/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dex/compiler_internals.h"
#include "dex/dataflow_iterator-inl.h"
#include "mir_to_lir-inl.h"
#include "object_utils.h"
namespace art {
/*
* Target-independent code generation. Use only high-level
* load/store utilities here, or target-dependent genXX() handlers
* when necessary.
*/
void Mir2Lir::CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list) {
RegLocation rl_src[3];
RegLocation rl_dest = mir_graph_->GetBadLoc();
RegLocation rl_result = mir_graph_->GetBadLoc();
Instruction::Code opcode = mir->dalvikInsn.opcode;
int opt_flags = mir->optimization_flags;
uint32_t vB = mir->dalvikInsn.vB;
uint32_t vC = mir->dalvikInsn.vC;
// Prep Src and Dest locations.
int next_sreg = 0;
int next_loc = 0;
int attrs = mir_graph_->oat_data_flow_attributes_[opcode];
rl_src[0] = rl_src[1] = rl_src[2] = mir_graph_->GetBadLoc();
if (attrs & DF_UA) {
if (attrs & DF_A_WIDE) {
rl_src[next_loc++] = mir_graph_->GetSrcWide(mir, next_sreg);
next_sreg+= 2;
} else {
rl_src[next_loc++] = mir_graph_->GetSrc(mir, next_sreg);
next_sreg++;
}
}
if (attrs & DF_UB) {
if (attrs & DF_B_WIDE) {
rl_src[next_loc++] = mir_graph_->GetSrcWide(mir, next_sreg);
next_sreg+= 2;
} else {
rl_src[next_loc++] = mir_graph_->GetSrc(mir, next_sreg);
next_sreg++;
}
}
if (attrs & DF_UC) {
if (attrs & DF_C_WIDE) {
rl_src[next_loc++] = mir_graph_->GetSrcWide(mir, next_sreg);
} else {
rl_src[next_loc++] = mir_graph_->GetSrc(mir, next_sreg);
}
}
if (attrs & DF_DA) {
if (attrs & DF_A_WIDE) {
rl_dest = mir_graph_->GetDestWide(mir);
} else {
rl_dest = mir_graph_->GetDest(mir);
}
}
switch (opcode) {
case Instruction::NOP:
break;
case Instruction::MOVE_EXCEPTION:
GenMoveException(rl_dest);
break;
case Instruction::RETURN_VOID:
if (((cu_->access_flags & kAccConstructor) != 0) &&
cu_->compiler_driver->RequiresConstructorBarrier(Thread::Current(), cu_->dex_file,
cu_->class_def_idx)) {
GenMemBarrier(kStoreStore);
}
if (!mir_graph_->MethodIsLeaf()) {
GenSuspendTest(opt_flags);
}
break;
case Instruction::RETURN:
case Instruction::RETURN_OBJECT:
if (!mir_graph_->MethodIsLeaf()) {
GenSuspendTest(opt_flags);
}
StoreValue(GetReturn(cu_->shorty[0] == 'F'), rl_src[0]);
break;
case Instruction::RETURN_WIDE:
if (!mir_graph_->MethodIsLeaf()) {
GenSuspendTest(opt_flags);
}
StoreValueWide(GetReturnWide(cu_->shorty[0] == 'D'), rl_src[0]);
break;
case Instruction::MOVE_RESULT_WIDE:
if (opt_flags & MIR_INLINED)
break; // Nop - combined w/ previous invoke.
StoreValueWide(rl_dest, GetReturnWide(rl_dest.fp));
break;
case Instruction::MOVE_RESULT:
case Instruction::MOVE_RESULT_OBJECT:
if (opt_flags & MIR_INLINED)
break; // Nop - combined w/ previous invoke.
