/*--------------------------------------------------------------------*/
/*--- Platform-specific syscalls stuff. syswrap-s390x-linux.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of Valgrind, a dynamic binary instrumentation
framework.
Copyright IBM Corp. 2010-2012
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
/* Contributed by Christian Borntraeger */
#if defined(VGP_s390x_linux)
#include "pub_core_basics.h"
#include "pub_core_vki.h"
#include "pub_core_vkiscnums.h"
#include "pub_core_libcsetjmp.h" // to keep _threadstate.h happy
#include "pub_core_threadstate.h"
#include "pub_core_aspacemgr.h"
#include "pub_core_debuglog.h"
#include "pub_core_libcbase.h"
#include "pub_core_libcassert.h"
#include "pub_core_libcprint.h"
#include "pub_core_libcproc.h"
#include "pub_core_libcsignal.h"
#include "pub_core_mallocfree.h"
#include "pub_core_options.h"
#include "pub_core_scheduler.h"
#include "pub_core_sigframe.h" // For VG_(sigframe_destroy)()
#include "pub_core_signals.h"
#include "pub_core_syscall.h"
#include "pub_core_syswrap.h"
#include "pub_core_tooliface.h"
#include "pub_core_stacks.h" // VG_(register_stack)
#include "priv_types_n_macros.h"
#include "priv_syswrap-generic.h" /* for decls of generic wrappers */
#include "priv_syswrap-linux.h" /* for decls of linux-ish wrappers */
#include "priv_syswrap-linux-variants.h" /* decls of linux variant wrappers */
#include "priv_syswrap-main.h"
/* ---------------------------------------------------------------------
clone() handling
------------------------------------------------------------------ */
/* Call f(arg1), but first switch stacks, using 'stack' as the new
stack, and use 'retaddr' as f's return-to address. Also, clear all
the integer registers before entering f.
Thought: Why are we clearing the GPRs ? The callee pointed to by f
is a regular C function which will play by the ABI rules. So there is
no need to zero out the GPRs. If we assumed that f accesses registers at
will, then it would make sense to create a defined register state.
But then, why only for the GPRs and not the FPRs ? */
__attribute__((noreturn))
void ML_(call_on_new_stack_0_1) ( Addr stack,
Addr retaddr,
void (*f)(Word),
Word arg1 );
/* Upon entering this function we have the following setup:
r2 = stack
r3 = retaddr
r4 = f_desc
r5 = arg1
*/
asm(
".text\n"
".align 4\n"
".globl vgModuleLocal_call_on_new_stack_0_1\n"
".type vgModuleLocal_call_on_new_stack_0_1, @function\n"
"vgModuleLocal_call_on_new_stack_0_1:\n"
" lgr %r15,%r2\n" // stack to r15
" lgr %r14,%r3\n" // retaddr to r14
" lgr %r2,%r5\n" // arg1 to r2
// zero all gprs to get a defined state
" lghi %r0,0\n"
" lghi %r1,0\n"
// r2 holds the argument for the callee
" lghi %r3,0\n"
// r4 holds the callee address
" lghi %r5,0\n"
" lghi %r6,0\n"
" lghi %r7,0\n"
" lghi %r8,0\n"
" lghi %r9,0\n"
" lghi %r10,0\n"
" lghi %r11,0\n"
" lghi %r12,0\n"
" lghi %r13,0\n"
// r14 holds the return address for the callee
// r15 is the stack pointer
" br %r4\n" // jump to f
".previous\n"
);
/*
Perform a clone system call. clone is strange because it has
fork()-like return-twice semantics, so it needs special
handling here.
Upon entry, we have:
void* child_stack in r2
long flags in r3
int* parent_tid in r4
int* child_tid in r5
int* child_tid in r6
Word (*fn)(void *) 160(r15)
void *arg 168(r15)
System call requires:
void* child_stack in r2 (sc arg1)
long flags in r3 (sc arg2)
int* parent_tid in r4 (sc arg3)
int* child_tid in r5 (sc arg4)
void* tlsaddr in r6 (sc arg5)
Returns a ULong encoded as: top half is %cr following syscall,
low half is syscall return value (r3).
*/
#define __NR_CLONE VG_STRINGIFY(__NR_clone)
#define __NR_EXIT VG_STRINGIFY(__NR_exit)
extern
ULong do_syscall_clone_s390x_linux ( void *stack,
ULong flags,
Int *child_tid,
Int *parent_tid,
Addr tlsaddr,
Word (*fn)(void *),
void *arg);
asm(
" .text\n"
" .align 4\n"
".globl do_syscall_clone_s390x_linux\n"
"do_syscall_clone_s390x_linux:\n"
" lg %r1, 160(%r15)\n" // save fn from parent stack into r1
" lg %r0, 168(%r15)\n" // save arg from parent stack into r0
" aghi %r2, -160\n" // create stack frame for child
// all syscall parameters are already in place (r2-r6)
" svc " __NR_CLONE"\n" // clone()
" ltgr %r2,%r2\n" // child if retval == 0
" jne 1f\n"
// CHILD - call thread function
" lgr %r2, %r0\n" // get arg from r0
" basr %r14,%r1\n" // call fn
// exit. The result is already in r2
" svc " __NR_EXIT"\n"
// Exit returned?!
" j +2\n"
"1:\n" // PARENT or ERROR
" br %r14\n"
".previous\n"
);
#undef __NR_CLONE
#undef __NR_EXIT
void VG_(cleanup_thread) ( ThreadArchState* arch )
{
/* only used on x86 for descriptor tables */
}
static void setup_child ( /*OUT*/ ThreadArchState *child,
/*IN*/ ThreadArchState *parent )
{
/* We inherit our parent's guest state. */
child->vex = parent->vex;
child->vex_shadow1 = parent->vex_shadow1;
child->vex_shadow2 = parent->vex_shadow2;
}
/*
When a client clones, we need to keep track of the new thread. This means:
1. allocate a ThreadId+ThreadState+stack for the the thread
2. initialize the thread's new VCPU state
3. create the thread using the same args as the client requested,
but using the scheduler entrypoint for IP, and a separate stack
for SP.
*/
static SysRes do_clone ( ThreadId ptid,
Addr sp, ULong flags,
Int *parent_tidptr,
Int *child_tidptr,
Addr tlsaddr)
{
static const Bool debug = False;
ThreadId ctid = VG_(alloc_ThreadState)();
ThreadState* ptst = VG_(get_ThreadState)(ptid);
ThreadState* ctst = VG_(get_ThreadState)(ctid);
UWord* stack;
NSegment const* seg;
SysRes res;
ULong r2;
vki_sigset_t blockall, savedmask;
VG_(sigfillset)(&blockall);
vg_assert(VG_(is_running_thread)(ptid));
vg_assert(VG_(is_valid_tid)(ctid));
stack = (UWord*)ML_(allocstack)(ctid);
if (stack == NULL) {
res = VG_(mk_SysRes_Error)( VKI_ENOMEM );
goto out;
}
/* Copy register state
Both parent and child return to the same place, and the code
following the clone syscall works out which is which, so we
don't need to worry about it.
The parent gets the child's new tid returned from clone, but the
child gets 0.
If the clone call specifies a NULL sp for the new thread, then
it actually gets a copy of the parent's sp.
