/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "rsCpuIntrinsic.h"
#include "rsCpuIntrinsicInlines.h"
using namespace android;
using namespace android::renderscript;
namespace android {
namespace renderscript {
class RsdCpuScriptIntrinsicConvolve3x3 : public RsdCpuScriptIntrinsic {
public:
virtual void populateScript(Script *);
virtual void invokeFreeChildren();
virtual void setGlobalVar(uint32_t slot, const void *data, size_t dataLength);
virtual void setGlobalObj(uint32_t slot, ObjectBase *data);
virtual ~RsdCpuScriptIntrinsicConvolve3x3();
RsdCpuScriptIntrinsicConvolve3x3(RsdCpuReferenceImpl *ctx, const Script *s, const Element *);
protected:
float mFp[16];
short mIp[16];
ObjectBaseRef<const Allocation> mAlloc;
ObjectBaseRef<const Element> mElement;
static void kernelU1(const RsForEachStubParamStruct *p,
uint32_t xstart, uint32_t xend,
uint32_t instep, uint32_t outstep);
static void kernelU2(const RsForEachStubParamStruct *p,
uint32_t xstart, uint32_t xend,
uint32_t instep, uint32_t outstep);
static void kernelU4(const RsForEachStubParamStruct *p,
uint32_t xstart, uint32_t xend,
uint32_t instep, uint32_t outstep);
static void kernelF1(const RsForEachStubParamStruct *p,
uint32_t xstart, uint32_t xend,
uint32_t instep, uint32_t outstep);
static void kernelF2(const RsForEachStubParamStruct *p,
uint32_t xstart, uint32_t xend,
uint32_t instep, uint32_t outstep);
static void kernelF4(const RsForEachStubParamStruct *p,
uint32_t xstart, uint32_t xend,
uint32_t instep, uint32_t outstep);
};
}
}
void RsdCpuScriptIntrinsicConvolve3x3::setGlobalObj(uint32_t slot, ObjectBase *data) {
rsAssert(slot == 1);
mAlloc.set(static_cast<Allocation *>(data));
}
void RsdCpuScriptIntrinsicConvolve3x3::setGlobalVar(uint32_t slot, const void *data,
size_t dataLength) {
rsAssert(slot == 0);
memcpy (&mFp, data, dataLength);
for(int ct=0; ct < 9; ct++) {
if (mFp[ct] >= 0) {
mIp[ct] = (short)(mFp[ct] * 256.f + 0.5f);
} else {
mIp[ct] = (short)(mFp[ct] * 256.f - 0.5f);
}
}
}
extern "C" void rsdIntrinsicConvolve3x3_K(void *dst, const void *y0, const void *y1,
const void *y2, const short *coef, uint32_t count);
static void ConvolveOneU4(const RsForEachStubParamStruct *p, uint32_t x, uchar4 *out,
const uchar4 *py0, const uchar4 *py1, const uchar4 *py2,
const float* coeff) {
uint32_t x1 = rsMax((int32_t)x-1, 0);
uint32_t x2 = rsMin((int32_t)x+1, (int32_t)p->dimX-1);
float4 px = convert_float4(py0[x1]) * coeff[0] +
convert_float4(py0[x]) * coeff[1] +
convert_float4(py0[x2]) * coeff[2] +
convert_float4(py1[x1]) * coeff[3] +
convert_float4(py1[x]) * coeff[4] +
convert_float4(py1[x2]) * coeff[5] +
convert_float4(py2[x1]) * coeff[6] +
convert_float4(py2[x]) * coeff[7] +
convert_float4(py2[x2]) * coeff[8];
px = clamp(px, 0.f, 255.f);