StoreValue(rl_dest, GetReturn(rl_dest.fp));
break;
case Instruction::MOVE:
case Instruction::MOVE_OBJECT:
case Instruction::MOVE_16:
case Instruction::MOVE_OBJECT_16:
case Instruction::MOVE_FROM16:
case Instruction::MOVE_OBJECT_FROM16:
StoreValue(rl_dest, rl_src[0]);
break;
case Instruction::MOVE_WIDE:
case Instruction::MOVE_WIDE_16:
case Instruction::MOVE_WIDE_FROM16:
StoreValueWide(rl_dest, rl_src[0]);
break;
case Instruction::CONST:
case Instruction::CONST_4:
case Instruction::CONST_16:
rl_result = EvalLoc(rl_dest, kAnyReg, true);
LoadConstantNoClobber(rl_result.low_reg, vB);
StoreValue(rl_dest, rl_result);
if (vB == 0) {
Workaround7250540(rl_dest, rl_result.low_reg);
}
break;
case Instruction::CONST_HIGH16:
rl_result = EvalLoc(rl_dest, kAnyReg, true);
LoadConstantNoClobber(rl_result.low_reg, vB << 16);
StoreValue(rl_dest, rl_result);
if (vB == 0) {
Workaround7250540(rl_dest, rl_result.low_reg);
}
break;
case Instruction::CONST_WIDE_16:
case Instruction::CONST_WIDE_32:
rl_result = EvalLoc(rl_dest, kAnyReg, true);
LoadConstantWide(rl_result.low_reg, rl_result.high_reg,
static_cast<int64_t>(static_cast<int32_t>(vB)));
StoreValueWide(rl_dest, rl_result);
break;
case Instruction::CONST_WIDE:
rl_result = EvalLoc(rl_dest, kAnyReg, true);
LoadConstantWide(rl_result.low_reg, rl_result.high_reg, mir->dalvikInsn.vB_wide);
StoreValueWide(rl_dest, rl_result);
break;
case Instruction::CONST_WIDE_HIGH16:
rl_result = EvalLoc(rl_dest, kAnyReg, true);
LoadConstantWide(rl_result.low_reg, rl_result.high_reg,
static_cast<int64_t>(vB) << 48);
StoreValueWide(rl_dest, rl_result);
break;
case Instruction::MONITOR_ENTER:
GenMonitorEnter(opt_flags, rl_src[0]);
break;
case Instruction::MONITOR_EXIT:
GenMonitorExit(opt_flags, rl_src[0]);
break;
case Instruction::CHECK_CAST: {
GenCheckCast(mir->offset, vB, rl_src[0]);
break;
}
case Instruction::INSTANCE_OF:
GenInstanceof(vC, rl_dest, rl_src[0]);
break;
case Instruction::NEW_INSTANCE:
GenNewInstance(vB, rl_dest);
break;
case Instruction::THROW:
GenThrow(rl_src[0]);
break;
case Instruction::ARRAY_LENGTH:
int len_offset;
len_offset = mirror::Array::LengthOffset().Int32Value();
rl_src[0] = LoadValue(rl_src[0], kCoreReg);
GenNullCheck(rl_src[0].s_reg_low, rl_src[0].low_reg, opt_flags);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
LoadWordDisp(rl_src[0].low_reg, len_offset, rl_result.low_reg);
StoreValue(rl_dest, rl_result);
break;
case Instruction::CONST_STRING:
case Instruction::CONST_STRING_JUMBO:
GenConstString(vB, rl_dest);
break;
case Instruction::CONST_CLASS:
GenConstClass(vB, rl_dest);
break;
case Instruction::FILL_ARRAY_DATA:
GenFillArrayData(vB, rl_src[0]);
break;
case Instruction::FILLED_NEW_ARRAY:
GenFilledNewArray(mir_graph_->NewMemCallInfo(bb, mir, kStatic,
false /* not range */));
break;
case Instruction::FILLED_NEW_ARRAY_RANGE:
GenFilledNewArray(mir_graph_->NewMemCallInfo(bb, mir, kStatic,
true /* range */));
break;
case Instruction::NEW_ARRAY:
GenNewArray(vC, rl_dest, rl_src[0]);
break;
case Instruction::GOTO:
case Instruction::GOTO_16:
case Instruction::GOTO_32:
if (mir_graph_->IsBackedge(bb, bb->taken)) {
GenSuspendTestAndBranch(opt_flags, &label_list[bb->taken->id]);
} else {
OpUnconditionalBranch(&label_list[bb->taken->id]);
}
break;
case Instruction::PACKED_SWITCH:
GenPackedSwitch(mir, vB, rl_src[0]);
break;
case Instruction::SPARSE_SWITCH:
GenSparseSwitch(mir, vB, rl_src[0]);
break;
case Instruction::CMPL_FLOAT:
case Instruction::CMPG_FLOAT:
case Instruction::CMPL_DOUBLE:
case Instruction::CMPG_DOUBLE:
GenCmpFP(opcode, rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::CMP_LONG:
GenCmpLong(rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::IF_EQ:
case Instruction::IF_NE:
case Instruction::IF_LT:
case Instruction::IF_GE:
case Instruction::IF_GT:
case Instruction::IF_LE: {
LIR* taken = &label_list[bb->taken->id];
LIR* fall_through = &label_list[bb->fall_through->id];
// Result known at compile time?