*/
setup_child( &ctst->arch, &ptst->arch );
/* Make sys_clone appear to have returned Success(0) in the
child. */
ctst->arch.vex.guest_r2 = 0;
if (sp != 0)
ctst->arch.vex.guest_r15 = sp;
ctst->os_state.parent = ptid;
/* inherit signal mask */
ctst->sig_mask = ptst->sig_mask;
ctst->tmp_sig_mask = ptst->sig_mask;
/* have the parents thread group */
ctst->os_state.threadgroup = ptst->os_state.threadgroup;
/* We don't really know where the client stack is, because its
allocated by the client. The best we can do is look at the
memory mappings and try to derive some useful information. We
assume that esp starts near its highest possible value, and can
only go down to the start of the mmaped segment. */
seg = VG_(am_find_nsegment)((Addr)sp);
if (seg && seg->kind != SkResvn) {
ctst->client_stack_highest_word = (Addr)VG_PGROUNDUP(sp);
ctst->client_stack_szB = ctst->client_stack_highest_word - seg->start;
VG_(register_stack)(seg->start, ctst->client_stack_highest_word);
if (debug)
VG_(printf)("tid %d: guessed client stack range %#lx-%#lx\n",
ctid, seg->start, VG_PGROUNDUP(sp));
} else {
VG_(message)(Vg_UserMsg,
"!? New thread %d starts with SP(%#lx) unmapped\n",
ctid, sp);
ctst->client_stack_szB = 0;
}
/* Assume the clone will succeed, and tell any tool that wants to
know that this thread has come into existence. If the clone
fails, we'll send out a ll_exit notification for it at the out:
label below, to clean up. */
vg_assert(VG_(owns_BigLock_LL)(ptid));
VG_TRACK ( pre_thread_ll_create, ptid, ctid );
if (flags & VKI_CLONE_SETTLS) {
if (debug)
VG_(printf)("clone child has SETTLS: tls at %#lx\n", tlsaddr);
ctst->arch.vex.guest_a0 = (UInt) (tlsaddr >> 32);
ctst->arch.vex.guest_a1 = (UInt) tlsaddr;
}
flags &= ~VKI_CLONE_SETTLS;
/* start the thread with everything blocked */
VG_(sigprocmask)(VKI_SIG_SETMASK, &blockall, &savedmask);
/* Create the new thread */
r2 = do_syscall_clone_s390x_linux(
stack, flags, child_tidptr, parent_tidptr, tlsaddr,
ML_(start_thread_NORETURN), &VG_(threads)[ctid]);
res = VG_(mk_SysRes_s390x_linux)( r2 );
VG_(sigprocmask)(VKI_SIG_SETMASK, &savedmask, NULL);
out:
if (sr_isError(res)) {
/* clone failed */
ctst->status = VgTs_Empty;
/* oops. Better tell the tool the thread exited in a hurry :-) */
VG_TRACK( pre_thread_ll_exit, ctid );
}
return res;
}
/* ---------------------------------------------------------------------
PRE/POST wrappers for s390x/Linux-specific syscalls
------------------------------------------------------------------ */
#define PRE(name) DEFN_PRE_TEMPLATE(s390x_linux, name)
#define POST(name) DEFN_POST_TEMPLATE(s390x_linux, name)
/* Add prototypes for the wrappers declared here, so that gcc doesn't
harass us for not having prototypes. Really this is a kludge --
the right thing to do is to make these wrappers 'static' since they
aren't visible outside this file, but that requires even more macro
magic. */
DECL_TEMPLATE(s390x_linux, sys_ptrace);
DECL_TEMPLATE(s390x_linux, sys_socketcall);
DECL_TEMPLATE(s390x_linux, sys_mmap);
DECL_TEMPLATE(s390x_linux, sys_ipc);
DECL_TEMPLATE(s390x_linux, sys_clone);
DECL_TEMPLATE(s390x_linux, sys_sigreturn);
DECL_TEMPLATE(s390x_linux, sys_rt_sigreturn);
DECL_TEMPLATE(s390x_linux, sys_fadvise64);
// PEEK TEXT,DATA and USER are common to all architectures
// PEEKUSR_AREA and POKEUSR_AREA are special, having a memory area
// containing the real addr, data, and len field pointed to by ARG3
// instead of ARG4
PRE(sys_ptrace)
{
PRINT("sys_ptrace ( %ld, %ld, %#lx, %#lx )", ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(int, "ptrace",
long, request, long, pid, long, addr, long, data);
switch (ARG1) {
case VKI_PTRACE_PEEKTEXT:
case VKI_PTRACE_PEEKDATA:
case VKI_PTRACE_PEEKUSR:
PRE_MEM_WRITE( "ptrace(peek)", ARG4,
sizeof (long));
break;
case VKI_PTRACE_GETEVENTMSG:
PRE_MEM_WRITE( "ptrace(geteventmsg)", ARG4, sizeof(unsigned long));
break;
case VKI_PTRACE_GETSIGINFO:
PRE_MEM_WRITE( "ptrace(getsiginfo)", ARG4, sizeof(vki_siginfo_t));
break;
case VKI_PTRACE_SETSIGINFO:
PRE_MEM_READ( "ptrace(setsiginfo)", ARG4, sizeof(vki_siginfo_t));
break;
case VKI_PTRACE_PEEKUSR_AREA:
{
vki_ptrace_area *pa;
/* Reads a part of the user area into memory at pa->process_addr */
pa = (vki_ptrace_area *) ARG3;
PRE_MEM_READ("ptrace(peekusrarea ptrace_area->len)",
(unsigned long) &pa->vki_len, sizeof(pa->vki_len));
PRE_MEM_READ("ptrace(peekusrarea ptrace_area->kernel_addr)",
(unsigned long) &pa->vki_kernel_addr, sizeof(pa->vki_kernel_addr));
PRE_MEM_READ("ptrace(peekusrarea ptrace_area->process_addr)",
(unsigned long) &pa->vki_process_addr, sizeof(pa->vki_process_addr));
PRE_MEM_WRITE("ptrace(peekusrarea *(ptrace_area->process_addr))",
pa->vki_process_addr, pa->vki_len);
break;
}
case VKI_PTRACE_POKEUSR_AREA:
{
vki_ptrace_area *pa;
/* Updates a part of the user area from memory at pa->process_addr */
pa = (vki_ptrace_area *) ARG3;
PRE_MEM_READ("ptrace(pokeusrarea ptrace_area->len)",
(unsigned long) &pa->vki_len, sizeof(pa->vki_len));
PRE_MEM_READ("ptrace(pokeusrarea ptrace_area->kernel_addr)",
(unsigned long) &pa->vki_kernel_addr,
sizeof(pa->vki_kernel_addr));
PRE_MEM_READ("ptrace(pokeusrarea ptrace_area->process_addr)",
(unsigned long) &pa->vki_process_addr,
sizeof(pa->vki_process_addr));
PRE_MEM_READ("ptrace(pokeusrarea *(ptrace_area->process_addr))",
pa->vki_process_addr, pa->vki_len);
break;
}
default:
break;
}
}
POST(sys_ptrace)
{
switch (ARG1) {
case VKI_PTRACE_PEEKTEXT:
case VKI_PTRACE_PEEKDATA:
case VKI_PTRACE_PEEKUSR:
POST_MEM_WRITE( ARG4, sizeof (long));
break;
case VKI_PTRACE_GETEVENTMSG:
POST_MEM_WRITE( ARG4, sizeof(unsigned long));
break;
case VKI_PTRACE_GETSIGINFO:
/* XXX: This is a simplification. Different parts of the
* siginfo_t are valid depending on the type of signal.
