPseudoExitBlock:
LOG(INFO) << "-------- exit offset: 0x" << std::hex << dest;
break;
case kPseudoPseudoAlign4:
LOG(INFO) << reinterpret_cast<uintptr_t>(base_addr) + offset << " (0x" << std::hex
<< offset << "): .align4";
break;
case kPseudoEHBlockLabel:
LOG(INFO) << "Exception_Handling:";
break;
case kPseudoTargetLabel:
case kPseudoNormalBlockLabel:
LOG(INFO) << "L" << reinterpret_cast<void*>(lir) << ":";
break;
case kPseudoThrowTarget:
LOG(INFO) << "LT" << reinterpret_cast<void*>(lir) << ":";
break;
case kPseudoIntrinsicRetry:
LOG(INFO) << "IR" << reinterpret_cast<void*>(lir) << ":";
break;
case kPseudoSuspendTarget:
LOG(INFO) << "LS" << reinterpret_cast<void*>(lir) << ":";
break;
case kPseudoSafepointPC:
LOG(INFO) << "LsafepointPC_0x" << std::hex << lir->offset << "_" << lir->dalvik_offset << ":";
break;
case kPseudoExportedPC:
LOG(INFO) << "LexportedPC_0x" << std::hex << lir->offset << "_" << lir->dalvik_offset << ":";
break;
case kPseudoCaseLabel:
LOG(INFO) << "LC" << reinterpret_cast<void*>(lir) << ": Case target 0x"
<< std::hex << lir->operands[0] << "|" << std::dec <<
lir->operands[0];
break;
default:
if (lir->flags.is_nop && !dump_nop) {
break;
} else {
std::string op_name(BuildInsnString(GetTargetInstName(lir->opcode),
lir, base_addr));
std::string op_operands(BuildInsnString(GetTargetInstFmt(lir->opcode),
lir, base_addr));
LOG(INFO) << StringPrintf("%05x: %-9s%s%s",
reinterpret_cast<unsigned int>(base_addr + offset),
op_name.c_str(), op_operands.c_str(),
lir->flags.is_nop ? "(nop)" : "");
}
break;
}
if (lir->use_mask && (!lir->flags.is_nop || dump_nop)) {
DUMP_RESOURCE_MASK(DumpResourceMask(lir, lir->use_mask, "use"));
}
if (lir->def_mask && (!lir->flags.is_nop || dump_nop)) {
DUMP_RESOURCE_MASK(DumpResourceMask(lir, lir->def_mask, "def"));
}
}
void Mir2Lir::DumpPromotionMap() {
int num_regs = cu_->num_dalvik_registers + cu_->num_compiler_temps + 1;
for (int i = 0; i < num_regs; i++) {
PromotionMap v_reg_map = promotion_map_[i];
std::string buf;
if (v_reg_map.fp_location == kLocPhysReg) {
StringAppendF(&buf, " : s%d", v_reg_map.FpReg & FpRegMask());
}
std::string buf3;
if (i < cu_->num_dalvik_registers) {
StringAppendF(&buf3, "%02d", i);
} else if (i == mir_graph_->GetMethodSReg()) {
buf3 = "Method*";
} else {
StringAppendF(&buf3, "ct%d", i - cu_->num_dalvik_registers);
}
LOG(INFO) << StringPrintf("V[%s] -> %s%d%s", buf3.c_str(),
v_reg_map.core_location == kLocPhysReg ?
"r" : "SP+", v_reg_map.core_location == kLocPhysReg ?
