// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/quic_sent_packet_manager.h"
#include "base/logging.h"
#include "base/stl_util.h"
#include "net/quic/congestion_control/pacing_sender.h"
#include "net/quic/quic_ack_notifier_manager.h"
using std::make_pair;
using std::min;
// TODO(rtenneti): Remove this.
// Do not flip this flag until the flakiness of the
// net/tools/quic/end_to_end_test is fixed.
// If true, then QUIC connections will track the retransmission history of a
// packet so that an ack of a previous transmission will ack the data of all
// other transmissions.
bool FLAGS_track_retransmission_history = false;
// A test-only flag to prevent the RTO from backing off when multiple sequential
// tail drops occur.
bool FLAGS_limit_rto_increase_for_tests = false;
// Do not remove this flag until the Finch-trials described in b/11706275
// are complete.
// If true, QUIC connections will support the use of a pacing algorithm when
// sending packets, in an attempt to reduce packet loss. The client must also
// request pacing for the server to enable it.
bool FLAGS_enable_quic_pacing = false;
namespace net {
namespace {
static const int kBitrateSmoothingPeriodMs = 1000;
static const int kHistoryPeriodMs = 5000;
static const int kDefaultRetransmissionTimeMs = 500;
// TCP RFC calls for 1 second RTO however Linux differs from this default and
// define the minimum RTO to 200ms, we will use the same until we have data to
// support a higher or lower value.
static const int kMinRetransmissionTimeMs = 200;
static const int kMaxRetransmissionTimeMs = 60000;
static const size_t kMaxRetransmissions = 10;
// We only retransmit 2 packets per ack.
static const size_t kMaxRetransmissionsPerAck = 2;
// TCP retransmits after 3 nacks.
static const size_t kNumberOfNacksBeforeRetransmission = 3;
COMPILE_ASSERT(kHistoryPeriodMs >= kBitrateSmoothingPeriodMs,
history_must_be_longer_or_equal_to_the_smoothing_period);
} // namespace
#define ENDPOINT (is_server_ ? "Server: " : " Client: ")
QuicSentPacketManager::HelperInterface::~HelperInterface() {
}
QuicSentPacketManager::QuicSentPacketManager(bool is_server,
HelperInterface* helper,
const QuicClock* clock,
CongestionFeedbackType type)
: is_server_(is_server),
helper_(helper),
clock_(clock),
send_algorithm_(SendAlgorithmInterface::Create(clock, type)),
rtt_sample_(QuicTime::Delta::Infinite()),
consecutive_rto_count_(0),
using_pacing_(false) {
}
QuicSentPacketManager::~QuicSentPacketManager() {
for (UnackedPacketMap::iterator it = unacked_packets_.begin();
it != unacked_packets_.end(); ++it) {
delete it->second.retransmittable_frames;
// Only delete previous_transmissions once, for the newest packet.
if (it->second.previous_transmissions != NULL &&
it->first == *it->second.previous_transmissions->rbegin()) {
delete it->second.previous_transmissions;
}
}
STLDeleteValues(&packet_history_map_);
}
void QuicSentPacketManager::SetFromConfig(const QuicConfig& config) {
if (config.initial_round_trip_time_us() > 0 &&
rtt_sample_.IsInfinite()) {
// The initial rtt should already be set on the client side.
DVLOG_IF(1, !is_server_)
<< "Client did not set an initial RTT, but did negotiate one.";
rtt_sample_ =
QuicTime::Delta::FromMicroseconds(config.initial_round_trip_time_us());
}
if (config.congestion_control() == kPACE) {
MaybeEnablePacing();
}
send_algorithm_->SetFromConfig(config, is_server_);
}
void QuicSentPacketManager::SetMaxPacketSize(QuicByteCount max_packet_size) {
send_algorithm_->SetMaxPacketSize(max_packet_size);
}
void QuicSentPacketManager::OnSerializedPacket(
const SerializedPacket& serialized_packet) {
if (serialized_packet.retransmittable_frames == NULL &&
!serialized_packet.packet->is_fec_packet()) {
// Don't track ack/congestion feedback packets.