*/
POST_MEM_WRITE( ARG4, sizeof(vki_siginfo_t));
break;
case VKI_PTRACE_PEEKUSR_AREA:
{
vki_ptrace_area *pa;
pa = (vki_ptrace_area *) ARG3;
POST_MEM_WRITE(pa->vki_process_addr, pa->vki_len);
}
default:
break;
}
}
PRE(sys_socketcall)
{
# define ARG2_0 (((UWord*)ARG2)[0])
# define ARG2_1 (((UWord*)ARG2)[1])
# define ARG2_2 (((UWord*)ARG2)[2])
# define ARG2_3 (((UWord*)ARG2)[3])
# define ARG2_4 (((UWord*)ARG2)[4])
# define ARG2_5 (((UWord*)ARG2)[5])
*flags |= SfMayBlock;
PRINT("sys_socketcall ( %ld, %#lx )",ARG1,ARG2);
PRE_REG_READ2(long, "socketcall", int, call, unsigned long *, args);
switch (ARG1 /* request */) {
case VKI_SYS_SOCKETPAIR:
/* int socketpair(int d, int type, int protocol, int sv[2]); */
PRE_MEM_READ( "socketcall.socketpair(args)", ARG2, 4*sizeof(Addr) );
if (!ML_(valid_client_addr)(ARG2, 4*sizeof(Addr), tid, NULL)) {
SET_STATUS_Failure( VKI_EFAULT );
break;
}
ML_(generic_PRE_sys_socketpair)( tid, ARG2_0, ARG2_1, ARG2_2, ARG2_3 );
break;
case VKI_SYS_SOCKET:
/* int socket(int domain, int type, int protocol); */
PRE_MEM_READ( "socketcall.socket(args)", ARG2, 3*sizeof(Addr) );
if (!ML_(valid_client_addr)(ARG2, 3*sizeof(Addr), tid, NULL)) {
SET_STATUS_Failure( VKI_EFAULT );
break;
}
break;
case VKI_SYS_BIND:
/* int bind(int sockfd, struct sockaddr *my_addr,
int addrlen); */
PRE_MEM_READ( "socketcall.bind(args)", ARG2, 3*sizeof(Addr) );
if (!ML_(valid_client_addr)(ARG2, 3*sizeof(Addr), tid, NULL)) {
SET_STATUS_Failure( VKI_EFAULT );
break;
}
ML_(generic_PRE_sys_bind)( tid, ARG2_0, ARG2_1, ARG2_2 );
break;
case VKI_SYS_LISTEN:
/* int listen(int s, int backlog); */
PRE_MEM_READ( "socketcall.listen(args)", ARG2, 2*sizeof(Addr) );
if (!ML_(valid_client_addr)(ARG2, 2*sizeof(Addr), tid, NULL)) {
SET_STATUS_Failure( VKI_EFAULT );
break;
}
break;
case VKI_SYS_ACCEPT: {
/* int accept(int s, struct sockaddr *addr, int *addrlen); */
PRE_MEM_READ( "socketcall.accept(args)", ARG2, 3*sizeof(Addr) );
if (!ML_(valid_client_addr)(ARG2, 3*sizeof(Addr), tid, NULL)) {
SET_STATUS_Failure( VKI_EFAULT );
break;
}
ML_(generic_PRE_sys_accept)( tid, ARG2_0, ARG2_1, ARG2_2 );
break;
}
case VKI_SYS_SENDTO:
/* int sendto(int s, const void *msg, int len,
unsigned int flags,
const struct sockaddr *to, int tolen); */
PRE_MEM_READ( "socketcall.sendto(args)", ARG2, 6*sizeof(Addr) );
if (!ML_(valid_client_addr)(ARG2, 6*sizeof(Addr), tid, NULL)) {
SET_STATUS_Failure( VKI_EFAULT );
break;
}
ML_(generic_PRE_sys_sendto)( tid, ARG2_0, ARG2_1, ARG2_2,
ARG2_3, ARG2_4, ARG2_5 );
break;
case VKI_SYS_SEND:
/* int send(int s, const void *msg, size_t len, int flags); */
PRE_MEM_READ( "socketcall.send(args)", ARG2, 4*sizeof(Addr) );
if (!ML_(valid_client_addr)(ARG2, 4*sizeof(Addr), tid, NULL)) {
SET_STATUS_Failure( VKI_EFAULT );
break;
}
ML_(generic_PRE_sys_send)( tid, ARG2_0, ARG2_1, ARG2_2 );
break;
case VKI_SYS_RECVFROM:
/* int recvfrom(int s, void *buf, int len, unsigned int flags,
struct sockaddr *from, int *fromlen); */
PRE_MEM_READ( "socketcall.recvfrom(args)", ARG2, 6*sizeof(Addr) );
if (!ML_(valid_client_addr)(ARG2, 6*sizeof(Addr), tid, NULL)) {
SET_STATUS_Failure( VKI_EFAULT );
break;
}
ML_(generic_PRE_sys_recvfrom)( tid, ARG2_0, ARG2_1, ARG2_2,
ARG2_3, ARG2_4, ARG2_5 );
break;
case VKI_SYS_RECV:
/* int recv(int s, void *buf, int len, unsigned int flags); */
/* man 2 recv says:
The recv call is normally used only on a connected socket
(see connect(2)) and is identical to recvfrom with a NULL
from parameter.
*/
PRE_MEM_READ( "socketcall.recv(args)", ARG2, 4*sizeof(Addr) );
if (!ML_(valid_client_addr)(ARG2, 4*sizeof(Addr), tid, NULL)) {
SET_STATUS_Failure( VKI_EFAULT );
break;
}
ML_(generic_PRE_sys_recv)( tid, ARG2_0, ARG2_1, ARG2_2 );
break;
case VKI_SYS_CONNECT:
/* int connect(int sockfd,
struct sockaddr *serv_addr, int addrlen ); */
PRE_MEM_READ( "socketcall.connect(args)", ARG2, 3*sizeof(Addr) );
if (!ML_(valid_client_addr)(ARG2, 3*sizeof(Addr), tid, NULL)) {
SET_STATUS_Failure( VKI_EFAULT );
break;
}
ML_(generic_PRE_sys_connect)( tid, ARG2_0, ARG2_1, ARG2_2 );
break;
case VKI_SYS_SETSOCKOPT:
/* int setsockopt(int s, int level, int optname,
const void *optval, int optlen); */
PRE_MEM_READ( "socketcall.setsockopt(args)", ARG2, 5*sizeof(Addr) );
if (!ML_(valid_client_addr)(ARG2, 5*sizeof(Addr), tid, NULL)) {
SET_STATUS_Failure( VKI_EFAULT );
break;
}
ML_(generic_PRE_sys_setsockopt)( tid, ARG2_0, ARG2_1, ARG2_2,
ARG2_3, ARG2_4 );
break;
case VKI_SYS_GETSOCKOPT:
/* int getsockopt(int s, int level, int optname,
void *optval, socklen_t *optlen); */
PRE_MEM_READ( "socketcall.getsockopt(args)", ARG2, 5*sizeof(Addr) );
if (!ML_(valid_client_addr)(ARG2, 5*sizeof(Addr), tid, NULL)) {
SET_STATUS_Failure( VKI_EFAULT );
break;
}
ML_(linux_PRE_sys_getsockopt)( tid, ARG2_0, ARG2_1, ARG2_2,
ARG2_3, ARG2_4 );
break;
case VKI_SYS_GETSOCKNAME:
/* int getsockname(int s, struct sockaddr* name, int* namelen) */
PRE_MEM_READ( "socketcall.getsockname(args)", ARG2, 3*sizeof(Addr) );
if (!ML_(valid_client_addr)(ARG2, 3*sizeof(Addr), tid, NULL)) {
SET_STATUS_Failure( VKI_EFAULT );
break;
}
ML_(generic_PRE_sys_getsockname)( tid, ARG2_0, ARG2_1, ARG2_2 );
break;
case VKI_SYS_GETPEERNAME:
/* int getpeername(int s, struct sockaddr* name, int* namelen) */
PRE_MEM_READ( "socketcall.getpeername(args)", ARG2, 3*sizeof(Addr) );
if (!ML_(valid_client_addr)(ARG2, 3*sizeof(Addr), tid, NULL)) {
SET_STATUS_Failure( VKI_EFAULT );
break;
}
ML_(generic_PRE_sys_getpeername)( tid, ARG2_0, ARG2_1, ARG2_2 );
break;
case VKI_SYS_SHUTDOWN:
/* int shutdown(int s, int how); */
PRE_MEM_READ( "socketcall.shutdown(args)", ARG2, 2*sizeof(Addr) );
if (!ML_(valid_client_addr)(ARG2, 2*sizeof(Addr), tid, NULL)) {
SET_STATUS_Failure( VKI_EFAULT );
break;
}
break;
case VKI_SYS_SENDMSG: {
/* int sendmsg(int s, const struct msghdr *msg, int flags); */
PRE_MEM_READ( "socketcall.sendmsg(args)", ARG2, 3*sizeof(Addr) );