v_reg_map.core_reg : SRegOffset(i),
buf.c_str());
}
}
/* Dump a mapping table */
void Mir2Lir::DumpMappingTable(const char* table_name, const std::string& descriptor,
const std::string& name, const std::string& signature,
const std::vector<uint32_t>& v) {
if (v.size() > 0) {
std::string line(StringPrintf("\n %s %s%s_%s_table[%zu] = {", table_name,
descriptor.c_str(), name.c_str(), signature.c_str(), v.size()));
std::replace(line.begin(), line.end(), ';', '_');
LOG(INFO) << line;
for (uint32_t i = 0; i < v.size(); i+=2) {
line = StringPrintf(" {0x%05x, 0x%04x},", v[i], v[i+1]);
LOG(INFO) << line;
}
LOG(INFO) <<" };\n\n";
}
}
/* Dump instructions and constant pool contents */
void Mir2Lir::CodegenDump() {
LOG(INFO) << "Dumping LIR insns for "
<< PrettyMethod(cu_->method_idx, *cu_->dex_file);
LIR* lir_insn;
int insns_size = cu_->code_item->insns_size_in_code_units_;
LOG(INFO) << "Regs (excluding ins) : " << cu_->num_regs;
LOG(INFO) << "Ins : " << cu_->num_ins;
LOG(INFO) << "Outs : " << cu_->num_outs;
LOG(INFO) << "CoreSpills : " << num_core_spills_;
LOG(INFO) << "FPSpills : " << num_fp_spills_;
LOG(INFO) << "CompilerTemps : " << cu_->num_compiler_temps;
LOG(INFO) << "Frame size : " << frame_size_;
LOG(INFO) << "code size is " << total_size_ <<
" bytes, Dalvik size is " << insns_size * 2;
LOG(INFO) << "expansion factor: "
<< static_cast<float>(total_size_) / static_cast<float>(insns_size * 2);
DumpPromotionMap();
for (lir_insn = first_lir_insn_; lir_insn != NULL; lir_insn = lir_insn->next) {
DumpLIRInsn(lir_insn, 0);
}
for (lir_insn = literal_list_; lir_insn != NULL; lir_insn = lir_insn->next) {
LOG(INFO) << StringPrintf("%x (%04x): .word (%#x)", lir_insn->offset, lir_insn->offset,
lir_insn->operands[0]);
}
const DexFile::MethodId& method_id =
cu_->dex_file->GetMethodId(cu_->method_idx);
std::string signature(cu_->dex_file->GetMethodSignature(method_id));
std::string name(cu_->dex_file->GetMethodName(method_id));
std::string descriptor(cu_->dex_file->GetMethodDeclaringClassDescriptor(method_id));
// Dump mapping tables
DumpMappingTable("PC2Dex_MappingTable", descriptor, name, signature, pc2dex_mapping_table_);
DumpMappingTable("Dex2PC_MappingTable", descriptor, name, signature, dex2pc_mapping_table_);
}
/*
* Search the existing constants in the literal pool for an exact or close match
* within specified delta (greater or equal to 0).
*/
LIR* Mir2Lir::ScanLiteralPool(LIR* data_target, int value, unsigned int delta) {
while (data_target) {
if ((static_cast<unsigned>(value - data_target->operands[0])) <= delta)
return data_target;
data_target = data_target->next;
}
return NULL;
}
/* Search the existing constants in the literal pool for an exact wide match */
LIR* Mir2Lir::ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi) {
bool lo_match = false;
LIR* lo_target = NULL;
while (data_target) {
if (lo_match && (data_target->operands[0] == val_hi)) {
// Record high word in case we need to expand this later.
lo_target->operands[1] = val_hi;
return lo_target;
}
lo_match = false;
if (data_target->operands[0] == val_lo) {
lo_match = true;
lo_target = data_target;
}
data_target = data_target->next;
}
return NULL;
}
/*
* The following are building blocks to insert constants into the pool or
* instruction streams.
*/
/* Add a 32-bit constant to the constant pool */
LIR* Mir2Lir::AddWordData(LIR* *constant_list_p, int value) {
/* Add the constant to the literal pool */
if (constant_list_p) {
LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), ArenaAllocator::kAllocData));
new_value->operands[0] = value;
new_value->next = *constant_list_p;
*constant_list_p = new_value;
return new_value;
}
return NULL;
}
/* Add a 64-bit constant to the constant pool or mixed with code */
LIR* Mir2Lir::AddWideData(LIR* *constant_list_p, int val_lo, int val_hi) {
AddWordData(constant_list_p, val_hi);
return AddWordData(constant_list_p, val_lo);
}
static void PushWord(std::vector<uint8_t>&buf, int data) {
buf.push_back(data & 0xff);
buf.push_back((data >> 8) & 0xff);
buf.push_back((data >> 16) & 0xff);
buf.push_back((data >> 24) & 0xff);
}
static void AlignBuffer(std::vector<uint8_t>&buf, size_t offset) {
while (buf.size() < offset) {
buf.push_back(0);
}
}
/* Write the literal pool to the output stream */
void Mir2Lir::InstallLiteralPools() {
AlignBuffer(code_buffer_, data_offset_);
LIR* data_lir = literal_list_;
while (data_lir != NULL) {
PushWord(code_buffer_, data_lir->operands[0]);
data_lir = NEXT_LIR(data_lir);
}
// Push code and method literals, record offsets for the compiler to patch.