uchar4 o = {(uchar)px.x, (uchar)px.y, (uchar)px.z, (uchar)px.w};
*out = o;
}
static void ConvolveOneU2(const RsForEachStubParamStruct *p, uint32_t x, uchar2 *out,
const uchar2 *py0, const uchar2 *py1, const uchar2 *py2,
const float* coeff) {
uint32_t x1 = rsMax((int32_t)x-1, 0);
uint32_t x2 = rsMin((int32_t)x+1, (int32_t)p->dimX-1);
float2 px = convert_float2(py0[x1]) * coeff[0] +
convert_float2(py0[x]) * coeff[1] +
convert_float2(py0[x2]) * coeff[2] +
convert_float2(py1[x1]) * coeff[3] +
convert_float2(py1[x]) * coeff[4] +
convert_float2(py1[x2]) * coeff[5] +
convert_float2(py2[x1]) * coeff[6] +
convert_float2(py2[x]) * coeff[7] +
convert_float2(py2[x2]) * coeff[8];
px = clamp(px, 0.f, 255.f);
*out = convert_uchar2(px);
}
static void ConvolveOneU1(const RsForEachStubParamStruct *p, uint32_t x, uchar *out,
const uchar *py0, const uchar *py1, const uchar *py2,
const float* coeff) {
uint32_t x1 = rsMax((int32_t)x-1, 0);
uint32_t x2 = rsMin((int32_t)x+1, (int32_t)p->dimX-1);
float px = ((float)py0[x1]) * coeff[0] +
((float)py0[x]) * coeff[1] +
((float)py0[x2]) * coeff[2] +
((float)py1[x1]) * coeff[3] +
((float)py1[x]) * coeff[4] +
((float)py1[x2]) * coeff[5] +
((float)py2[x1]) * coeff[6] +
((float)py2[x]) * coeff[7] +
((float)py2[x2]) * coeff[8];
*out = clamp(px, 0.f, 255.f);
}
static void ConvolveOneF4(const RsForEachStubParamStruct *p, uint32_t x, float4 *out,
const float4 *py0, const float4 *py1, const float4 *py2,
const float* coeff) {
uint32_t x1 = rsMax((int32_t)x-1, 0);
uint32_t x2 = rsMin((int32_t)x+1, (int32_t)p->dimX-1);
*out = (py0[x1] * coeff[0]) + (py0[x] * coeff[1]) + (py0[x2] * coeff[2]) +
(py1[x1] * coeff[3]) + (py1[x] * coeff[4]) + (py1[x2] * coeff[5]) +
(py2[x1] * coeff[6]) + (py2[x] * coeff[7]) + (py2[x2] * coeff[8]);
}
static void ConvolveOneF2(const RsForEachStubParamStruct *p, uint32_t x, float2 *out,
const float2 *py0, const float2 *py1, const float2 *py2,
const float* coeff) {
uint32_t x1 = rsMax((int32_t)x-1, 0);
uint32_t x2 = rsMin((int32_t)x+1, (int32_t)p->dimX-1);
*out = (py0[x1] * coeff[0]) + (py0[x] * coeff[1]) + (py0[x2] * coeff[2]) +
(py1[x1] * coeff[3]) + (py1[x] * coeff[4]) + (py1[x2] * coeff[5]) +
(py2[x1] * coeff[6]) + (py2[x] * coeff[7]) + (py2[x2] * coeff[8]);
}
static void ConvolveOneF1(const RsForEachStubParamStruct *p, uint32_t x, float *out,
const float *py0, const float *py1, const float *py2,
const float* coeff) {
uint32_t x1 = rsMax((int32_t)x-1, 0);
uint32_t x2 = rsMin((int32_t)x+1, (int32_t)p->dimX-1);
*out = (py0[x1] * coeff[0]) + (py0[x] * coeff[1]) + (py0[x2] * coeff[2]) +
(py1[x1] * coeff[3]) + (py1[x] * coeff[4]) + (py1[x2] * coeff[5]) +
(py2[x1] * coeff[6]) + (py2[x] * coeff[7]) + (py2[x2] * coeff[8]);
}
void RsdCpuScriptIntrinsicConvolve3x3::kernelU4(const RsForEachStubParamStruct *p,