if (!ML_(valid_client_addr)(ARG2, 3*sizeof(Addr), tid, NULL)) {
SET_STATUS_Failure( VKI_EFAULT );
break;
}
ML_(generic_PRE_sys_sendmsg)( tid, "msg", (struct vki_msghdr *)ARG2_1 );
break;
}
case VKI_SYS_RECVMSG: {
/* int recvmsg(int s, struct msghdr *msg, int flags); */
PRE_MEM_READ("socketcall.recvmsg(args)", ARG2, 3*sizeof(Addr) );
if (!ML_(valid_client_addr)(ARG2, 3*sizeof(Addr), tid, NULL)) {
SET_STATUS_Failure( VKI_EFAULT );
break;
}
ML_(generic_PRE_sys_recvmsg)( tid, "msg2", (struct vki_msghdr *)ARG2_1 );
break;
}
default:
VG_(message)(Vg_DebugMsg,"Warning: unhandled socketcall 0x%lx\n",ARG1);
SET_STATUS_Failure( VKI_EINVAL );
break;
}
# undef ARG2_0
# undef ARG2_1
# undef ARG2_2
# undef ARG2_3
# undef ARG2_4
# undef ARG2_5
}
POST(sys_socketcall)
{
# define ARG2_0 (((UWord*)ARG2)[0])
# define ARG2_1 (((UWord*)ARG2)[1])
# define ARG2_2 (((UWord*)ARG2)[2])
# define ARG2_3 (((UWord*)ARG2)[3])
# define ARG2_4 (((UWord*)ARG2)[4])
# define ARG2_5 (((UWord*)ARG2)[5])
SysRes r;
vg_assert(SUCCESS);
switch (ARG1 /* request */) {
case VKI_SYS_SOCKETPAIR:
r = ML_(generic_POST_sys_socketpair)(
tid, VG_(mk_SysRes_Success)(RES),
ARG2_0, ARG2_1, ARG2_2, ARG2_3
);
SET_STATUS_from_SysRes(r);
break;
case VKI_SYS_SOCKET:
r = ML_(generic_POST_sys_socket)( tid, VG_(mk_SysRes_Success)(RES) );
SET_STATUS_from_SysRes(r);
break;
case VKI_SYS_BIND:
/* int bind(int sockfd, struct sockaddr *my_addr,
int addrlen); */
break;
case VKI_SYS_LISTEN:
/* int listen(int s, int backlog); */
break;
case VKI_SYS_ACCEPT:
/* int accept(int s, struct sockaddr *addr, int *addrlen); */
r = ML_(generic_POST_sys_accept)( tid, VG_(mk_SysRes_Success)(RES),
ARG2_0, ARG2_1, ARG2_2 );
SET_STATUS_from_SysRes(r);
break;
case VKI_SYS_SENDTO:
break;
case VKI_SYS_SEND:
break;
case VKI_SYS_RECVFROM:
ML_(generic_POST_sys_recvfrom)( tid, VG_(mk_SysRes_Success)(RES),
ARG2_0, ARG2_1, ARG2_2,
ARG2_3, ARG2_4, ARG2_5 );
break;
case VKI_SYS_RECV:
ML_(generic_POST_sys_recv)( tid, RES, ARG2_0, ARG2_1, ARG2_2 );
break;
case VKI_SYS_CONNECT:
break;
case VKI_SYS_SETSOCKOPT:
break;
case VKI_SYS_GETSOCKOPT:
ML_(linux_POST_sys_getsockopt)( tid, VG_(mk_SysRes_Success)(RES),
ARG2_0, ARG2_1,
ARG2_2, ARG2_3, ARG2_4 );
break;
case VKI_SYS_GETSOCKNAME:
ML_(generic_POST_sys_getsockname)( tid, VG_(mk_SysRes_Success)(RES),
ARG2_0, ARG2_1, ARG2_2 );
break;
case VKI_SYS_GETPEERNAME:
ML_(generic_POST_sys_getpeername)( tid, VG_(mk_SysRes_Success)(RES),
ARG2_0, ARG2_1, ARG2_2 );
break;
case VKI_SYS_SHUTDOWN:
break;
case VKI_SYS_SENDMSG:
break;
case VKI_SYS_RECVMSG:
ML_(generic_POST_sys_recvmsg)( tid, "msg", (struct vki_msghdr *)ARG2_1, RES );
break;
default:
VG_(message)(Vg_DebugMsg,"FATAL: unhandled socketcall 0x%lx\n",ARG1);
VG_(core_panic)("... bye!\n");
break; /*NOTREACHED*/
}
# undef ARG2_0
# undef ARG2_1
# undef ARG2_2
# undef ARG2_3
# undef ARG2_4
# undef ARG2_5
}
PRE(sys_mmap)
{
UWord a0, a1, a2, a3, a4, a5;
SysRes r;
UWord* args = (UWord*)ARG1;
PRE_REG_READ1(long, "sys_mmap", struct mmap_arg_struct *, args);
PRE_MEM_READ( "sys_mmap(args)", (Addr) args, 6*sizeof(UWord) );
a0 = args[0];
a1 = args[1];
a2 = args[2];
a3 = args[3];
a4 = args[4];
a5 = args[5];
PRINT("sys_mmap ( %#lx, %llu, %ld, %ld, %ld, %ld )",
a0, (ULong)a1, a2, a3, a4, a5 );
r = ML_(generic_PRE_sys_mmap)( tid, a0, a1, a2, a3, a4, (Off64T)a5 );
SET_STATUS_from_SysRes(r);
}
static Addr deref_Addr ( ThreadId tid, Addr a, Char* s )
{
Addr* a_p = (Addr*)a;
PRE_MEM_READ( s, (Addr)a_p, sizeof(Addr) );
return *a_p;
}
PRE(sys_ipc)
{
PRINT("sys_ipc ( %ld, %ld, %ld, %ld, %#lx, %ld )",
ARG1,ARG2,ARG3,ARG4,ARG5,ARG6);
// XXX: this is simplistic -- some args are not used in all circumstances.
PRE_REG_READ6(int, "ipc",
vki_uint, call, int, first, int, second, int, third,
void *, ptr, long, fifth)
switch (ARG1 /* call */) {
case VKI_SEMOP:
ML_(generic_PRE_sys_semop)( tid, ARG2, ARG5, ARG3 );
*flags |= SfMayBlock;
break;
case VKI_SEMGET:
break;
case VKI_SEMCTL:
{
UWord arg = deref_Addr( tid, ARG5, "semctl(arg)" );
ML_(generic_PRE_sys_semctl)( tid, ARG2, ARG3, ARG4, arg );
break;
}
case VKI_SEMTIMEDOP:
ML_(generic_PRE_sys_semtimedop)( tid, ARG2, ARG5, ARG3, ARG6 );
*flags |= SfMayBlock;
break;
case VKI_MSGSND:
ML_(linux_PRE_sys_msgsnd)( tid, ARG2, ARG5, ARG3, ARG4 );
if ((ARG4 & VKI_IPC_NOWAIT) == 0)
*flags |= SfMayBlock;
break;
case VKI_MSGRCV:
{
Addr msgp;
Word msgtyp;
msgp = deref_Addr( tid,
(Addr) (&((struct vki_ipc_kludge *)ARG5)->msgp),
"msgrcv(msgp)" );
msgtyp = deref_Addr( tid,
(Addr) (&((struct vki_ipc_kludge *)ARG5)->msgtyp),
"msgrcv(msgp)" );
ML_(linux_PRE_sys_msgrcv)( tid, ARG2, msgp, ARG3, msgtyp, ARG4 );
if ((ARG4 & VKI_IPC_NOWAIT) == 0)
*flags |= SfMayBlock;
break;
}
case VKI_MSGGET:
break;
case VKI_MSGCTL:
ML_(linux_PRE_sys_msgctl)( tid, ARG2, ARG3, ARG5 );
break;
case VKI_SHMAT:
{
UWord w;
PRE_MEM_WRITE( "shmat(raddr)", ARG4, sizeof(Addr) );
w = ML_(generic_PRE_sys_shmat)( tid, ARG2, ARG5, ARG3 );
if (w == 0)
SET_STATUS_Failure( VKI_EINVAL );
else
ARG5 = w;
break;
}
case VKI_SHMDT:
if (!ML_(generic_PRE_sys_shmdt)(tid, ARG5))
SET_STATUS_Failure( VKI_EINVAL );
break;
case VKI_SHMGET:
break;
case VKI_SHMCTL: /* IPCOP_shmctl */
ML_(generic_PRE_sys_shmctl)( tid, ARG2, ARG3, ARG5 );
break;
default:
VG_(message)(Vg_DebugMsg, "FATAL: unhandled syscall(ipc) %ld", ARG1 );
VG_(core_panic)("... bye!\n");
break; /*NOTREACHED*/
}
}
POST(sys_ipc)
{
vg_assert(SUCCESS);
switch (ARG1 /* call */) {
case VKI_SEMOP:
case VKI_SEMGET:
break;
case VKI_SEMCTL:
{
UWord arg = deref_Addr( tid, ARG5, "semctl(arg)" );
ML_(generic_PRE_sys_semctl)( tid, ARG2, ARG3, ARG4, arg );
break;
}
case VKI_SEMTIMEDOP:
case VKI_MSGSND:
break;
case VKI_MSGRCV:
{
Addr msgp;
Word msgtyp;
msgp = deref_Addr( tid,
(Addr) (&((struct vki_ipc_kludge *)ARG5)->msgp),
"msgrcv(msgp)" );
msgtyp = deref_Addr( tid,
(Addr) (&((struct vki_ipc_kludge *)ARG5)->msgtyp),