data_lir = code_literal_list_;
while (data_lir != NULL) {
uint32_t target = data_lir->operands[0];
cu_->compiler_driver->AddCodePatch(cu_->dex_file,
cu_->class_def_idx,
cu_->method_idx,
cu_->invoke_type,
target,
static_cast<InvokeType>(data_lir->operands[1]),
code_buffer_.size());
const DexFile::MethodId& id = cu_->dex_file->GetMethodId(target);
// unique based on target to ensure code deduplication works
uint32_t unique_patch_value = reinterpret_cast<uint32_t>(&id);
PushWord(code_buffer_, unique_patch_value);
data_lir = NEXT_LIR(data_lir);
}
data_lir = method_literal_list_;
while (data_lir != NULL) {
uint32_t target = data_lir->operands[0];
cu_->compiler_driver->AddMethodPatch(cu_->dex_file,
cu_->class_def_idx,
cu_->method_idx,
cu_->invoke_type,
target,
static_cast<InvokeType>(data_lir->operands[1]),
code_buffer_.size());
const DexFile::MethodId& id = cu_->dex_file->GetMethodId(target);
// unique based on target to ensure code deduplication works
uint32_t unique_patch_value = reinterpret_cast<uint32_t>(&id);
PushWord(code_buffer_, unique_patch_value);
data_lir = NEXT_LIR(data_lir);
}
}
/* Write the switch tables to the output stream */
void Mir2Lir::InstallSwitchTables() {
GrowableArray<SwitchTable*>::Iterator iterator(&switch_tables_);
while (true) {
Mir2Lir::SwitchTable* tab_rec = iterator.Next();
if (tab_rec == NULL) break;
AlignBuffer(code_buffer_, tab_rec->offset);
/*
* For Arm, our reference point is the address of the bx
* instruction that does the launch, so we have to subtract
* the auto pc-advance. For other targets the reference point
* is a label, so we can use the offset as-is.
*/
int bx_offset = INVALID_OFFSET;
switch (cu_->instruction_set) {
case kThumb2:
bx_offset = tab_rec->anchor->offset + 4;
break;
case kX86:
bx_offset = 0;
break;
case kMips:
bx_offset = tab_rec->anchor->offset;
break;
default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set;
}
if (cu_->verbose) {
LOG(INFO) << "Switch table for offset 0x" << std::hex << bx_offset;
}
if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) {
const int* keys = reinterpret_cast<const int*>(&(tab_rec->table[2]));
for (int elems = 0; elems < tab_rec->table[1]; elems++) {
int disp = tab_rec->targets[elems]->offset - bx_offset;
if (cu_->verbose) {
LOG(INFO) << " Case[" << elems << "] key: 0x"
<< std::hex << keys[elems] << ", disp: 0x"
<< std::hex << disp;
}
PushWord(code_buffer_, keys[elems]);
PushWord(code_buffer_,
tab_rec->targets[elems]->offset - bx_offset);
}
} else {
DCHECK_EQ(static_cast<int>(tab_rec->table[0]),
static_cast<int>(Instruction::kPackedSwitchSignature));
for (int elems = 0; elems < tab_rec->table[1]; elems++) {
int disp = tab_rec->targets[elems]->offset - bx_offset;
if (cu_->verbose) {
LOG(INFO) << " Case[" << elems << "] disp: 0x"
<< std::hex << disp;
}
PushWord(code_buffer_, tab_rec->targets[elems]->offset - bx_offset);
}
}
}
}
/* Write the fill array dta to the output stream */
void Mir2Lir::InstallFillArrayData() {
GrowableArray<FillArrayData*>::Iterator iterator(&fill_array_data_);
while (true) {
Mir2Lir::FillArrayData *tab_rec = iterator.Next();
if (tab_rec == NULL) break;
AlignBuffer(code_buffer_, tab_rec->offset);
for (int i = 0; i < (tab_rec->size + 1) / 2; i++) {
code_buffer_.push_back(tab_rec->table[i] & 0xFF);
code_buffer_.push_back((tab_rec->table[i] >> 8) & 0xFF);
}
}
}
static int AssignLiteralOffsetCommon(LIR* lir, int offset) {
for (; lir != NULL; lir = lir->next) {
lir->offset = offset;