return;
}
ack_notifier_manager_.OnSerializedPacket(serialized_packet);
DCHECK(unacked_packets_.empty() ||
unacked_packets_.rbegin()->first < serialized_packet.sequence_number);
unacked_packets_[serialized_packet.sequence_number] =
TransmissionInfo(serialized_packet.retransmittable_frames,
serialized_packet.sequence_number_length);
}
void QuicSentPacketManager::OnRetransmittedPacket(
QuicPacketSequenceNumber old_sequence_number,
QuicPacketSequenceNumber new_sequence_number) {
DCHECK(ContainsKey(unacked_packets_, old_sequence_number));
DCHECK(ContainsKey(pending_retransmissions_, old_sequence_number));
DCHECK(unacked_packets_.empty() ||
unacked_packets_.rbegin()->first < new_sequence_number);
pending_retransmissions_.erase(old_sequence_number);
UnackedPacketMap::iterator unacked_it =
unacked_packets_.find(old_sequence_number);
RetransmittableFrames* frames = unacked_it->second.retransmittable_frames;
DCHECK(frames);
// A notifier may be waiting to hear about ACKs for the original sequence
// number. Inform them that the sequence number has changed.
ack_notifier_manager_.UpdateSequenceNumber(old_sequence_number,
new_sequence_number);
// We keep the old packet in the unacked packet list until it, or one of
// the retransmissions of it are acked.
unacked_it->second.retransmittable_frames = NULL;
unacked_packets_[new_sequence_number] =
TransmissionInfo(frames, GetSequenceNumberLength(old_sequence_number));
// Keep track of all sequence numbers that this packet
// has been transmitted as.
SequenceNumberSet* previous_transmissions =
unacked_it->second.previous_transmissions;
if (previous_transmissions == NULL) {
// This is the first retransmission of this packet, so create a new entry.
previous_transmissions = new SequenceNumberSet;
unacked_it->second.previous_transmissions = previous_transmissions;
previous_transmissions->insert(old_sequence_number);
}
previous_transmissions->insert(new_sequence_number);
unacked_packets_[new_sequence_number].previous_transmissions =
previous_transmissions;
DCHECK(HasRetransmittableFrames(new_sequence_number));
}
bool QuicSentPacketManager::OnIncomingAck(
const ReceivedPacketInfo& received_info, QuicTime ack_receive_time) {
// Determine if the least unacked sequence number is being acked.
QuicPacketSequenceNumber least_unacked_sent_before =
GetLeastUnackedSentPacket();
bool new_least_unacked = !IsAwaitingPacket(received_info,
least_unacked_sent_before);
HandleAckForSentPackets(received_info);
SequenceNumberSet retransmission_packets =
OnIncomingAckFrame(received_info, ack_receive_time);
for (SequenceNumberSet::const_iterator it = retransmission_packets.begin();
it != retransmission_packets.end(); ++it) {
DCHECK(!ContainsKey(pending_packets_, *it));
MarkForRetransmission(*it, NACK_RETRANSMISSION);
}
if (new_least_unacked) {
consecutive_rto_count_ = 0;
}
return new_least_unacked;
}
void QuicSentPacketManager::DiscardUnackedPacket(
QuicPacketSequenceNumber sequence_number) {
MarkPacketReceivedByPeer(sequence_number);
}
void QuicSentPacketManager::HandleAckForSentPackets(
const ReceivedPacketInfo& received_info) {
// Go through the packets we have not received an ack for and see if this
// incoming_ack shows they've been seen by the peer.
UnackedPacketMap::iterator it = unacked_packets_.begin();
while (it != unacked_packets_.end()) {
QuicPacketSequenceNumber sequence_number = it->first;
if (sequence_number > received_info.largest_observed) {
// These are very new sequence_numbers.
break;
}
if (IsAwaitingPacket(received_info, sequence_number)) {
++it;
continue;
}
// Packet was acked, so remove it from our unacked packet list.