uint32_t xstart, uint32_t xend,
uint32_t instep, uint32_t outstep) {
RsdCpuScriptIntrinsicConvolve3x3 *cp = (RsdCpuScriptIntrinsicConvolve3x3 *)p->usr;
if (!cp->mAlloc.get()) {
ALOGE("Convolve3x3 executed without input, skipping");
return;
}
const uchar *pin = (const uchar *)cp->mAlloc->mHal.drvState.lod[0].mallocPtr;
const size_t stride = cp->mAlloc->mHal.drvState.lod[0].stride;
uint32_t y1 = rsMin((int32_t)p->y + 1, (int32_t)(p->dimY-1));
uint32_t y2 = rsMax((int32_t)p->y - 1, 0);
const uchar4 *py0 = (const uchar4 *)(pin + stride * y2);
const uchar4 *py1 = (const uchar4 *)(pin + stride * p->y);
const uchar4 *py2 = (const uchar4 *)(pin + stride * y1);
uchar4 *out = (uchar4 *)p->out;
uint32_t x1 = xstart;
uint32_t x2 = xend;
if(x1 == 0) {
ConvolveOneU4(p, 0, out, py0, py1, py2, cp->mFp);
x1 ++;
out++;
}
if(x2 > x1) {
#if defined(ARCH_ARM_HAVE_VFP)
if (gArchUseSIMD) {
int32_t len = (x2 - x1 - 1) >> 1;
if(len > 0) {
rsdIntrinsicConvolve3x3_K(out, &py0[x1-1], &py1[x1-1], &py2[x1-1], cp->mIp, len);
x1 += len << 1;
out += len << 1;
}
}
#endif
while(x1 != x2) {
ConvolveOneU4(p, x1, out, py0, py1, py2, cp->mFp);
out++;
x1++;
}
}
}
void RsdCpuScriptIntrinsicConvolve3x3::kernelU2(const RsForEachStubParamStruct *p,
uint32_t xstart, uint32_t xend,
uint32_t instep, uint32_t outstep) {
RsdCpuScriptIntrinsicConvolve3x3 *cp = (RsdCpuScriptIntrinsicConvolve3x3 *)p->usr;
if (!cp->mAlloc.get()) {
ALOGE("Convolve3x3 executed without input, skipping");
return;
}
const uchar *pin = (const uchar *)cp->mAlloc->mHal.drvState.lod[0].mallocPtr;
const size_t stride = cp->mAlloc->mHal.drvState.lod[0].stride;
uint32_t y1 = rsMin((int32_t)p->y + 1, (int32_t)(p->dimY-1));
uint32_t y2 = rsMax((int32_t)p->y - 1, 0);
const uchar2 *py0 = (const uchar2 *)(pin + stride * y2);
const uchar2 *py1 = (const uchar2 *)(pin + stride * p->y);
const uchar2 *py2 = (const uchar2 *)(pin + stride * y1);
uchar2 *out = (uchar2 *)p->out;
uint32_t x1 = xstart;
uint32_t x2 = xend;
if(x1 == 0) {
ConvolveOneU2(p, 0, out, py0, py1, py2, cp->mFp);
x1 ++;
out++;
}
if(x2 > x1) {
#if 0//defined(ARCH_ARM_HAVE_NEON)
int32_t len = (x2 - x1 - 1) >> 1;
if(len > 0) {
rsdIntrinsicConvolve3x3_K(out, &py0[x1-1], &py1[x1-1], &py2[x1-1], cp->mIp, len);
x1 += len << 1;
out += len << 1;
}
#endif
while(x1 != x2) {
ConvolveOneU2(p, x1, out, py0, py1, py2, cp->mFp);
out++;
x1++;
}
}
}
void RsdCpuScriptIntrinsicConvolve3x3::kernelU1(const RsForEachStubParamStruct *p,
uint32_t xstart, uint32_t xend,
uint32_t instep, uint32_t outstep) {
RsdCpuScriptIntrinsicConvolve3x3 *cp = (RsdCpuScriptIntrinsicConvolve3x3 *)p->usr;
if (!cp->mAlloc.get()) {
ALOGE("Convolve3x3 executed without input, skipping");
return;
}
const uchar *pin = (const uchar *)cp->mAlloc->mHal.drvState.lod[0].mallocPtr;