offset += 4;
}
return offset;
}
// Make sure we have a code address for every declared catch entry
bool Mir2Lir::VerifyCatchEntries() {
bool success = true;
for (std::set<uint32_t>::const_iterator it = mir_graph_->catches_.begin();
it != mir_graph_->catches_.end(); ++it) {
uint32_t dex_pc = *it;
bool found = false;
for (size_t i = 0; i < dex2pc_mapping_table_.size(); i += 2) {
if (dex_pc == dex2pc_mapping_table_[i+1]) {
found = true;
break;
}
}
if (!found) {
LOG(INFO) << "Missing native PC for catch entry @ 0x" << std::hex << dex_pc;
success = false;
}
}
// Now, try in the other direction
for (size_t i = 0; i < dex2pc_mapping_table_.size(); i += 2) {
uint32_t dex_pc = dex2pc_mapping_table_[i+1];
if (mir_graph_->catches_.find(dex_pc) == mir_graph_->catches_.end()) {
LOG(INFO) << "Unexpected catch entry @ dex pc 0x" << std::hex << dex_pc;
success = false;
}
}
if (!success) {
LOG(INFO) << "Bad dex2pcMapping table in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
LOG(INFO) << "Entries @ decode: " << mir_graph_->catches_.size() << ", Entries in table: "
<< dex2pc_mapping_table_.size()/2;
}
return success;
}
void Mir2Lir::CreateMappingTables() {
for (LIR* tgt_lir = first_lir_insn_; tgt_lir != NULL; tgt_lir = NEXT_LIR(tgt_lir)) {
if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoSafepointPC)) {
pc2dex_mapping_table_.push_back(tgt_lir->offset);
pc2dex_mapping_table_.push_back(tgt_lir->dalvik_offset);
}
if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoExportedPC)) {
dex2pc_mapping_table_.push_back(tgt_lir->offset);
dex2pc_mapping_table_.push_back(tgt_lir->dalvik_offset);
}
}
if (kIsDebugBuild) {
CHECK(VerifyCatchEntries());
}
CHECK_EQ(pc2dex_mapping_table_.size() & 1, 0U);
CHECK_EQ(dex2pc_mapping_table_.size() & 1, 0U);
uint32_t total_entries = (pc2dex_mapping_table_.size() + dex2pc_mapping_table_.size()) / 2;
uint32_t pc2dex_entries = pc2dex_mapping_table_.size() / 2;
encoded_mapping_table_.PushBack(total_entries);
encoded_mapping_table_.PushBack(pc2dex_entries);
encoded_mapping_table_.InsertBack(pc2dex_mapping_table_.begin(), pc2dex_mapping_table_.end());
encoded_mapping_table_.InsertBack(dex2pc_mapping_table_.begin(), dex2pc_mapping_table_.end());
if (kIsDebugBuild) {
// Verify the encoded table holds the expected data.
MappingTable table(&encoded_mapping_table_.GetData()[0]);
CHECK_EQ(table.TotalSize(), total_entries);
CHECK_EQ(table.PcToDexSize(), pc2dex_entries);
CHECK_EQ(table.DexToPcSize(), dex2pc_mapping_table_.size() / 2);
MappingTable::PcToDexIterator it = table.PcToDexBegin();
for (uint32_t i = 0; i < pc2dex_mapping_table_.size(); ++i, ++it) {
CHECK_EQ(pc2dex_mapping_table_.at(i), it.NativePcOffset());
++i;
CHECK_EQ(pc2dex_mapping_table_.at(i), it.DexPc());
}
MappingTable::DexToPcIterator it2 = table.DexToPcBegin();
for (uint32_t i = 0; i < dex2pc_mapping_table_.size(); ++i, ++it2) {
CHECK_EQ(dex2pc_mapping_table_.at(i), it2.NativePcOffset());
++i;
CHECK_EQ(dex2pc_mapping_table_.at(i), it2.DexPc());
}
}
}
class NativePcToReferenceMapBuilder {
public:
NativePcToReferenceMapBuilder(std::vector<uint8_t>* table,
size_t entries, uint32_t max_native_offset,
size_t references_width) : entries_(entries),
references_width_(references_width), in_use_(entries),
table_(table) {
// Compute width in bytes needed to hold max_native_offset.
native_offset_width_ = 0;
while (max_native_offset != 0) {
native_offset_width_++;
max_native_offset >>= 8;
}
// Resize table and set up header.