if (rl_src[0].is_const && rl_src[1].is_const) {
bool is_taken = EvaluateBranch(opcode, mir_graph_->ConstantValue(rl_src[0].orig_sreg),
mir_graph_->ConstantValue(rl_src[1].orig_sreg));
BasicBlock* target = is_taken ? bb->taken : bb->fall_through;
if (mir_graph_->IsBackedge(bb, target)) {
GenSuspendTest(opt_flags);
}
OpUnconditionalBranch(&label_list[target->id]);
} else {
if (mir_graph_->IsBackwardsBranch(bb)) {
GenSuspendTest(opt_flags);
}
GenCompareAndBranch(opcode, rl_src[0], rl_src[1], taken,
fall_through);
}
break;
}
case Instruction::IF_EQZ:
case Instruction::IF_NEZ:
case Instruction::IF_LTZ:
case Instruction::IF_GEZ:
case Instruction::IF_GTZ:
case Instruction::IF_LEZ: {
LIR* taken = &label_list[bb->taken->id];
LIR* fall_through = &label_list[bb->fall_through->id];
// Result known at compile time?
if (rl_src[0].is_const) {
bool is_taken = EvaluateBranch(opcode, mir_graph_->ConstantValue(rl_src[0].orig_sreg), 0);
BasicBlock* target = is_taken ? bb->taken : bb->fall_through;
if (mir_graph_->IsBackedge(bb, target)) {
GenSuspendTest(opt_flags);
}
OpUnconditionalBranch(&label_list[target->id]);
} else {
if (mir_graph_->IsBackwardsBranch(bb)) {
GenSuspendTest(opt_flags);
}
GenCompareZeroAndBranch(opcode, rl_src[0], taken, fall_through);
}
break;
}
case Instruction::AGET_WIDE:
GenArrayGet(opt_flags, kLong, rl_src[0], rl_src[1], rl_dest, 3);
break;
case Instruction::AGET:
case Instruction::AGET_OBJECT:
GenArrayGet(opt_flags, kWord, rl_src[0], rl_src[1], rl_dest, 2);
break;
case Instruction::AGET_BOOLEAN:
GenArrayGet(opt_flags, kUnsignedByte, rl_src[0], rl_src[1], rl_dest, 0);
break;
case Instruction::AGET_BYTE:
GenArrayGet(opt_flags, kSignedByte, rl_src[0], rl_src[1], rl_dest, 0);
break;
case Instruction::AGET_CHAR:
GenArrayGet(opt_flags, kUnsignedHalf, rl_src[0], rl_src[1], rl_dest, 1);
break;
case Instruction::AGET_SHORT:
GenArrayGet(opt_flags, kSignedHalf, rl_src[0], rl_src[1], rl_dest, 1);
break;
case Instruction::APUT_WIDE:
GenArrayPut(opt_flags, kLong, rl_src[1], rl_src[2], rl_src[0], 3);
break;
case Instruction::APUT:
GenArrayPut(opt_flags, kWord, rl_src[1], rl_src[2], rl_src[0], 2);
break;
case Instruction::APUT_OBJECT:
GenArrayObjPut(opt_flags, rl_src[1], rl_src[2], rl_src[0], 2);
break;
case Instruction::APUT_SHORT:
case Instruction::APUT_CHAR:
GenArrayPut(opt_flags, kUnsignedHalf, rl_src[1], rl_src[2], rl_src[0], 1);
break;
case Instruction::APUT_BYTE:
case Instruction::APUT_BOOLEAN:
GenArrayPut(opt_flags, kUnsignedByte, rl_src[1], rl_src[2],
rl_src[0], 0);
break;
case Instruction::IGET_OBJECT:
GenIGet(vC, opt_flags, kWord, rl_dest, rl_src[0], false, true);
break;
case Instruction::IGET_WIDE:
GenIGet(vC, opt_flags, kLong, rl_dest, rl_src[0], true, false);
break;
case Instruction::IGET:
GenIGet(vC, opt_flags, kWord, rl_dest, rl_src[0], false, false);
break;
case Instruction::IGET_CHAR:
GenIGet(vC, opt_flags, kUnsignedHalf, rl_dest, rl_src[0], false, false);