const size_t stride = cp->mAlloc->mHal.drvState.lod[0].stride;
uint32_t y1 = rsMin((int32_t)p->y + 1, (int32_t)(p->dimY-1));
uint32_t y2 = rsMax((int32_t)p->y - 1, 0);
const uchar *py0 = (const uchar *)(pin + stride * y2);
const uchar *py1 = (const uchar *)(pin + stride * p->y);
const uchar *py2 = (const uchar *)(pin + stride * y1);
uchar *out = (uchar *)p->out;
uint32_t x1 = xstart;
uint32_t x2 = xend;
if(x1 == 0) {
ConvolveOneU1(p, 0, out, py0, py1, py2, cp->mFp);
x1 ++;
out++;
}
if(x2 > x1) {
#if 0//defined(ARCH_ARM_HAVE_NEON)
int32_t len = (x2 - x1 - 1) >> 1;
if(len > 0) {
rsdIntrinsicConvolve3x3_K(out, &py0[x1-1], &py1[x1-1], &py2[x1-1], cp->mIp, len);
x1 += len << 1;
out += len << 1;
}
#endif
while(x1 != x2) {
ConvolveOneU1(p, x1, out, py0, py1, py2, cp->mFp);
out++;
x1++;
}
}
}
void RsdCpuScriptIntrinsicConvolve3x3::kernelF4(const RsForEachStubParamStruct *p,
uint32_t xstart, uint32_t xend,
uint32_t instep, uint32_t outstep) {
RsdCpuScriptIntrinsicConvolve3x3 *cp = (RsdCpuScriptIntrinsicConvolve3x3 *)p->usr;
if (!cp->mAlloc.get()) {
ALOGE("Convolve3x3 executed without input, skipping");
return;
}
const uchar *pin = (const uchar *)cp->mAlloc->mHal.drvState.lod[0].mallocPtr;
const size_t stride = cp->mAlloc->mHal.drvState.lod[0].stride;
uint32_t y1 = rsMin((int32_t)p->y + 1, (int32_t)(p->dimY-1));
uint32_t y2 = rsMax((int32_t)p->y - 1, 0);
const float4 *py0 = (const float4 *)(pin + stride * y2);
const float4 *py1 = (const float4 *)(pin + stride * p->y);
const float4 *py2 = (const float4 *)(pin + stride * y1);
float4 *out = (float4 *)p->out;
uint32_t x1 = xstart;
uint32_t x2 = xend;
if(x1 == 0) {
ConvolveOneF4(p, 0, out, py0, py1, py2, cp->mFp);
x1 ++;
out++;
}
if(x2 > x1) {
#if 0//defined(ARCH_ARM_HAVE_NEON)
int32_t len = (x2 - x1 - 1) >> 1;
if(len > 0) {
rsdIntrinsicConvolve3x3_K(out, &py0[x1-1], &py1[x1-1], &py2[x1-1], cp->mIp, len);
x1 += len << 1;
out += len << 1;
}
#endif
while(x1 != x2) {
ConvolveOneF4(p, x1, out, py0, py1, py2, cp->mFp);
out++;
x1++;
}
}
}
void RsdCpuScriptIntrinsicConvolve3x3::kernelF2(const RsForEachStubParamStruct *p,
uint32_t xstart, uint32_t xend,
uint32_t instep, uint32_t outstep) {
RsdCpuScriptIntrinsicConvolve3x3 *cp = (RsdCpuScriptIntrinsicConvolve3x3 *)p->usr;
if (!cp->mAlloc.get()) {
ALOGE("Convolve3x3 executed without input, skipping");
return;
}
const uchar *pin = (const uchar *)cp->mAlloc->mHal.drvState.lod[0].mallocPtr;
const size_t stride = cp->mAlloc->mHal.drvState.lod[0].stride;
uint32_t y1 = rsMin((int32_t)p->y + 1, (int32_t)(p->dimY-1));
uint32_t y2 = rsMax((int32_t)p->y - 1, 0);
const float2 *py0 = (const float2 *)(pin + stride * y2);
const float2 *py1 = (const float2 *)(pin + stride * p->y);
const float2 *py2 = (const float2 *)(pin + stride * y1);