table->resize((EntryWidth() * entries) + sizeof(uint32_t));
CHECK_LT(native_offset_width_, 1U << 3);
(*table)[0] = native_offset_width_ & 7;
CHECK_LT(references_width_, 1U << 13);
(*table)[0] |= (references_width_ << 3) & 0xFF;
(*table)[1] = (references_width_ >> 5) & 0xFF;
CHECK_LT(entries, 1U << 16);
(*table)[2] = entries & 0xFF;
(*table)[3] = (entries >> 8) & 0xFF;
}
void AddEntry(uint32_t native_offset, const uint8_t* references) {
size_t table_index = TableIndex(native_offset);
while (in_use_[table_index]) {
table_index = (table_index + 1) % entries_;
}
in_use_[table_index] = true;
SetNativeOffset(table_index, native_offset);
DCHECK_EQ(native_offset, GetNativeOffset(table_index));
SetReferences(table_index, references);
}
private:
size_t TableIndex(uint32_t native_offset) {
return NativePcOffsetToReferenceMap::Hash(native_offset) % entries_;
}
uint32_t GetNativeOffset(size_t table_index) {
uint32_t native_offset = 0;
size_t table_offset = (table_index * EntryWidth()) + sizeof(uint32_t);
for (size_t i = 0; i < native_offset_width_; i++) {
native_offset |= (*table_)[table_offset + i] << (i * 8);
}
return native_offset;
}
void SetNativeOffset(size_t table_index, uint32_t native_offset) {
size_t table_offset = (table_index * EntryWidth()) + sizeof(uint32_t);
for (size_t i = 0; i < native_offset_width_; i++) {
(*table_)[table_offset + i] = (native_offset >> (i * 8)) & 0xFF;
}
}
void SetReferences(size_t table_index, const uint8_t* references) {
size_t table_offset = (table_index * EntryWidth()) + sizeof(uint32_t);
memcpy(&(*table_)[table_offset + native_offset_width_], references, references_width_);
}
size_t EntryWidth() const {
return native_offset_width_ + references_width_;
}
// Number of entries in the table.
const size_t entries_;
// Number of bytes used to encode the reference bitmap.
const size_t references_width_;
// Number of bytes used to encode a native offset.
size_t native_offset_width_;
// Entries that are in use.
std::vector<bool> in_use_;
// The table we're building.
std::vector<uint8_t>* const table_;
};
void Mir2Lir::CreateNativeGcMap() {
const std::vector<uint32_t>& mapping_table = pc2dex_mapping_table_;
uint32_t max_native_offset = 0;
for (size_t i = 0; i < mapping_table.size(); i += 2) {
uint32_t native_offset = mapping_table[i + 0];
if (native_offset > max_native_offset) {
max_native_offset = native_offset;
}
}
MethodReference method_ref(cu_->dex_file, cu_->method_idx);
const std::vector<uint8_t>* gc_map_raw = verifier::MethodVerifier::GetDexGcMap(method_ref);
verifier::DexPcToReferenceMap dex_gc_map(&(*gc_map_raw)[4], gc_map_raw->size() - 4);
// Compute native offset to references size.
NativePcToReferenceMapBuilder native_gc_map_builder(&native_gc_map_,
mapping_table.size() / 2, max_native_offset,
dex_gc_map.RegWidth());
for (size_t i = 0; i < mapping_table.size(); i += 2) {
uint32_t native_offset = mapping_table[i + 0];
uint32_t dex_pc = mapping_table[i + 1];
const uint8_t* references = dex_gc_map.FindBitMap(dex_pc, false);
CHECK(references != NULL) << "Missing ref for dex pc 0x" << std::hex << dex_pc;
native_gc_map_builder.AddEntry(native_offset, references);
}
}
/* Determine the offset of each literal field */
int Mir2Lir::AssignLiteralOffset(int offset) {
offset = AssignLiteralOffsetCommon(literal_list_, offset);
offset = AssignLiteralOffsetCommon(code_literal_list_, offset);
offset = AssignLiteralOffsetCommon(method_literal_list_, offset);
return offset;
}
int Mir2Lir::AssignSwitchTablesOffset(int offset) {
GrowableArray<SwitchTable*>::Iterator iterator(&switch_tables_);
while (true) {
Mir2Lir::SwitchTable *tab_rec = iterator.Next();
if (tab_rec == NULL) break;
tab_rec->offset = offset;
if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) {
offset += tab_rec->table[1] * (sizeof(int) * 2);
} else {
DCHECK_EQ(static_cast<int>(tab_rec->table[0]),
static_cast<int>(Instruction::kPackedSwitchSignature));
offset += tab_rec->table[1] * sizeof(int);
}
}
return offset;
}
int Mir2Lir::AssignFillArrayDataOffset(int offset) {
GrowableArray<FillArrayData*>::Iterator iterator(&fill_array_data_);
while (true) {
Mir2Lir::FillArrayData *tab_rec = iterator.Next();
if (tab_rec == NULL) break;
tab_rec->offset = offset;
offset += tab_rec->size;
// word align
offset = (offset + 3) & ~3;
}
return offset;
}
// LIR offset assignment.
int Mir2Lir::AssignInsnOffsets() {
LIR* lir;
int offset = 0;
for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
lir->offset = offset;
if (lir->opcode >= 0) {
if (!lir->flags.is_nop) {
offset += lir->flags.size;
}
} else if (lir->opcode == kPseudoPseudoAlign4) {
if (offset & 0x2) {
offset += 2;
lir->operands[0] = 1;
} else {
lir->operands[0] = 0;
}
}
/* Pseudo opcodes don't consume space */
}
return offset;
}
/*
* Walk the compilation unit and assign offsets to instructions
* and literals and compute the total size of the compiled unit.