"msgrcv(msgp)" );
ML_(linux_POST_sys_msgrcv)( tid, RES, ARG2, msgp, ARG3, msgtyp, ARG4 );
break;
}
case VKI_MSGGET:
break;
case VKI_MSGCTL:
ML_(linux_POST_sys_msgctl)( tid, RES, ARG2, ARG3, ARG5 );
break;
case VKI_SHMAT:
{
Addr addr;
/* force readability. before the syscall it is
* indeed uninitialized, as can be seen in
* glibc/sysdeps/unix/sysv/linux/shmat.c */
POST_MEM_WRITE( ARG4, sizeof( Addr ) );
addr = deref_Addr ( tid, ARG4, "shmat(addr)" );
ML_(generic_POST_sys_shmat)( tid, addr, ARG2, ARG5, ARG3 );
break;
}
case VKI_SHMDT:
ML_(generic_POST_sys_shmdt)( tid, RES, ARG5 );
break;
case VKI_SHMGET:
break;
case VKI_SHMCTL:
ML_(generic_POST_sys_shmctl)( tid, RES, ARG2, ARG3, ARG5 );
break;
default:
VG_(message)(Vg_DebugMsg,
"FATAL: unhandled syscall(ipc) %ld",
ARG1 );
VG_(core_panic)("... bye!\n");
break; /*NOTREACHED*/
}
}
PRE(sys_clone)
{
UInt cloneflags;
PRINT("sys_clone ( %lx, %#lx, %#lx, %#lx, %#lx )",ARG1,ARG2,ARG3,ARG4, ARG5);
PRE_REG_READ2(int, "clone",
void *, child_stack,
unsigned long, flags);
if (ARG2 & VKI_CLONE_PARENT_SETTID) {
if (VG_(tdict).track_pre_reg_read)
PRA3("clone(parent_tidptr)", int *, parent_tidptr);
PRE_MEM_WRITE("clone(parent_tidptr)", ARG3, sizeof(Int));
if (!VG_(am_is_valid_for_client)(ARG3, sizeof(Int),
VKI_PROT_WRITE)) {
SET_STATUS_Failure( VKI_EFAULT );
return;
}
}
if (ARG2 & (VKI_CLONE_CHILD_SETTID | VKI_CLONE_CHILD_CLEARTID)) {
if (VG_(tdict).track_pre_reg_read)
PRA4("clone(child_tidptr)", int *, child_tidptr);
PRE_MEM_WRITE("clone(child_tidptr)", ARG4, sizeof(Int));
if (!VG_(am_is_valid_for_client)(ARG4, sizeof(Int),
VKI_PROT_WRITE)) {
SET_STATUS_Failure( VKI_EFAULT );
return;
}
}
/* The kernel simply copies reg6 (ARG5) into AR0 and AR1, no checks */
if (ARG2 & VKI_CLONE_SETTLS) {
if (VG_(tdict).track_pre_reg_read) {
PRA5("clone", Addr, tlsinfo);
}
}
cloneflags = ARG2;
if (!ML_(client_signal_OK)(ARG2 & VKI_CSIGNAL)) {
SET_STATUS_Failure( VKI_EINVAL );
return;
}
/* Only look at the flags we really care about */
switch (cloneflags & (VKI_CLONE_VM | VKI_CLONE_FS
| VKI_CLONE_FILES | VKI_CLONE_VFORK)) {
case VKI_CLONE_VM | VKI_CLONE_FS | VKI_CLONE_FILES:
/* thread creation */
SET_STATUS_from_SysRes(
do_clone(tid,
(Addr)ARG1, /* child SP */
ARG2, /* flags */
(Int *)ARG3, /* parent_tidptr */
(Int *)ARG4, /* child_tidptr */
(Addr)ARG5)); /* tlsaddr */
break;
case VKI_CLONE_VFORK | VKI_CLONE_VM: /* vfork */
/* FALLTHROUGH - assume vfork == fork */
cloneflags &= ~(VKI_CLONE_VFORK | VKI_CLONE_VM);
case 0: /* plain fork */
SET_STATUS_from_SysRes(
ML_(do_fork_clone)(tid,
cloneflags, /* flags */
(Int *)ARG3, /* parent_tidptr */
(Int *)ARG4)); /* child_tidptr */
break;
default:
/* should we just ENOSYS? */
VG_(message)(Vg_UserMsg, "Unsupported clone() flags: 0x%lx", ARG2);
VG_(message)(Vg_UserMsg, "");
VG_(message)(Vg_UserMsg, "The only supported clone() uses are:");
VG_(message)(Vg_UserMsg, " - via a threads library (NPTL)");
VG_(message)(Vg_UserMsg, " - via the implementation of fork or vfork");
VG_(unimplemented)
("Valgrind does not support general clone().");
}
if (SUCCESS) {
if (ARG2 & VKI_CLONE_PARENT_SETTID)
POST_MEM_WRITE(ARG3, sizeof(Int));
if (ARG2 & (VKI_CLONE_CHILD_SETTID | VKI_CLONE_CHILD_CLEARTID))
POST_MEM_WRITE(ARG4, sizeof(Int));
/* Thread creation was successful; let the child have the chance
to run */
*flags |= SfYieldAfter;
}
}
PRE(sys_sigreturn)
{
ThreadState* tst;
PRINT("sys_sigreturn ( )");
vg_assert(VG_(is_valid_tid)(tid));
vg_assert(tid >= 1 && tid < VG_N_THREADS);
vg_assert(VG_(is_running_thread)(tid));
tst = VG_(get_ThreadState)(tid);
/* This is only so that the IA is (might be) useful to report if
something goes wrong in the sigreturn */
ML_(fixup_guest_state_to_restart_syscall)(&tst->arch);
/* Restore register state from frame and remove it */
VG_(sigframe_destroy)(tid, False);
/* Tell the driver not to update the guest state with the "result",
and set a bogus result to keep it happy. */
*flags |= SfNoWriteResult;
SET_STATUS_Success(0);
/* Check to see if any signals arose as a result of this. */
*flags |= SfPollAfter;
}
PRE(sys_rt_sigreturn)
{
/* See comments on PRE(sys_rt_sigreturn) in syswrap-amd64-linux.c for
an explanation of what follows. */
ThreadState* tst;
PRINT("sys_rt_sigreturn ( )");
vg_assert(VG_(is_valid_tid)(tid));
vg_assert(tid >= 1 && tid < VG_N_THREADS);
vg_assert(VG_(is_running_thread)(tid));
tst = VG_(get_ThreadState)(tid);
/* This is only so that the IA is (might be) useful to report if
something goes wrong in the sigreturn */
ML_(fixup_guest_state_to_restart_syscall)(&tst->arch);
/* Restore register state from frame and remove it */
VG_(sigframe_destroy)(tid, True);
/* Tell the driver not to update the guest state with the "result",
and set a bogus result to keep it happy. */
*flags |= SfNoWriteResult;
SET_STATUS_Success(0);
/* Check to see if any signals arose as a result of this. */
*flags |= SfPollAfter;
}
/* we cant use the LINX_ version for 64 bit */
PRE(sys_fadvise64)
{
PRINT("sys_fadvise64 ( %ld, %ld, %ld, %ld )", ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "fadvise64",
int, fd, vki_loff_t, offset, vki_loff_t, len, int, advice);
}
#undef PRE
#undef POST
/* ---------------------------------------------------------------------
The s390x/Linux syscall table
------------------------------------------------------------------ */
/* Add an s390x-linux specific wrapper to a syscall table. */
#define PLAX_(sysno, name) WRAPPER_ENTRY_X_(s390x_linux, sysno, name)
#define PLAXY(sysno, name) WRAPPER_ENTRY_XY(s390x_linux, sysno, name)
// This table maps from __NR_xxx syscall numbers from
// linux/arch/s390/kernel/syscalls.S to the appropriate PRE/POST sys_foo()
// wrappers on s390x. There are several unused numbers, which are only
// defined on s390 (31bit mode) but no longer available on s390x (64 bit).