float2 *out = (float2 *)p->out;
uint32_t x1 = xstart;
uint32_t x2 = xend;
if(x1 == 0) {
ConvolveOneF2(p, 0, out, py0, py1, py2, cp->mFp);
x1 ++;
out++;
}
if(x2 > x1) {
#if 0//defined(ARCH_ARM_HAVE_NEON)
int32_t len = (x2 - x1 - 1) >> 1;
if(len > 0) {
rsdIntrinsicConvolve3x3_K(out, &py0[x1-1], &py1[x1-1], &py2[x1-1], cp->mIp, len);
x1 += len << 1;
out += len << 1;
}
#endif
while(x1 != x2) {
ConvolveOneF2(p, x1, out, py0, py1, py2, cp->mFp);
out++;
x1++;
}
}
}
void RsdCpuScriptIntrinsicConvolve3x3::kernelF1(const RsForEachStubParamStruct *p,
uint32_t xstart, uint32_t xend,
uint32_t instep, uint32_t outstep) {
RsdCpuScriptIntrinsicConvolve3x3 *cp = (RsdCpuScriptIntrinsicConvolve3x3 *)p->usr;
if (!cp->mAlloc.get()) {
ALOGE("Convolve3x3 executed without input, skipping");
return;
}
const uchar *pin = (const uchar *)cp->mAlloc->mHal.drvState.lod[0].mallocPtr;
const size_t stride = cp->mAlloc->mHal.drvState.lod[0].stride;
uint32_t y1 = rsMin((int32_t)p->y + 1, (int32_t)(p->dimY-1));
uint32_t y2 = rsMax((int32_t)p->y - 1, 0);
const float *py0 = (const float *)(pin + stride * y2);
const float *py1 = (const float *)(pin + stride * p->y);
const float *py2 = (const float *)(pin + stride * y1);
float *out = (float *)p->out;
uint32_t x1 = xstart;
uint32_t x2 = xend;
if(x1 == 0) {
ConvolveOneF1(p, 0, out, py0, py1, py2, cp->mFp);
x1 ++;
out++;
}
if(x2 > x1) {
#if 0//defined(ARCH_ARM_HAVE_NEON)
int32_t len = (x2 - x1 - 1) >> 1;
if(len > 0) {
rsdIntrinsicConvolve3x3_K(out, &py0[x1-1], &py1[x1-1], &py2[x1-1], cp->mIp, len);
x1 += len << 1;
out += len << 1;
}
#endif
while(x1 != x2) {
ConvolveOneF1(p, x1, out, py0, py1, py2, cp->mFp);
out++;
x1++;
}
}
}
RsdCpuScriptIntrinsicConvolve3x3::RsdCpuScriptIntrinsicConvolve3x3(
RsdCpuReferenceImpl *ctx, const Script *s, const Element *e)
: RsdCpuScriptIntrinsic(ctx, s, e, RS_SCRIPT_INTRINSIC_ID_CONVOLVE_3x3) {
if (e->getType() == RS_TYPE_FLOAT_32) {
switch(e->getVectorSize()) {
case 1:
mRootPtr = &kernelF1;
break;
case 2:
mRootPtr = &kernelF2;
break;
case 3:
case 4:
mRootPtr = &kernelF4;
break;
}
} else {
switch(e->getVectorSize()) {
case 1:
mRootPtr = &kernelU1;
break;
case 2:
mRootPtr = &kernelU2;
break;
case 3:
case 4:
mRootPtr = &kernelU4;
break;
}
}
for(int ct=0; ct < 9; ct++) {
mFp[ct] = 1.f / 9.f;
mIp[ct] = (short)(mFp[ct] * 256.f + 0.5f);
}
}
RsdCpuScriptIntrinsicConvolve3x3::~RsdCpuScriptIntrinsicConvolve3x3() {
}
void RsdCpuScriptIntrinsicConvolve3x3::populateScript(Script *s) {
s->mHal.info.exportedVariableCount = 2;
}
void RsdCpuScriptIntrinsicConvolve3x3::invokeFreeChildren() {
mAlloc.clear();
}
RsdCpuScriptImpl * rsdIntrinsic_Convolve3x3(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e) {
return new RsdCpuScriptIntrinsicConvolve3x3(ctx, s, e);
}