DVLOG(1) << ENDPOINT <<"Got an ack for packet " << sequence_number;
// If data is associated with the most recent transmission of this
// packet, then inform the caller.
it = MarkPacketReceivedByPeer(sequence_number);
// The AckNotifierManager is informed of every ACKed sequence number.
ack_notifier_manager_.OnPacketAcked(sequence_number);
}
// If we have received a truncated ack, then we need to
// clear out some previous transmissions to allow the peer
// to actually ACK new packets.
if (received_info.is_truncated) {
ClearPreviousRetransmissions(received_info.missing_packets.size() / 2);
}
}
void QuicSentPacketManager::ClearPreviousRetransmissions(size_t num_to_clear) {
UnackedPacketMap::iterator it = unacked_packets_.begin();
while (it != unacked_packets_.end() && num_to_clear > 0) {
QuicPacketSequenceNumber sequence_number = it->first;
// If this is not a previous transmission then there is no point
// in clearing out any further packets, because it will not affect
// the high water mark.
SequenceNumberSet* previous_transmissions =
it->second.previous_transmissions;
if (previous_transmissions == NULL) {
break;
}
QuicPacketSequenceNumber newest_transmission =
*previous_transmissions->rbegin();
if (sequence_number == newest_transmission) {
break;
}
DCHECK(it->second.retransmittable_frames == NULL);
previous_transmissions->erase(sequence_number);
if (previous_transmissions->size() == 1) {
unacked_packets_[newest_transmission].previous_transmissions = NULL;
delete previous_transmissions;
}
unacked_packets_.erase(it++);
--num_to_clear;
}
}
bool QuicSentPacketManager::HasRetransmittableFrames(
QuicPacketSequenceNumber sequence_number) const {
if (!ContainsKey(unacked_packets_, sequence_number)) {
return false;
}
return unacked_packets_.find(
sequence_number)->second.retransmittable_frames != NULL;
}
void QuicSentPacketManager::RetransmitUnackedPackets(
RetransmissionType retransmission_type) {
if (unacked_packets_.empty()) {
return;
}
for (UnackedPacketMap::const_iterator unacked_it = unacked_packets_.begin();
unacked_it != unacked_packets_.end(); ++unacked_it) {
const RetransmittableFrames* frames =
unacked_it->second.retransmittable_frames;
if (frames == NULL) {
continue;
}
if (retransmission_type == ALL_PACKETS ||
frames->encryption_level() == ENCRYPTION_INITIAL) {
// TODO(satyamshekhar): Think about congestion control here.
// Specifically, about the retransmission count of packets being sent
// proactively to achieve 0 (minimal) RTT.
OnPacketAbandoned(unacked_it->first);
if (!MarkForRetransmission(unacked_it->first, NACK_RETRANSMISSION)) {
DiscardUnackedPacket(unacked_it->first);
}
}
}
}
bool QuicSentPacketManager::MarkForRetransmission(
QuicPacketSequenceNumber sequence_number,
TransmissionType transmission_type) {
DCHECK(ContainsKey(unacked_packets_, sequence_number));
if (!HasRetransmittableFrames(sequence_number)) {
return false;
}
// If it's already in the retransmission map, don't add it again, just let
// the prior retransmission request win out.
if (ContainsKey(pending_retransmissions_, sequence_number)) {
return true;
}
pending_retransmissions_[sequence_number] = transmission_type;
return true;
}
bool QuicSentPacketManager::HasPendingRetransmissions() const {
return !pending_retransmissions_.empty();
}
QuicSentPacketManager::PendingRetransmission
QuicSentPacketManager::NextPendingRetransmission() {
DCHECK(!pending_retransmissions_.empty());
QuicPacketSequenceNumber sequence_number =
pending_retransmissions_.begin()->first;
DCHECK(ContainsKey(unacked_packets_, sequence_number));
const RetransmittableFrames* retransmittable_frames =
unacked_packets_[sequence_number].retransmittable_frames;
DCHECK(retransmittable_frames);
return PendingRetransmission(sequence_number,
pending_retransmissions_.begin()->second,
*retransmittable_frames,
GetSequenceNumberLength(sequence_number));
}
bool QuicSentPacketManager::IsPreviousTransmission(
QuicPacketSequenceNumber sequence_number) const {
DCHECK(ContainsKey(unacked_packets_, sequence_number));
UnackedPacketMap::const_iterator it = unacked_packets_.find(sequence_number);
if (it->second.previous_transmissions == NULL) {
return false;
}
SequenceNumberSet* previous_transmissions = it->second.previous_transmissions;
DCHECK(!previous_transmissions->empty());
return *previous_transmissions->rbegin() != sequence_number;
}
QuicSentPacketManager::UnackedPacketMap::iterator
QuicSentPacketManager::MarkPacketReceivedByPeer(
QuicPacketSequenceNumber sequence_number) {
DCHECK(ContainsKey(unacked_packets_, sequence_number));
// If this packet has never been retransmitted, then simply drop it.