// For those syscalls not handled by Valgrind, the annotation indicate its
// arch/OS combination, eg. */* (generic), */Linux (Linux only), ?/?
// (unknown).
static SyscallTableEntry syscall_table[] = {
GENX_(0, sys_ni_syscall), /* unimplemented (by the kernel) */ // 0
GENX_(__NR_exit, sys_exit), // 1
GENX_(__NR_fork, sys_fork), // 2
GENXY(__NR_read, sys_read), // 3
GENX_(__NR_write, sys_write), // 4
GENXY(__NR_open, sys_open), // 5
GENXY(__NR_close, sys_close), // 6
// ?????(__NR_restart_syscall, ), // 7
GENXY(__NR_creat, sys_creat), // 8
GENX_(__NR_link, sys_link), // 9
GENX_(__NR_unlink, sys_unlink), // 10
GENX_(__NR_execve, sys_execve), // 11
GENX_(__NR_chdir, sys_chdir), // 12
GENX_(13, sys_ni_syscall), /* unimplemented (by the kernel) */ // 13
GENX_(__NR_mknod, sys_mknod), // 14
GENX_(__NR_chmod, sys_chmod), // 15
GENX_(16, sys_ni_syscall), /* unimplemented (by the kernel) */ // 16
GENX_(17, sys_ni_syscall), /* unimplemented (by the kernel) */ // 17
GENX_(18, sys_ni_syscall), /* unimplemented (by the kernel) */ // 18
LINX_(__NR_lseek, sys_lseek), // 19
GENX_(__NR_getpid, sys_getpid), // 20
LINX_(__NR_mount, sys_mount), // 21
LINX_(__NR_umount, sys_oldumount), // 22
GENX_(23, sys_ni_syscall), /* unimplemented (by the kernel) */ // 23
GENX_(24, sys_ni_syscall), /* unimplemented (by the kernel) */ // 24
GENX_(25, sys_ni_syscall), /* unimplemented (by the kernel) */ // 25
PLAXY(__NR_ptrace, sys_ptrace), // 26
GENX_(__NR_alarm, sys_alarm), // 27
GENX_(28, sys_ni_syscall), /* unimplemented (by the kernel) */ // 28
GENX_(__NR_pause, sys_pause), // 29
LINX_(__NR_utime, sys_utime), // 30
GENX_(31, sys_ni_syscall), /* unimplemented (by the kernel) */ // 31
GENX_(32, sys_ni_syscall), /* unimplemented (by the kernel) */ // 32
GENX_(__NR_access, sys_access), // 33
GENX_(__NR_nice, sys_nice), // 34
GENX_(35, sys_ni_syscall), /* unimplemented (by the kernel) */ // 35
GENX_(__NR_sync, sys_sync), // 36
GENX_(__NR_kill, sys_kill), // 37
GENX_(__NR_rename, sys_rename), // 38
GENX_(__NR_mkdir, sys_mkdir), // 39
GENX_(__NR_rmdir, sys_rmdir), // 40
GENXY(__NR_dup, sys_dup), // 41
LINXY(__NR_pipe, sys_pipe), // 42
GENXY(__NR_times, sys_times), // 43
GENX_(44, sys_ni_syscall), /* unimplemented (by the kernel) */ // 44
GENX_(__NR_brk, sys_brk), // 45
GENX_(46, sys_ni_syscall), /* unimplemented (by the kernel) */ // 46
GENX_(47, sys_ni_syscall), /* unimplemented (by the kernel) */ // 47
// ?????(__NR_signal, ), // 48
GENX_(49, sys_ni_syscall), /* unimplemented (by the kernel) */ // 49
GENX_(50, sys_ni_syscall), /* unimplemented (by the kernel) */ // 50
GENX_(__NR_acct, sys_acct), // 51
LINX_(__NR_umount2, sys_umount), // 52
GENX_(53, sys_ni_syscall), /* unimplemented (by the kernel) */ // 53
LINXY(__NR_ioctl, sys_ioctl), // 54
LINXY(__NR_fcntl, sys_fcntl), // 55
GENX_(56, sys_ni_syscall), /* unimplemented (by the kernel) */ // 56
GENX_(__NR_setpgid, sys_setpgid), // 57
GENX_(58, sys_ni_syscall), /* unimplemented (by the kernel) */ // 58
GENX_(59, sys_ni_syscall), /* unimplemented (by the kernel) */ // 59
GENX_(__NR_umask, sys_umask), // 60
GENX_(__NR_chroot, sys_chroot), // 61
// ?????(__NR_ustat, sys_ustat), /* deprecated in favor of statfs */ // 62
GENXY(__NR_dup2, sys_dup2), // 63
GENX_(__NR_getppid, sys_getppid), // 64
GENX_(__NR_getpgrp, sys_getpgrp), // 65
GENX_(__NR_setsid, sys_setsid), // 66
// ?????(__NR_sigaction, ), /* userspace uses rt_sigaction */ // 67
GENX_(68, sys_ni_syscall), /* unimplemented (by the kernel) */ // 68
GENX_(69, sys_ni_syscall), /* unimplemented (by the kernel) */ // 69
GENX_(70, sys_ni_syscall), /* unimplemented (by the kernel) */ // 70
GENX_(71, sys_ni_syscall), /* unimplemented (by the kernel) */ // 71
// ?????(__NR_sigsuspend, ), // 72
// ?????(__NR_sigpending, ), // 73
// ?????(__NR_sethostname, ), // 74
GENX_(__NR_setrlimit, sys_setrlimit), // 75
GENXY(76, sys_getrlimit), /* see also 191 */ // 76
GENXY(__NR_getrusage, sys_getrusage), // 77
GENXY(__NR_gettimeofday, sys_gettimeofday), // 78
GENX_(__NR_settimeofday, sys_settimeofday), // 79
GENX_(80, sys_ni_syscall), /* unimplemented (by the kernel) */ // 80
GENX_(81, sys_ni_syscall), /* unimplemented (by the kernel) */ // 81
GENX_(82, sys_ni_syscall), /* unimplemented (by the kernel) */ // 82
GENX_(__NR_symlink, sys_symlink), // 83
GENX_(84, sys_ni_syscall), /* unimplemented (by the kernel) */ // 84
GENX_(__NR_readlink, sys_readlink), // 85
// ?????(__NR_uselib, ), // 86
// ?????(__NR_swapon, ), // 87
// ?????(__NR_reboot, ), // 88
GENX_(89, sys_ni_syscall), /* unimplemented (by the kernel) */ // 89
PLAX_(__NR_mmap, sys_mmap ), // 90
GENXY(__NR_munmap, sys_munmap), // 91
GENX_(__NR_truncate, sys_truncate), // 92
GENX_(__NR_ftruncate, sys_ftruncate), // 93
GENX_(__NR_fchmod, sys_fchmod), // 94
GENX_(95, sys_ni_syscall), /* unimplemented (by the kernel) */ // 95
GENX_(__NR_getpriority, sys_getpriority), // 96
GENX_(__NR_setpriority, sys_setpriority), // 97
GENX_(98, sys_ni_syscall), /* unimplemented (by the kernel) */ // 98
GENXY(__NR_statfs, sys_statfs), // 99
GENXY(__NR_fstatfs, sys_fstatfs), // 100
GENX_(101, sys_ni_syscall), /* unimplemented (by the kernel) */ // 101
PLAXY(__NR_socketcall, sys_socketcall), // 102
LINXY(__NR_syslog, sys_syslog), // 103
GENXY(__NR_setitimer, sys_setitimer), // 104
GENXY(__NR_getitimer, sys_getitimer), // 105
GENXY(__NR_stat, sys_newstat), // 106
GENXY(__NR_lstat, sys_newlstat), // 107
GENXY(__NR_fstat, sys_newfstat), // 108
GENX_(109, sys_ni_syscall), /* unimplemented (by the kernel) */ // 109
LINXY(__NR_lookup_dcookie, sys_lookup_dcookie), // 110
LINX_(__NR_vhangup, sys_vhangup), // 111
GENX_(112, sys_ni_syscall), /* unimplemented (by the kernel) */ // 112
GENX_(113, sys_ni_syscall), /* unimplemented (by the kernel) */ // 113
GENXY(__NR_wait4, sys_wait4), // 114