*/
void Mir2Lir::AssignOffsets() {
int offset = AssignInsnOffsets();
/* Const values have to be word aligned */
offset = (offset + 3) & ~3;
/* Set up offsets for literals */
data_offset_ = offset;
offset = AssignLiteralOffset(offset);
offset = AssignSwitchTablesOffset(offset);
offset = AssignFillArrayDataOffset(offset);
total_size_ = offset;
}
/*
* Go over each instruction in the list and calculate the offset from the top
* before sending them off to the assembler. If out-of-range branch distance is
* seen rearrange the instructions a bit to correct it.
*/
void Mir2Lir::AssembleLIR() {
AssignOffsets();
int assembler_retries = 0;
/*
* Assemble here. Note that we generate code with optimistic assumptions
* and if found now to work, we'll have to redo the sequence and retry.
*/
while (true) {
AssemblerStatus res = AssembleInstructions(0);
if (res == kSuccess) {
break;
} else {
assembler_retries++;
if (assembler_retries > MAX_ASSEMBLER_RETRIES) {
CodegenDump();
LOG(FATAL) << "Assembler error - too many retries";
}
// Redo offsets and try again
AssignOffsets();
code_buffer_.clear();
}
}
// Install literals
InstallLiteralPools();
// Install switch tables
InstallSwitchTables();
// Install fill array data
InstallFillArrayData();
// Create the mapping table and native offset to reference map.
CreateMappingTables();
CreateNativeGcMap();
}
/*
* Insert a kPseudoCaseLabel at the beginning of the Dalvik
* offset vaddr. This label will be used to fix up the case
* branch table during the assembly phase. Be sure to set
* all resource flags on this to prevent code motion across
* target boundaries. KeyVal is just there for debugging.
*/
LIR* Mir2Lir::InsertCaseLabel(int vaddr, int keyVal) {
SafeMap<unsigned int, LIR*>::iterator it;
it = boundary_map_.find(vaddr);
if (it == boundary_map_.end()) {
LOG(FATAL) << "Error: didn't find vaddr 0x" << std::hex << vaddr;
}
LIR* new_label = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), ArenaAllocator::kAllocLIR));
new_label->dalvik_offset = vaddr;
new_label->opcode = kPseudoCaseLabel;
new_label->operands[0] = keyVal;
InsertLIRAfter(it->second, new_label);
return new_label;
}
void Mir2Lir::MarkPackedCaseLabels(Mir2Lir::SwitchTable *tab_rec) {
const uint16_t* table = tab_rec->table;
int base_vaddr = tab_rec->vaddr;
const int *targets = reinterpret_cast<const int*>(&table[4]);
int entries = table[1];
int low_key = s4FromSwitchData(&table[2]);
for (int i = 0; i < entries; i++) {
tab_rec->targets[i] = InsertCaseLabel(base_vaddr + targets[i], i + low_key);
}
}
void Mir2Lir::MarkSparseCaseLabels(Mir2Lir::SwitchTable *tab_rec) {
const uint16_t* table = tab_rec->table;
int base_vaddr = tab_rec->vaddr;
int entries = table[1];
const int* keys = reinterpret_cast<const int*>(&table[2]);
const int* targets = &keys[entries];
for (int i = 0; i < entries; i++) {
tab_rec->targets[i] = InsertCaseLabel(base_vaddr + targets[i], keys[i]);
}
}
void Mir2Lir::ProcessSwitchTables() {
GrowableArray<SwitchTable*>::Iterator iterator(&switch_tables_);
while (true) {
Mir2Lir::SwitchTable *tab_rec = iterator.Next();
if (tab_rec == NULL) break;
if (tab_rec->table[0] == Instruction::kPackedSwitchSignature) {
MarkPackedCaseLabels(tab_rec);
} else if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) {
MarkSparseCaseLabels(tab_rec);
} else {
LOG(FATAL) << "Invalid switch table";
}
}
}
void Mir2Lir::DumpSparseSwitchTable(const uint16_t* table) {
/*
* Sparse switch data format:
* ushort ident = 0x0200 magic value
* ushort size number of entries in the table; > 0
* int keys[size] keys, sorted low-to-high; 32-bit aligned
* int targets[size] branch targets, relative to switch opcode
*
* Total size is (2+size*4) 16-bit code units.