break;
case Instruction::IGET_SHORT:
GenIGet(vC, opt_flags, kSignedHalf, rl_dest, rl_src[0], false, false);
break;
case Instruction::IGET_BOOLEAN:
case Instruction::IGET_BYTE:
GenIGet(vC, opt_flags, kUnsignedByte, rl_dest, rl_src[0], false, false);
break;
case Instruction::IPUT_WIDE:
GenIPut(vC, opt_flags, kLong, rl_src[0], rl_src[1], true, false);
break;
case Instruction::IPUT_OBJECT:
GenIPut(vC, opt_flags, kWord, rl_src[0], rl_src[1], false, true);
break;
case Instruction::IPUT:
GenIPut(vC, opt_flags, kWord, rl_src[0], rl_src[1], false, false);
break;
case Instruction::IPUT_BOOLEAN:
case Instruction::IPUT_BYTE:
GenIPut(vC, opt_flags, kUnsignedByte, rl_src[0], rl_src[1], false, false);
break;
case Instruction::IPUT_CHAR:
GenIPut(vC, opt_flags, kUnsignedHalf, rl_src[0], rl_src[1], false, false);
break;
case Instruction::IPUT_SHORT:
GenIPut(vC, opt_flags, kSignedHalf, rl_src[0], rl_src[1], false, false);
break;
case Instruction::SGET_OBJECT:
GenSget(vB, rl_dest, false, true);
break;
case Instruction::SGET:
case Instruction::SGET_BOOLEAN:
case Instruction::SGET_BYTE:
case Instruction::SGET_CHAR:
case Instruction::SGET_SHORT:
GenSget(vB, rl_dest, false, false);
break;
case Instruction::SGET_WIDE:
GenSget(vB, rl_dest, true, false);
break;
case Instruction::SPUT_OBJECT:
GenSput(vB, rl_src[0], false, true);
break;
case Instruction::SPUT:
case Instruction::SPUT_BOOLEAN:
case Instruction::SPUT_BYTE:
case Instruction::SPUT_CHAR:
case Instruction::SPUT_SHORT:
GenSput(vB, rl_src[0], false, false);
break;
case Instruction::SPUT_WIDE:
GenSput(vB, rl_src[0], true, false);
break;
case Instruction::INVOKE_STATIC_RANGE:
GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kStatic, true));
break;
case Instruction::INVOKE_STATIC:
GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kStatic, false));
break;
case Instruction::INVOKE_DIRECT:
GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kDirect, false));
break;
case Instruction::INVOKE_DIRECT_RANGE:
GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kDirect, true));
break;
case Instruction::INVOKE_VIRTUAL:
GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kVirtual, false));
break;
case Instruction::INVOKE_VIRTUAL_RANGE:
GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kVirtual, true));
break;
case Instruction::INVOKE_SUPER:
GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kSuper, false));
break;
case Instruction::INVOKE_SUPER_RANGE:
GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kSuper, true));
break;
case Instruction::INVOKE_INTERFACE:
GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kInterface, false));
break;
case Instruction::INVOKE_INTERFACE_RANGE:
GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kInterface, true));
break;
case Instruction::NEG_INT:
case Instruction::NOT_INT:
GenArithOpInt(opcode, rl_dest, rl_src[0], rl_src[0]);