// ?????(__NR_swapoff, ), // 115
LINXY(__NR_sysinfo, sys_sysinfo), // 116
PLAXY(__NR_ipc, sys_ipc), // 117
GENX_(__NR_fsync, sys_fsync), // 118
PLAX_(__NR_sigreturn, sys_sigreturn), // 119
PLAX_(__NR_clone, sys_clone), // 120
// ?????(__NR_setdomainname, ), // 121
GENXY(__NR_uname, sys_newuname), // 122
GENX_(123, sys_ni_syscall), /* unimplemented (by the kernel) */ // 123
// ?????(__NR_adjtimex, ), // 124
GENXY(__NR_mprotect, sys_mprotect), // 125
// LINXY(__NR_sigprocmask, sys_sigprocmask), // 126
GENX_(127, sys_ni_syscall), /* unimplemented (by the kernel) */ // 127
LINX_(__NR_init_module, sys_init_module), // 128
LINX_(__NR_delete_module, sys_delete_module), // 129
GENX_(130, sys_ni_syscall), /* unimplemented (by the kernel) */ // 130
LINX_(__NR_quotactl, sys_quotactl), // 131
GENX_(__NR_getpgid, sys_getpgid), // 132
GENX_(__NR_fchdir, sys_fchdir), // 133
// ?????(__NR_bdflush, ), // 134
// ?????(__NR_sysfs, ), // 135
LINX_(__NR_personality, sys_personality), // 136
GENX_(137, sys_ni_syscall), /* unimplemented (by the kernel) */ // 137
GENX_(138, sys_ni_syscall), /* unimplemented (by the kernel) */ // 138
GENX_(139, sys_ni_syscall), /* unimplemented (by the kernel) */ // 139
// LINXY(__NR__llseek, sys_llseek), /* 64 bit --> lseek */ // 140
GENXY(__NR_getdents, sys_getdents), // 141
GENX_(__NR_select, sys_select), // 142
GENX_(__NR_flock, sys_flock), // 143
GENX_(__NR_msync, sys_msync), // 144
GENXY(__NR_readv, sys_readv), // 145
GENX_(__NR_writev, sys_writev), // 146
GENX_(__NR_getsid, sys_getsid), // 147
GENX_(__NR_fdatasync, sys_fdatasync), // 148
LINXY(__NR__sysctl, sys_sysctl), // 149
GENX_(__NR_mlock, sys_mlock), // 150
GENX_(__NR_munlock, sys_munlock), // 151
GENX_(__NR_mlockall, sys_mlockall), // 152
LINX_(__NR_munlockall, sys_munlockall), // 153
LINXY(__NR_sched_setparam, sys_sched_setparam), // 154
LINXY(__NR_sched_getparam, sys_sched_getparam), // 155
LINX_(__NR_sched_setscheduler, sys_sched_setscheduler), // 156
LINX_(__NR_sched_getscheduler, sys_sched_getscheduler), // 157
LINX_(__NR_sched_yield, sys_sched_yield), // 158
LINX_(__NR_sched_get_priority_max, sys_sched_get_priority_max), // 159
LINX_(__NR_sched_get_priority_min, sys_sched_get_priority_min), // 160
// ?????(__NR_sched_rr_get_interval, ), // 161
GENXY(__NR_nanosleep, sys_nanosleep), // 162
GENX_(__NR_mremap, sys_mremap), // 163
GENX_(164, sys_ni_syscall), /* unimplemented (by the kernel) */ // 164
GENX_(165, sys_ni_syscall), /* unimplemented (by the kernel) */ // 165
GENX_(166, sys_ni_syscall), /* unimplemented (by the kernel) */ // 166
GENX_(167, sys_ni_syscall), /* unimplemented (by the kernel) */ // 167
GENXY(__NR_poll, sys_poll), // 168
// ?????(__NR_nfsservctl, ), // 169
GENX_(170, sys_ni_syscall), /* unimplemented (by the kernel) */ // 170
GENX_(171, sys_ni_syscall), /* unimplemented (by the kernel) */ // 171
LINXY(__NR_prctl, sys_prctl), // 172
PLAX_(__NR_rt_sigreturn, sys_rt_sigreturn), // 173
LINXY(__NR_rt_sigaction, sys_rt_sigaction), // 174
LINXY(__NR_rt_sigprocmask, sys_rt_sigprocmask), // 175
LINXY(__NR_rt_sigpending, sys_rt_sigpending), // 176
LINXY(__NR_rt_sigtimedwait, sys_rt_sigtimedwait), // 177
LINXY(__NR_rt_sigqueueinfo, sys_rt_sigqueueinfo), // 178
LINX_(__NR_rt_sigsuspend, sys_rt_sigsuspend), // 179
GENXY(__NR_pread64, sys_pread64), // 180
GENX_(__NR_pwrite64, sys_pwrite64), // 181
GENX_(182, sys_ni_syscall), /* unimplemented (by the kernel) */ // 182
GENXY(__NR_getcwd, sys_getcwd), // 183
LINXY(__NR_capget, sys_capget), // 184
LINX_(__NR_capset, sys_capset), // 185
GENXY(__NR_sigaltstack, sys_sigaltstack), // 186
LINXY(__NR_sendfile, sys_sendfile), // 187
GENX_(188, sys_ni_syscall), /* unimplemented (by the kernel) */ // 188
GENX_(189, sys_ni_syscall), /* unimplemented (by the kernel) */ // 189
GENX_(__NR_vfork, sys_fork), // 190
GENXY(__NR_getrlimit, sys_getrlimit), // 191
GENX_(192, sys_ni_syscall), /* not exported on 64bit*/ // 192
GENX_(193, sys_ni_syscall), /* unimplemented (by the kernel) */ // 193
GENX_(194, sys_ni_syscall), /* unimplemented (by the kernel) */ // 194
GENX_(195, sys_ni_syscall), /* unimplemented (by the kernel) */ // 195
GENX_(196, sys_ni_syscall), /* unimplemented (by the kernel) */ // 196
GENX_(197, sys_ni_syscall), /* unimplemented (by the kernel) */ // 197
GENX_(__NR_lchown, sys_lchown), // 198
GENX_(__NR_getuid, sys_getuid), // 199
GENX_(__NR_getgid, sys_getgid), // 200
GENX_(__NR_geteuid, sys_geteuid), // 201
GENX_(__NR_getegid, sys_getegid), // 202
GENX_(__NR_setreuid, sys_setreuid), // 203
GENX_(__NR_setregid, sys_setregid), // 204
GENXY(__NR_getgroups, sys_getgroups), // 205
GENX_(__NR_setgroups, sys_setgroups), // 206
GENX_(__NR_fchown, sys_fchown), // 207
LINX_(__NR_setresuid, sys_setresuid), // 208
LINXY(__NR_getresuid, sys_getresuid), // 209
LINX_(__NR_setresgid, sys_setresgid), // 210
LINXY(__NR_getresgid, sys_getresgid), // 211
GENX_(__NR_chown, sys_chown), // 212
GENX_(__NR_setuid, sys_setuid), // 213
GENX_(__NR_setgid, sys_setgid), // 214
LINX_(__NR_setfsuid, sys_setfsuid), // 215
LINX_(__NR_setfsgid, sys_setfsgid), // 216
// ?????(__NR_pivot_root, ),
GENXY(__NR_mincore, sys_mincore), // 218
GENX_(__NR_madvise, sys_madvise), // 219
GENXY(__NR_getdents64, sys_getdents64), // 220
GENX_(221, sys_ni_syscall), /* unimplemented (by the kernel) */ // 221
LINX_(__NR_readahead, sys_readahead), // 222
GENX_(223, sys_ni_syscall), /* unimplemented (by the kernel) */ // 223
LINX_(__NR_setxattr, sys_setxattr), // 224
LINX_(__NR_lsetxattr, sys_lsetxattr), // 225
LINX_(__NR_fsetxattr, sys_fsetxattr), // 226
LINXY(__NR_getxattr, sys_getxattr), // 227
LINXY(__NR_lgetxattr, sys_lgetxattr), // 228
LINXY(__NR_fgetxattr, sys_fgetxattr), // 229
LINXY(__NR_listxattr, sys_listxattr), // 230
LINXY(__NR_llistxattr, sys_llistxattr), // 231