*/
uint16_t ident = table[0];
int entries = table[1];
const int* keys = reinterpret_cast<const int*>(&table[2]);
const int* targets = &keys[entries];
LOG(INFO) << "Sparse switch table - ident:0x" << std::hex << ident
<< ", entries: " << std::dec << entries;
for (int i = 0; i < entries; i++) {
LOG(INFO) << " Key[" << keys[i] << "] -> 0x" << std::hex << targets[i];
}
}
void Mir2Lir::DumpPackedSwitchTable(const uint16_t* table) {
/*
* Packed switch data format:
* ushort ident = 0x0100 magic value
* ushort size number of entries in the table
* int first_key first (and lowest) switch case value
* int targets[size] branch targets, relative to switch opcode
*
* Total size is (4+size*2) 16-bit code units.
*/
uint16_t ident = table[0];
const int* targets = reinterpret_cast<const int*>(&table[4]);
int entries = table[1];
int low_key = s4FromSwitchData(&table[2]);
LOG(INFO) << "Packed switch table - ident:0x" << std::hex << ident
<< ", entries: " << std::dec << entries << ", low_key: " << low_key;
for (int i = 0; i < entries; i++) {
LOG(INFO) << " Key[" << (i + low_key) << "] -> 0x" << std::hex
<< targets[i];
}
}
/*
* Set up special LIR to mark a Dalvik byte-code instruction start and
* record it in the boundary_map. NOTE: in cases such as kMirOpCheck in
* which we split a single Dalvik instruction, only the first MIR op
* associated with a Dalvik PC should be entered into the map.
*/
LIR* Mir2Lir::MarkBoundary(int offset, const char* inst_str) {
LIR* res = NewLIR1(kPseudoDalvikByteCodeBoundary, reinterpret_cast<uintptr_t>(inst_str));
if (boundary_map_.find(offset) == boundary_map_.end()) {
boundary_map_.Put(offset, res);
}
return res;
}
bool Mir2Lir::EvaluateBranch(Instruction::Code opcode, int32_t src1, int32_t src2) {
bool is_taken;
switch (opcode) {
case Instruction::IF_EQ: is_taken = (src1 == src2); break;
case Instruction::IF_NE: is_taken = (src1 != src2); break;
case Instruction::IF_LT: is_taken = (src1 < src2); break;
case Instruction::IF_GE: is_taken = (src1 >= src2); break;
case Instruction::IF_GT: is_taken = (src1 > src2); break;
case Instruction::IF_LE: is_taken = (src1 <= src2); break;
case Instruction::IF_EQZ: is_taken = (src1 == 0); break;
case Instruction::IF_NEZ: is_taken = (src1 != 0); break;
case Instruction::IF_LTZ: is_taken = (src1 < 0); break;
case Instruction::IF_GEZ: is_taken = (src1 >= 0); break;
case Instruction::IF_GTZ: is_taken = (src1 > 0); break;
case Instruction::IF_LEZ: is_taken = (src1 <= 0); break;
default:
LOG(FATAL) << "Unexpected opcode " << opcode;
is_taken = false;
}
return is_taken;
}
// Convert relation of src1/src2 to src2/src1
ConditionCode Mir2Lir::FlipComparisonOrder(ConditionCode before) {
ConditionCode res;
switch (before) {
case kCondEq: res = kCondEq; break;
case kCondNe: res = kCondNe; break;
case kCondLt: res = kCondGt; break;
case kCondGt: res = kCondLt; break;
case kCondLe: res = kCondGe; break;
case kCondGe: res = kCondLe; break;
default:
res = static_cast<ConditionCode>(0);
LOG(FATAL) << "Unexpected ccode " << before;
}
return res;
}
// TODO: move to mir_to_lir.cc
Mir2Lir::Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
: Backend(arena),
literal_list_(NULL),
method_literal_list_(NULL),
code_literal_list_(NULL),
cu_(cu),
mir_graph_(mir_graph),
switch_tables_(arena, 4, kGrowableArraySwitchTables),
fill_array_data_(arena, 4, kGrowableArrayFillArrayData),
throw_launchpads_(arena, 2048, kGrowableArrayThrowLaunchPads),
suspend_launchpads_(arena, 4, kGrowableArraySuspendLaunchPads),
intrinsic_launchpads_(arena, 2048, kGrowableArrayMisc),
data_offset_(0),
total_size_(0),
block_label_list_(NULL),
current_dalvik_offset_(0),
reg_pool_(NULL),
live_sreg_(0),
num_core_spills_(0),
num_fp_spills_(0),
frame_size_(0),