UnackedPacketMap::const_iterator previous_it =
unacked_packets_.find(sequence_number);
if (previous_it->second.previous_transmissions == NULL) {
UnackedPacketMap::iterator next_unacked =
unacked_packets_.find(sequence_number);
++next_unacked;
DiscardPacket(sequence_number);
return next_unacked;
}
SequenceNumberSet* previous_transmissions =
previous_it->second.previous_transmissions;
DCHECK(!previous_transmissions->empty());
SequenceNumberSet::reverse_iterator previous_transmissions_it =
previous_transmissions->rbegin();
QuicPacketSequenceNumber newest_transmission = *previous_transmissions_it;
if (newest_transmission == sequence_number) {
DiscardPacket(newest_transmission);
} else {
// If we have received an ack for a previous transmission of a packet,
// we want to keep the "new" transmission of the packet unacked,
// but prevent the data from being retransmitted.
delete unacked_packets_[newest_transmission].retransmittable_frames;
unacked_packets_[newest_transmission].retransmittable_frames = NULL;
unacked_packets_[newest_transmission].previous_transmissions = NULL;
pending_retransmissions_.erase(newest_transmission);
}
// Clear out information all previous transmissions.
++previous_transmissions_it;
while (previous_transmissions_it != previous_transmissions->rend()) {
QuicPacketSequenceNumber previous_transmission = *previous_transmissions_it;
++previous_transmissions_it;
DiscardPacket(previous_transmission);
}
delete previous_transmissions;
UnackedPacketMap::iterator next_unacked = unacked_packets_.begin();
while (next_unacked != unacked_packets_.end() &&
next_unacked->first < sequence_number) {
++next_unacked;
}
return next_unacked;
}
void QuicSentPacketManager::DiscardPacket(
QuicPacketSequenceNumber sequence_number) {
UnackedPacketMap::iterator unacked_it =
unacked_packets_.find(sequence_number);
// Packet was not meant to be retransmitted.
if (unacked_it == unacked_packets_.end()) {
return;
}
// Delete the retransmittable frames.
delete unacked_it->second.retransmittable_frames;
unacked_packets_.erase(unacked_it);
pending_retransmissions_.erase(sequence_number);
return;
}
bool QuicSentPacketManager::IsUnacked(
QuicPacketSequenceNumber sequence_number) const {
return ContainsKey(unacked_packets_, sequence_number);
}
QuicSequenceNumberLength QuicSentPacketManager::GetSequenceNumberLength(
QuicPacketSequenceNumber sequence_number) const {
DCHECK(ContainsKey(unacked_packets_, sequence_number));
return unacked_packets_.find(sequence_number)->second.sequence_number_length;
}
bool QuicSentPacketManager::HasUnackedPackets() const {
return !unacked_packets_.empty();
}
size_t QuicSentPacketManager::GetNumRetransmittablePackets() const {
size_t num_unacked_packets = 0;
for (UnackedPacketMap::const_iterator it = unacked_packets_.begin();
it != unacked_packets_.end(); ++it) {
QuicPacketSequenceNumber sequence_number = it->first;
if (HasRetransmittableFrames(sequence_number)) {
++num_unacked_packets;
}
}
return num_unacked_packets;
}
QuicPacketSequenceNumber
QuicSentPacketManager::GetLeastUnackedSentPacket() const {
if (unacked_packets_.empty()) {
// If there are no unacked packets, set the least unacked packet to
// the sequence number of the next packet sent.