LINXY(__NR_flistxattr, sys_flistxattr), // 232
LINX_(__NR_removexattr, sys_removexattr), // 233
LINX_(__NR_lremovexattr, sys_lremovexattr), // 234
LINX_(__NR_fremovexattr, sys_fremovexattr), // 235
LINX_(__NR_gettid, sys_gettid), // 236
LINXY(__NR_tkill, sys_tkill), // 237
LINXY(__NR_futex, sys_futex), // 238
LINX_(__NR_sched_setaffinity, sys_sched_setaffinity), // 239
LINXY(__NR_sched_getaffinity, sys_sched_getaffinity), // 240
LINXY(__NR_tgkill, sys_tgkill), // 241
GENX_(242, sys_ni_syscall), /* unimplemented (by the kernel) */ // 242
LINXY(__NR_io_setup, sys_io_setup), // 243
LINX_(__NR_io_destroy, sys_io_destroy), // 244
LINXY(__NR_io_getevents, sys_io_getevents), // 245
LINX_(__NR_io_submit, sys_io_submit), // 246
LINXY(__NR_io_cancel, sys_io_cancel), // 247
LINX_(__NR_exit_group, sys_exit_group), // 248
LINXY(__NR_epoll_create, sys_epoll_create), // 249
LINX_(__NR_epoll_ctl, sys_epoll_ctl), // 250
LINXY(__NR_epoll_wait, sys_epoll_wait), // 251
LINX_(__NR_set_tid_address, sys_set_tid_address), // 252
PLAX_(__NR_fadvise64, sys_fadvise64), // 253
LINXY(__NR_timer_create, sys_timer_create), // 254
LINXY(__NR_timer_settime, sys_timer_settime), // 255
LINXY(__NR_timer_gettime, sys_timer_gettime), // 256
LINX_(__NR_timer_getoverrun, sys_timer_getoverrun), // 257
LINX_(__NR_timer_delete, sys_timer_delete), // 258
LINX_(__NR_clock_settime, sys_clock_settime), // 259
LINXY(__NR_clock_gettime, sys_clock_gettime), // 260
LINXY(__NR_clock_getres, sys_clock_getres), // 261
LINXY(__NR_clock_nanosleep, sys_clock_nanosleep), // 262
GENX_(263, sys_ni_syscall), /* unimplemented (by the kernel) */ // 263
GENX_(264, sys_ni_syscall), /* unimplemented (by the kernel) */ // 264
GENXY(__NR_statfs64, sys_statfs64), // 265
GENXY(__NR_fstatfs64, sys_fstatfs64), // 266
// ?????(__NR_remap_file_pages, ),
GENX_(268, sys_ni_syscall), /* unimplemented (by the kernel) */ // 268
GENX_(269, sys_ni_syscall), /* unimplemented (by the kernel) */ // 269
GENX_(270, sys_ni_syscall), /* unimplemented (by the kernel) */ // 270
LINXY(__NR_mq_open, sys_mq_open), // 271
LINX_(__NR_mq_unlink, sys_mq_unlink), // 272
LINX_(__NR_mq_timedsend, sys_mq_timedsend), // 273
LINXY(__NR_mq_timedreceive, sys_mq_timedreceive), // 274
LINX_(__NR_mq_notify, sys_mq_notify), // 275
LINXY(__NR_mq_getsetattr, sys_mq_getsetattr), // 276
// ?????(__NR_kexec_load, ),
LINX_(__NR_add_key, sys_add_key), // 278
LINX_(__NR_request_key, sys_request_key), // 279
LINXY(__NR_keyctl, sys_keyctl), // 280
LINXY(__NR_waitid, sys_waitid), // 281
LINX_(__NR_ioprio_set, sys_ioprio_set), // 282
LINX_(__NR_ioprio_get, sys_ioprio_get), // 283
LINX_(__NR_inotify_init, sys_inotify_init), // 284
LINX_(__NR_inotify_add_watch, sys_inotify_add_watch), // 285
LINX_(__NR_inotify_rm_watch, sys_inotify_rm_watch), // 286
GENX_(287, sys_ni_syscall), /* unimplemented (by the kernel) */ // 287
LINXY(__NR_openat, sys_openat), // 288
LINX_(__NR_mkdirat, sys_mkdirat), // 289
LINX_(__NR_mknodat, sys_mknodat), // 290
LINX_(__NR_fchownat, sys_fchownat), // 291
LINX_(__NR_futimesat, sys_futimesat), // 292
LINXY(__NR_newfstatat, sys_newfstatat), // 293
LINX_(__NR_unlinkat, sys_unlinkat), // 294
LINX_(__NR_renameat, sys_renameat), // 295
LINX_(__NR_linkat, sys_linkat), // 296
LINX_(__NR_symlinkat, sys_symlinkat), // 297
LINX_(__NR_readlinkat, sys_readlinkat), // 298
LINX_(__NR_fchmodat, sys_fchmodat), // 299
LINX_(__NR_faccessat, sys_faccessat), // 300
LINX_(__NR_pselect6, sys_pselect6), // 301
LINXY(__NR_ppoll, sys_ppoll), // 302
// ?????(__NR_unshare, ),
LINX_(__NR_set_robust_list, sys_set_robust_list), // 304
LINXY(__NR_get_robust_list, sys_get_robust_list), // 305
// ?????(__NR_splice, ),
LINX_(__NR_sync_file_range, sys_sync_file_range), // 307
// ?????(__NR_tee, ),
// ?????(__NR_vmsplice, ),
GENX_(310, sys_ni_syscall), /* unimplemented (by the kernel) */ // 310
// ?????(__NR_getcpu, ),
LINXY(__NR_epoll_pwait, sys_epoll_pwait), // 312
GENX_(__NR_utimes, sys_utimes), // 313
LINX_(__NR_fallocate, sys_fallocate), // 314
LINX_(__NR_utimensat, sys_utimensat), // 315
LINXY(__NR_signalfd, sys_signalfd), // 316
GENX_(317, sys_ni_syscall), /* unimplemented (by the kernel) */ // 317
LINX_(__NR_eventfd, sys_eventfd), // 318
LINXY(__NR_timerfd_create, sys_timerfd_create), // 319
LINXY(__NR_timerfd_settime, sys_timerfd_settime), // 320
LINXY(__NR_timerfd_gettime, sys_timerfd_gettime), // 321
LINXY(__NR_signalfd4, sys_signalfd4), // 322
LINX_(__NR_eventfd2, sys_eventfd2), // 323
LINXY(__NR_inotify_init1, sys_inotify_init1), // 324
LINXY(__NR_pipe2, sys_pipe2), // 325
// (__NR_dup3, ),
LINXY(__NR_epoll_create1, sys_epoll_create1), // 327
LINXY(__NR_preadv, sys_preadv), // 328
LINX_(__NR_pwritev, sys_pwritev), // 329
// ?????(__NR_rt_tgsigqueueinfo, ),
LINXY(__NR_perf_event_open, sys_perf_event_open), // 331
// ?????(__NR_fanotify_init, ), // 332
// ?????(__NR_fanotify_mark, ), // 333
LINXY(__NR_prlimit64, sys_prlimit64), // 334
// ?????(__NR_name_to_handle_at, ), // 335
// ?????(__NR_open_by_handle_at, ), // 336
// ?????(__NR_clock_adjtime, ), // 337
// ?????(__NR_syncfs, ), // 338
// ?????(__NR_setns, ), // 339
LINXY(__NR_process_vm_readv, sys_process_vm_readv), // 340
LINX_(__NR_process_vm_writev, sys_process_vm_writev), // 341
};
SyscallTableEntry* ML_(get_linux_syscall_entry) ( UInt sysno )
{
const UInt syscall_table_size
= sizeof(syscall_table) / sizeof(syscall_table[0]);
/* Is it in the contiguous initial section of the table? */
if (sysno < syscall_table_size) {
SyscallTableEntry* sys = &syscall_table[sysno];
if (sys->before == NULL)
return NULL; /* no entry */
else
return sys;
}
/* Can't find a wrapper */
return NULL;
}
#endif
/*--------------------------------------------------------------------*/
/*--- end ---*/
/*--------------------------------------------------------------------*/