core_spill_mask_(0),
fp_spill_mask_(0),
first_lir_insn_(NULL),
last_lir_insn_(NULL) {
promotion_map_ = static_cast<PromotionMap*>
(arena_->Alloc((cu_->num_dalvik_registers + cu_->num_compiler_temps + 1) *
sizeof(promotion_map_[0]), ArenaAllocator::kAllocRegAlloc));
}
void Mir2Lir::Materialize() {
CompilerInitializeRegAlloc(); // Needs to happen after SSA naming
/* Allocate Registers using simple local allocation scheme */
SimpleRegAlloc();
if (mir_graph_->IsSpecialCase()) {
/*
* Custom codegen for special cases. If for any reason the
* special codegen doesn't succeed, first_lir_insn_ will
* set to NULL;
*/
SpecialMIR2LIR(mir_graph_->GetSpecialCase());
}
/* Convert MIR to LIR, etc. */
if (first_lir_insn_ == NULL) {
MethodMIR2LIR();
}
/* Method is not empty */
if (first_lir_insn_) {
// mark the targets of switch statement case labels
ProcessSwitchTables();
/* Convert LIR into machine code. */
AssembleLIR();
if (cu_->verbose) {
CodegenDump();
}
}
}
CompiledMethod* Mir2Lir::GetCompiledMethod() {
// Combine vmap tables - core regs, then fp regs - into vmap_table
std::vector<uint16_t> raw_vmap_table;
// Core regs may have been inserted out of order - sort first
std::sort(core_vmap_table_.begin(), core_vmap_table_.end());
for (size_t i = 0 ; i < core_vmap_table_.size(); ++i) {
// Copy, stripping out the phys register sort key
raw_vmap_table.push_back(~(-1 << VREG_NUM_WIDTH) & core_vmap_table_[i]);
}
// If we have a frame, push a marker to take place of lr
if (frame_size_ > 0) {
raw_vmap_table.push_back(INVALID_VREG);
} else {
DCHECK_EQ(__builtin_popcount(core_spill_mask_), 0);
DCHECK_EQ(__builtin_popcount(fp_spill_mask_), 0);
}
// Combine vmap tables - core regs, then fp regs. fp regs already sorted
for (uint32_t i = 0; i < fp_vmap_table_.size(); i++) {
raw_vmap_table.push_back(fp_vmap_table_[i]);
}
UnsignedLeb128EncodingVector vmap_encoder;
// Prefix the encoded data with its size.
vmap_encoder.PushBack(raw_vmap_table.size());
for (uint16_t cur : raw_vmap_table) {
vmap_encoder.PushBack(cur);
}
CompiledMethod* result =
new CompiledMethod(*cu_->compiler_driver, cu_->instruction_set, code_buffer_, frame_size_,
core_spill_mask_, fp_spill_mask_, encoded_mapping_table_.GetData(),
vmap_encoder.GetData(), native_gc_map_);
return result;
}
int Mir2Lir::ComputeFrameSize() {
/* Figure out the frame size */
static const uint32_t kAlignMask = kStackAlignment - 1;
uint32_t size = (num_core_spills_ + num_fp_spills_ +
1 /* filler word */ + cu_->num_regs + cu_->num_outs +
cu_->num_compiler_temps + 1 /* cur_method* */)
* sizeof(uint32_t);
/* Align and set */
return (size + kAlignMask) & ~(kAlignMask);
}
/*
* Append an LIR instruction to the LIR list maintained by a compilation
* unit
*/
void Mir2Lir::AppendLIR(LIR* lir) {
if (first_lir_insn_ == NULL) {
DCHECK(last_lir_insn_ == NULL);
last_lir_insn_ = first_lir_insn_ = lir;
lir->prev = lir->next = NULL;
} else {
last_lir_insn_->next = lir;
lir->prev = last_lir_insn_;
lir->next = NULL;
last_lir_insn_ = lir;
}
}
/*
* Insert an LIR instruction before the current instruction, which cannot be the
* first instruction.
*
* prev_lir <-> new_lir <-> current_lir
*/
void Mir2Lir::InsertLIRBefore(LIR* current_lir, LIR* new_lir) {
DCHECK(current_lir->prev != NULL);
LIR *prev_lir = current_lir->prev;
prev_lir->next = new_lir;
new_lir->prev = prev_lir;
new_lir->next = current_lir;
current_lir->prev = new_lir;
}
/*
* Insert an LIR instruction after the current instruction, which cannot be the
* first instruction.
*
* current_lir -> new_lir -> old_next
*/
void Mir2Lir::InsertLIRAfter(LIR* current_lir, LIR* new_lir) {
new_lir->prev = current_lir;
new_lir->next = current_lir->next;
current_lir->next = new_lir;
new_lir->next->prev = new_lir;
}
} // namespace art