return helper_->GetNextPacketSequenceNumber();
}
return unacked_packets_.begin()->first;
}
SequenceNumberSet QuicSentPacketManager::GetUnackedPackets() const {
SequenceNumberSet unacked_packets;
for (UnackedPacketMap::const_iterator it = unacked_packets_.begin();
it != unacked_packets_.end(); ++it) {
unacked_packets.insert(it->first);
}
return unacked_packets;
}
void QuicSentPacketManager::OnPacketSent(
QuicPacketSequenceNumber sequence_number,
QuicTime sent_time,
QuicByteCount bytes,
TransmissionType transmission_type,
HasRetransmittableData has_retransmittable_data) {
DCHECK_LT(0u, sequence_number);
DCHECK(!ContainsKey(pending_packets_, sequence_number));
if (ContainsKey(unacked_packets_, sequence_number)) {
unacked_packets_[sequence_number].sent_time = sent_time;
}
// Only track packets the send algorithm wants us to track.
if (!send_algorithm_->OnPacketSent(sent_time, sequence_number, bytes,
transmission_type,
has_retransmittable_data)) {
return;
}
packet_history_map_[sequence_number] = new SendAlgorithmInterface::SentPacket(
bytes, sent_time, has_retransmittable_data);
pending_packets_.insert(sequence_number);
CleanupPacketHistory();
}
void QuicSentPacketManager::OnRetransmissionTimeout() {
// Abandon all pending packets to ensure the congestion window
// opens up before we attempt to retransmit packets.
QuicTime::Delta retransmission_delay = GetRetransmissionDelay();
QuicTime max_send_time =
clock_->ApproximateNow().Subtract(retransmission_delay);
for (SequenceNumberSet::iterator it = pending_packets_.begin();
it != pending_packets_.end();) {
QuicPacketSequenceNumber sequence_number = *it;
DCHECK(ContainsKey(packet_history_map_, sequence_number));
DCHECK(ContainsKey(unacked_packets_, sequence_number));
const TransmissionInfo& transmission_info =
unacked_packets_.find(sequence_number)->second;
// Abandon retransmittable packet and old non-retransmittable packets.
if (transmission_info.retransmittable_frames ||
transmission_info.sent_time <= max_send_time) {
pending_packets_.erase(it++);
send_algorithm_->OnPacketAbandoned(
sequence_number, packet_history_map_[sequence_number]->bytes_sent());
} else {
++it;
}
}
// Attempt to send all the unacked packets when the RTO fires, let the
// congestion manager decide how many to send immediately and the remaining
// packets will be queued for future sending.
DVLOG(1) << "OnRetransmissionTimeout() fired with "
<< unacked_packets_.size() << " unacked packets.";
// Retransmit any packet with retransmittable frames.
bool packets_retransmitted = false;
for (UnackedPacketMap::const_iterator it = unacked_packets_.begin();
it != unacked_packets_.end(); ++it) {
if (it->second.retransmittable_frames != NULL) {
packets_retransmitted = true;
MarkForRetransmission(it->first, RTO_RETRANSMISSION);
}
}
// Only inform the sent packet manager of an RTO if data was retransmitted.
if (packets_retransmitted) {
++consecutive_rto_count_;
send_algorithm_->OnRetransmissionTimeout();
}
}
void QuicSentPacketManager::OnPacketAbandoned(
QuicPacketSequenceNumber sequence_number) {
SequenceNumberSet::iterator it = pending_packets_.find(sequence_number);
if (it != pending_packets_.end()) {
DCHECK(ContainsKey(packet_history_map_, sequence_number));
send_algorithm_->OnPacketAbandoned(
sequence_number, packet_history_map_[sequence_number]->bytes_sent());
pending_packets_.erase(it);
}
}
void QuicSentPacketManager::OnIncomingQuicCongestionFeedbackFrame(
const QuicCongestionFeedbackFrame& frame,
const QuicTime& feedback_receive_time) {
send_algorithm_->OnIncomingQuicCongestionFeedbackFrame(
frame, feedback_receive_time, packet_history_map_);
}
SequenceNumberSet QuicSentPacketManager::OnIncomingAckFrame(
const ReceivedPacketInfo& received_info,
const QuicTime& ack_receive_time) {
MaybeUpdateRTT(received_info, ack_receive_time);
// We want to.
// * Get all packets lower(including) than largest_observed
// from pending_packets_.
// * Remove all packets no longer being waited for(ie: acked).
// * Send each ACK in the list to send_algorithm_.