break;
case Instruction::NEG_LONG:
case Instruction::NOT_LONG:
GenArithOpLong(opcode, rl_dest, rl_src[0], rl_src[0]);
break;
case Instruction::NEG_FLOAT:
GenArithOpFloat(opcode, rl_dest, rl_src[0], rl_src[0]);
break;
case Instruction::NEG_DOUBLE:
GenArithOpDouble(opcode, rl_dest, rl_src[0], rl_src[0]);
break;
case Instruction::INT_TO_LONG:
GenIntToLong(rl_dest, rl_src[0]);
break;
case Instruction::LONG_TO_INT:
rl_src[0] = UpdateLocWide(rl_src[0]);
rl_src[0] = WideToNarrow(rl_src[0]);
StoreValue(rl_dest, rl_src[0]);
break;
case Instruction::INT_TO_BYTE:
case Instruction::INT_TO_SHORT:
case Instruction::INT_TO_CHAR:
GenIntNarrowing(opcode, rl_dest, rl_src[0]);
break;
case Instruction::INT_TO_FLOAT:
case Instruction::INT_TO_DOUBLE:
case Instruction::LONG_TO_FLOAT:
case Instruction::LONG_TO_DOUBLE:
case Instruction::FLOAT_TO_INT:
case Instruction::FLOAT_TO_LONG:
case Instruction::FLOAT_TO_DOUBLE:
case Instruction::DOUBLE_TO_INT:
case Instruction::DOUBLE_TO_LONG:
case Instruction::DOUBLE_TO_FLOAT:
GenConversion(opcode, rl_dest, rl_src[0]);
break;
case Instruction::ADD_INT:
case Instruction::ADD_INT_2ADDR:
case Instruction::MUL_INT:
case Instruction::MUL_INT_2ADDR:
case Instruction::AND_INT:
case Instruction::AND_INT_2ADDR:
case Instruction::OR_INT:
case Instruction::OR_INT_2ADDR:
case Instruction::XOR_INT:
case Instruction::XOR_INT_2ADDR:
if (rl_src[0].is_const &&
InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src[0]))) {
GenArithOpIntLit(opcode, rl_dest, rl_src[1],
mir_graph_->ConstantValue(rl_src[0].orig_sreg));
} else if (rl_src[1].is_const &&
InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src[1]))) {
GenArithOpIntLit(opcode, rl_dest, rl_src[0],
mir_graph_->ConstantValue(rl_src[1].orig_sreg));
} else {
GenArithOpInt(opcode, rl_dest, rl_src[0], rl_src[1]);
}
break;
case Instruction::SUB_INT:
case Instruction::SUB_INT_2ADDR:
case Instruction::DIV_INT:
case Instruction::DIV_INT_2ADDR:
case Instruction::REM_INT:
case Instruction::REM_INT_2ADDR:
case Instruction::SHL_INT:
case Instruction::SHL_INT_2ADDR:
case Instruction::SHR_INT:
case Instruction::SHR_INT_2ADDR:
case Instruction::USHR_INT:
case Instruction::USHR_INT_2ADDR:
if (rl_src[1].is_const &&
InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src[1]))) {
GenArithOpIntLit(opcode, rl_dest, rl_src[0], mir_graph_->ConstantValue(rl_src[1]));
} else {
GenArithOpInt(opcode, rl_dest, rl_src[0], rl_src[1]);
}
break;
case Instruction::ADD_LONG:
case Instruction::SUB_LONG:
case Instruction::AND_LONG:
case Instruction::OR_LONG:
case Instruction::XOR_LONG:
case Instruction::ADD_LONG_2ADDR:
case Instruction::SUB_LONG_2ADDR:
case Instruction::AND_LONG_2ADDR:
case Instruction::OR_LONG_2ADDR:
case Instruction::XOR_LONG_2ADDR:
if (rl_src[0].is_const || rl_src[1].is_const) {
GenArithImmOpLong(opcode, rl_dest, rl_src[0], rl_src[1]);
break;
}
// Note: intentional fallthrough.
case Instruction::MUL_LONG:
case Instruction::DIV_LONG:
case Instruction::REM_LONG:
case Instruction::MUL_LONG_2ADDR:
case Instruction::DIV_LONG_2ADDR:
case Instruction::REM_LONG_2ADDR:
GenArithOpLong(opcode, rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::SHL_LONG:
case Instruction::SHR_LONG:
case Instruction::USHR_LONG:
case Instruction::SHL_LONG_2ADDR:
case Instruction::SHR_LONG_2ADDR:
case Instruction::USHR_LONG_2ADDR:
if (rl_src[1].is_const) {
GenShiftImmOpLong(opcode, rl_dest, rl_src[0], rl_src[1]);
} else {
GenShiftOpLong(opcode, rl_dest, rl_src[0], rl_src[1]);
}
break;
case Instruction::ADD_FLOAT:
case Instruction::SUB_FLOAT:
case Instruction::MUL_FLOAT:
case Instruction::DIV_FLOAT:
case Instruction::REM_FLOAT:
case Instruction::ADD_FLOAT_2ADDR:
case Instruction::SUB_FLOAT_2ADDR:
case Instruction::MUL_FLOAT_2ADDR:
case Instruction::DIV_FLOAT_2ADDR:
case Instruction::REM_FLOAT_2ADDR:
GenArithOpFloat(opcode, rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::ADD_DOUBLE:
case Instruction::SUB_DOUBLE:
case Instruction::MUL_DOUBLE:
case Instruction::DIV_DOUBLE:
case Instruction::REM_DOUBLE:
case Instruction::ADD_DOUBLE_2ADDR:
case Instruction::SUB_DOUBLE_2ADDR:
case Instruction::MUL_DOUBLE_2ADDR:
case Instruction::DIV_DOUBLE_2ADDR:
case Instruction::REM_DOUBLE_2ADDR:
GenArithOpDouble(opcode, rl_dest, rl_src[0], rl_src[1]);
break;
case Instruction::RSUB_INT:
case Instruction::ADD_INT_LIT16:
case Instruction::MUL_INT_LIT16:
case Instruction::DIV_INT_LIT16:
case Instruction::REM_INT_LIT16:
case Instruction::AND_INT_LIT16:
case Instruction::OR_INT_LIT16:
case Instruction::XOR_INT_LIT16:
case Instruction::ADD_INT_LIT8:
case Instruction::RSUB_INT_LIT8:
case Instruction::MUL_INT_LIT8:
case Instruction::DIV_INT_LIT8:
case Instruction::REM_INT_LIT8:
case Instruction::AND_INT_LIT8:
case Instruction::OR_INT_LIT8:
case Instruction::XOR_INT_LIT8:
case Instruction::SHL_INT_LIT8:
case Instruction::SHR_INT_LIT8:
case Instruction::USHR_INT_LIT8:
GenArithOpIntLit(opcode, rl_dest, rl_src[0], vC);
break;
default:
LOG(FATAL) << "Unexpected opcode: " << opcode;
}
} // NOLINT(readability/fn_size)
// Process extended MIR instructions
void Mir2Lir::HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
case kMirOpCopy: {
RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
RegLocation rl_dest = mir_graph_->GetDest(mir);
StoreValue(rl_dest, rl_src);
break;
}
case kMirOpFusedCmplFloat:
GenFusedFPCmpBranch(bb, mir, false /*gt bias*/, false /*double*/);
break;
case kMirOpFusedCmpgFloat:
GenFusedFPCmpBranch(bb, mir, true /*gt bias*/, false /*double*/);
break;
case kMirOpFusedCmplDouble:
GenFusedFPCmpBranch(bb, mir, false /*gt bias*/, true /*double*/);
break;
case kMirOpFusedCmpgDouble:
GenFusedFPCmpBranch(bb, mir, true /*gt bias*/, true /*double*/);
break;
case kMirOpFusedCmpLong:
GenFusedLongCmpBranch(bb, mir);
break;
case kMirOpSelect:
GenSelect(bb, mir);
break;
default:
break;
}
}
// Handle the content in each basic block.
bool Mir2Lir::MethodBlockCodeGen(BasicBlock* bb) {
if (bb->block_type == kDead) return false;
current_dalvik_offset_ = bb->start_offset;
MIR* mir;
int block_id = bb->id;
block_label_list_[block_id].operands[0] = bb->start_offset;
// Insert the block label.
block_label_list_[block_id].opcode = kPseudoNormalBlockLabel;
AppendLIR(&block_label_list_[block_id]);
LIR* head_lir = NULL;
// If this is a catch block, export the start address.
if (bb->catch_entry) {
head_lir = NewLIR0(kPseudoExportedPC);
}
// Free temp registers and reset redundant store tracking.