SequenceNumberSet::iterator it = pending_packets_.begin();
SequenceNumberSet::iterator it_upper =
pending_packets_.upper_bound(received_info.largest_observed);
SequenceNumberSet retransmission_packets;
SequenceNumberSet lost_packets;
while (it != it_upper) {
QuicPacketSequenceNumber sequence_number = *it;
const SendAlgorithmInterface::SentPacket* sent_packet =
packet_history_map_[sequence_number];
if (!IsAwaitingPacket(received_info, sequence_number)) {
// Not missing, hence implicitly acked.
size_t bytes_sent = sent_packet->bytes_sent();
send_algorithm_->OnPacketAcked(sequence_number, bytes_sent, rtt_sample_);
pending_packets_.erase(it++); // Must be incremented post to work.
continue;
}
// The peer got packets after this sequence number. This is an explicit
// nack.
DVLOG(1) << "still missing packet " << sequence_number;
DCHECK(ContainsKey(packet_history_map_, sequence_number));
// Consider it multiple nacks when there is a gap between the missing packet
// and the largest observed, since the purpose of a nack threshold is to
// tolerate re-ordering. This handles both StretchAcks and Forward Acks.
// TODO(ianswett): This relies heavily on sequential reception of packets,
// and makes an assumption that the congestion control uses TCP style nacks.
size_t min_nacks = received_info.largest_observed - sequence_number;
packet_history_map_[sequence_number]->Nack(min_nacks);
size_t num_nacks_needed = kNumberOfNacksBeforeRetransmission;
// Check for early retransmit(RFC5827) when the last packet gets acked and
// the there are fewer than 4 pending packets.
if (pending_packets_.size() <= kNumberOfNacksBeforeRetransmission &&
sent_packet->has_retransmittable_data() == HAS_RETRANSMITTABLE_DATA &&
*pending_packets_.rbegin() == received_info.largest_observed) {
num_nacks_needed = received_info.largest_observed - sequence_number;
}
if (sent_packet->nack_count() < num_nacks_needed) {
++it;
continue;
}
// If the number of retransmissions has maxed out, don't lose or retransmit
// any more packets.
if (retransmission_packets.size() >= kMaxRetransmissionsPerAck) {
++it;
continue;
}
lost_packets.insert(sequence_number);
if (sent_packet->has_retransmittable_data() == HAS_RETRANSMITTABLE_DATA) {
retransmission_packets.insert(sequence_number);
}
++it;
}
// Abandon packets after the loop over pending packets, because otherwise it
// changes the early retransmit logic and iteration.
for (SequenceNumberSet::const_iterator it = lost_packets.begin();
it != lost_packets.end(); ++it) {
// TODO(ianswett): OnPacketLost is also called from TCPCubicSender when
// an FEC packet is lost, but FEC loss information should be shared among
// congestion managers. Additionally, if it's expected the FEC packet may
// repair the loss, it should be recorded as a loss to the congestion
// manager, but not retransmitted until it's known whether the FEC packet
// arrived.
send_algorithm_->OnPacketLost(*it, ack_receive_time);
OnPacketAbandoned(*it);
}
return retransmission_packets;
}
void QuicSentPacketManager::MaybeUpdateRTT(
const ReceivedPacketInfo& received_info,
const QuicTime& ack_receive_time) {
// We calculate the RTT based on the highest ACKed sequence number, the lower
// sequence numbers will include the ACK aggregation delay.
SendAlgorithmInterface::SentPacketsMap::iterator history_it =
packet_history_map_.find(received_info.largest_observed);
// TODO(satyamshekhar): largest_observed might be missing.
if (history_it == packet_history_map_.end()) {
return;
}
QuicTime::Delta send_delta = ack_receive_time.Subtract(
history_it->second->send_timestamp());
if (send_delta > received_info.delta_time_largest_observed) {
rtt_sample_ = send_delta.Subtract(
received_info.delta_time_largest_observed);
} else if (rtt_sample_.IsInfinite()) {
// Even though we received information from the peer suggesting
// an invalid (negative) RTT, we can use the send delta as an
// approximation until we get a better estimate.
rtt_sample_ = send_delta;
}
}
QuicTime::Delta QuicSentPacketManager::TimeUntilSend(
QuicTime now,
TransmissionType transmission_type,
HasRetransmittableData retransmittable,
IsHandshake handshake) {
return send_algorithm_->TimeUntilSend(now, transmission_type, retransmittable,
handshake);
}
// Ensures that the Delayed Ack timer is always set to a value lesser
// than the retransmission timer's minimum value (MinRTO). We want the
// delayed ack to get back to the QUIC peer before the sender's
// retransmission timer triggers. Since we do not know the
// reverse-path one-way delay, we assume equal delays for forward and
// reverse paths, and ensure that the timer is set to less than half
// of the MinRTO.
// There may be a value in making this delay adaptive with the help of
// the sender and a signaling mechanism -- if the sender uses a
// different MinRTO, we may get spurious retransmissions. May not have
// any benefits, but if the delayed ack becomes a significant source
// of (likely, tail) latency, then consider such a mechanism.
const QuicTime::Delta QuicSentPacketManager::DelayedAckTime() {
return QuicTime::Delta::FromMilliseconds(kMinRetransmissionTimeMs/2);
}
const QuicTime::Delta QuicSentPacketManager::GetRetransmissionDelay() const {
size_t number_retransmissions = consecutive_rto_count_;
if (FLAGS_limit_rto_increase_for_tests) {
const size_t kTailDropWindowSize = 5;
const size_t kTailDropMaxRetransmissions = 4;
if (pending_packets_.size() <= kTailDropWindowSize) {
// Avoid exponential backoff of RTO when there are only a few packets
// outstanding. This helps avoid the situation where fake packet loss
// causes a packet and it's retransmission to be dropped causing
// test timouts.
if (number_retransmissions <= kTailDropMaxRetransmissions) {
number_retransmissions = 0;
} else {
number_retransmissions -= kTailDropMaxRetransmissions;
}
}
}
QuicTime::Delta retransmission_delay = send_algorithm_->RetransmissionDelay();
if (retransmission_delay.IsZero()) {
// We are in the initial state, use default timeout values.
retransmission_delay =
QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs);
}
// Calculate exponential back off.
retransmission_delay = QuicTime::Delta::FromMilliseconds(
retransmission_delay.ToMilliseconds() * static_cast<size_t>(
(1 << min<size_t>(number_retransmissions, kMaxRetransmissions))));
// TODO(rch): This code should move to |send_algorithm_|.
if (retransmission_delay.ToMilliseconds() < kMinRetransmissionTimeMs) {
return QuicTime::Delta::FromMilliseconds(kMinRetransmissionTimeMs);
}
if (retransmission_delay.ToMilliseconds() > kMaxRetransmissionTimeMs) {
return QuicTime::Delta::FromMilliseconds(kMaxRetransmissionTimeMs);
}
return retransmission_delay;
}
const QuicTime::Delta QuicSentPacketManager::SmoothedRtt() const {
return send_algorithm_->SmoothedRtt();
}
QuicBandwidth QuicSentPacketManager::BandwidthEstimate() const {
return send_algorithm_->BandwidthEstimate();
}
QuicByteCount QuicSentPacketManager::GetCongestionWindow() const {
return send_algorithm_->GetCongestionWindow();
}
void QuicSentPacketManager::CleanupPacketHistory() {
const QuicTime::Delta kHistoryPeriod =
QuicTime::Delta::FromMilliseconds(kHistoryPeriodMs);
QuicTime now = clock_->ApproximateNow();
SendAlgorithmInterface::SentPacketsMap::iterator history_it =
packet_history_map_.begin();
for (; history_it != packet_history_map_.end(); ++history_it) {
if (now.Subtract(history_it->second->send_timestamp()) <= kHistoryPeriod) {
return;
}
// Don't remove packets which have not been acked.
if (ContainsKey(pending_packets_, history_it->first)) {
continue;
}
delete history_it->second;
packet_history_map_.erase(history_it);
history_it = packet_history_map_.begin();
}
}
void QuicSentPacketManager::MaybeEnablePacing() {
if (!FLAGS_enable_quic_pacing) {
return;
}
if (using_pacing_) {
return;
}
using_pacing_ = true;
send_algorithm_.reset(
new PacingSender(send_algorithm_.release(),
QuicTime::Delta::FromMicroseconds(1)));
}
} // namespace net