ResetRegPool();
ResetDefTracking();
ClobberAllRegs();
if (bb->block_type == kEntryBlock) {
int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
GenEntrySequence(&mir_graph_->reg_location_[start_vreg],
mir_graph_->reg_location_[mir_graph_->GetMethodSReg()]);
} else if (bb->block_type == kExitBlock) {
GenExitSequence();
}
for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
ResetRegPool();
if (cu_->disable_opt & (1 << kTrackLiveTemps)) {
ClobberAllRegs();
}
if (cu_->disable_opt & (1 << kSuppressLoads)) {
ResetDefTracking();
}
// Reset temp tracking sanity check.
if (kIsDebugBuild) {
live_sreg_ = INVALID_SREG;
}
current_dalvik_offset_ = mir->offset;
int opcode = mir->dalvikInsn.opcode;
LIR* boundary_lir;
// Mark the beginning of a Dalvik instruction for line tracking.
char* inst_str = cu_->verbose ?
mir_graph_->GetDalvikDisassembly(mir) : NULL;
boundary_lir = MarkBoundary(mir->offset, inst_str);
// Remember the first LIR for this block.
if (head_lir == NULL) {
head_lir = boundary_lir;
// Set the first boundary_lir as a scheduling barrier.
head_lir->def_mask = ENCODE_ALL;
}
if (opcode == kMirOpCheck) {
// Combine check and work halves of throwing instruction.
MIR* work_half = mir->meta.throw_insn;
mir->dalvikInsn.opcode = work_half->dalvikInsn.opcode;
opcode = work_half->dalvikInsn.opcode;
SSARepresentation* ssa_rep = work_half->ssa_rep;
work_half->ssa_rep = mir->ssa_rep;
mir->ssa_rep = ssa_rep;
work_half->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpCheckPart2);
}
if (opcode >= kMirOpFirst) {
HandleExtendedMethodMIR(bb, mir);
continue;
}
CompileDalvikInstruction(mir, bb, block_label_list_);
}
if (head_lir) {
// Eliminate redundant loads/stores and delay stores into later slots.
ApplyLocalOptimizations(head_lir, last_lir_insn_);
// Generate an unconditional branch to the fallthrough block.
if (bb->fall_through) {
OpUnconditionalBranch(&block_label_list_[bb->fall_through->id]);
}
}
return false;
}
void Mir2Lir::SpecialMIR2LIR(SpecialCaseHandler special_case) {
// Find the first DalvikByteCode block.
int num_reachable_blocks = mir_graph_->GetNumReachableBlocks();
BasicBlock*bb = NULL;
for (int idx = 0; idx < num_reachable_blocks; idx++) {
// TODO: no direct access of growable lists.
int dfs_index = mir_graph_->GetDfsOrder()->Get(idx);
bb = mir_graph_->GetBasicBlock(dfs_index);
if (bb->block_type == kDalvikByteCode) {
break;
}
}
if (bb == NULL) {
return;
}
DCHECK_EQ(bb->start_offset, 0);
DCHECK(bb->first_mir_insn != NULL);
// Get the first instruction.
MIR* mir = bb->first_mir_insn;
// Free temp registers and reset redundant store tracking.
ResetRegPool();
ResetDefTracking();
ClobberAllRegs();
GenSpecialCase(bb, mir, special_case);
}
void Mir2Lir::MethodMIR2LIR() {
// Hold the labels of each block.
block_label_list_ =
static_cast<LIR*>(arena_->Alloc(sizeof(LIR) * mir_graph_->GetNumBlocks(),
ArenaAllocator::kAllocLIR));
PreOrderDfsIterator iter(mir_graph_, false /* not iterative */);
for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
MethodBlockCodeGen(bb);
}
HandleSuspendLaunchPads();
HandleThrowLaunchPads();
HandleIntrinsicLaunchPads();
if (!(cu_->disable_opt & (1 << kSafeOptimizations))) {
RemoveRedundantBranches();
}
}
} // namespace art