/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "codegen_x86.h"
#include "dex/quick/mir_to_lir-inl.h"
#include "x86_lir.h"
namespace art {
#define MAX_ASSEMBLER_RETRIES 50
const X86EncodingMap X86Mir2Lir::EncodingMap[kX86Last] = {
{ kX8632BitData, kData, IS_UNARY_OP, { 0, 0, 0x00, 0, 0, 0, 0, 4 }, "data", "0x!0d" },
{ kX86Bkpt, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0 }, "int 3", "" },
{ kX86Nop, kNop, IS_UNARY_OP, { 0, 0, 0x90, 0, 0, 0, 0, 0 }, "nop", "" },
#define ENCODING_MAP(opname, mem_use, reg_def, uses_ccodes, \
rm8_r8, rm32_r32, \
r8_rm8, r32_rm32, \
ax8_i8, ax32_i32, \
rm8_i8, rm8_i8_modrm, \
rm32_i32, rm32_i32_modrm, \
rm32_i8, rm32_i8_modrm) \
{ kX86 ## opname ## 8MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8MR", "[!0r+!1d],!2r" }, \
{ kX86 ## opname ## 8AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
{ kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8TR", "fs:[!0d],!1r" }, \
{ kX86 ## opname ## 8RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RR", "!0r,!1r" }, \
{ kX86 ## opname ## 8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RM", "!0r,[!1r+!2d]" }, \
{ kX86 ## opname ## 8RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
{ kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RT", "!0r,fs:[!1d]" }, \
{ kX86 ## opname ## 8RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1 }, #opname "8RI", "!0r,!1d" }, \
{ kX86 ## opname ## 8MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
{ kX86 ## opname ## 8AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
{ kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8TI", "fs:[!0d],!1d" }, \
\
{ kX86 ## opname ## 16MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16MR", "[!0r+!1d],!2r" }, \
{ kX86 ## opname ## 16AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
{ kX86 ## opname ## 16TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16TR", "fs:[!0d],!1r" }, \
{ kX86 ## opname ## 16RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RR", "!0r,!1r" }, \
{ kX86 ## opname ## 16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RM", "!0r,[!1r+!2d]" }, \
{ kX86 ## opname ## 16RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
{ kX86 ## opname ## 16RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RT", "!0r,fs:[!1d]" }, \
{ kX86 ## opname ## 16RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2 }, #opname "16RI", "!0r,!1d" }, \
{ kX86 ## opname ## 16MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16MI", "[!0r+!1d],!2d" }, \
{ kX86 ## opname ## 16AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
{ kX86 ## opname ## 16TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16TI", "fs:[!0d],!1d" }, \
{ kX86 ## opname ## 16RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16RI8", "!0r,!1d" }, \
{ kX86 ## opname ## 16MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16MI8", "[!0r+!1d],!2d" }, \
{ kX86 ## opname ## 16AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
{ kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16TI8", "fs:[!0d],!1d" }, \
\
{ kX86 ## opname ## 32MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32MR", "[!0r+!1d],!2r" }, \
{ kX86 ## opname ## 32AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
{ kX86 ## opname ## 32TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32TR", "fs:[!0d],!1r" }, \
{ kX86 ## opname ## 32RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RR", "!0r,!1r" }, \
{ kX86 ## opname ## 32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RM", "!0r,[!1r+!2d]" }, \
{ kX86 ## opname ## 32RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
{ kX86 ## opname ## 32RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RT", "!0r,fs:[!1d]" }, \
{ kX86 ## opname ## 32RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4 }, #opname "32RI", "!0r,!1d" }, \
{ kX86 ## opname ## 32MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32MI", "[!0r+!1d],!2d" }, \
{ kX86 ## opname ## 32AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
{ kX86 ## opname ## 32TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32TI", "fs:[!0d],!1d" }, \
{ kX86 ## opname ## 32RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32RI8", "!0r,!1d" }, \
{ kX86 ## opname ## 32MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32MI8", "[!0r+!1d],!2d" }, \
{ kX86 ## opname ## 32AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
{ kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32TI8", "fs:[!0d],!1d" }
ENCODING_MAP(Add, IS_LOAD | IS_STORE, REG_DEF0, 0,
0x00 /* RegMem8/Reg8 */, 0x01 /* RegMem32/Reg32 */,
0x02 /* Reg8/RegMem8 */, 0x03 /* Reg32/RegMem32 */,
0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */,
0x80, 0x0 /* RegMem8/imm8 */,
0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */),
ENCODING_MAP(Or, IS_LOAD | IS_STORE, REG_DEF0, 0,
0x08 /* RegMem8/Reg8 */, 0x09 /* RegMem32/Reg32 */,
0x0A /* Reg8/RegMem8 */, 0x0B /* Reg32/RegMem32 */,
0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */,
0x80, 0x1 /* RegMem8/imm8 */,
0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */),
ENCODING_MAP(Adc, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
0x10 /* RegMem8/Reg8 */, 0x11 /* RegMem32/Reg32 */,
0x12 /* Reg8/RegMem8 */, 0x13 /* Reg32/RegMem32 */,
0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */,
0x80, 0x2 /* RegMem8/imm8 */,
0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */),
ENCODING_MAP(Sbb, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
0x18 /* RegMem8/Reg8 */, 0x19 /* RegMem32/Reg32 */,
0x1A /* Reg8/RegMem8 */, 0x1B /* Reg32/RegMem32 */,
0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */,
0x80, 0x3 /* RegMem8/imm8 */,
0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */),
ENCODING_MAP(And, IS_LOAD | IS_STORE, REG_DEF0, 0,
0x20 /* RegMem8/Reg8 */, 0x21 /* RegMem32/Reg32 */,
0x22 /* Reg8/RegMem8 */, 0x23 /* Reg32/RegMem32 */,
0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */,
0x80, 0x4 /* RegMem8/imm8 */,
0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */),
ENCODING_MAP(Sub, IS_LOAD | IS_STORE, REG_DEF0, 0,
0x28 /* RegMem8/Reg8 */, 0x29 /* RegMem32/Reg32 */,
0x2A /* Reg8/RegMem8 */, 0x2B /* Reg32/RegMem32 */,
0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */,
0x80, 0x5 /* RegMem8/imm8 */,
0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */),
ENCODING_MAP(Xor, IS_LOAD | IS_STORE, REG_DEF0, 0,
0x30 /* RegMem8/Reg8 */, 0x31 /* RegMem32/Reg32 */,
0x32 /* Reg8/RegMem8 */, 0x33 /* Reg32/RegMem32 */,
0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */,
0x80, 0x6 /* RegMem8/imm8 */,
0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */),
ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
0x38 /* RegMem8/Reg8 */, 0x39 /* RegMem32/Reg32 */,
0x3A /* Reg8/RegMem8 */, 0x3B /* Reg32/RegMem32 */,
0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */,
0x80, 0x7 /* RegMem8/imm8 */,
0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */),
#undef ENCODING_MAP
{ kX86Imul16RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RRI", "!0r,!1r,!2d" },
{ kX86Imul16RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RMI", "!0r,[!1r+!2d],!3d" },
{ kX86Imul16RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
{ kX86Imul32RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RRI", "!0r,!1r,!2d" },
{ kX86Imul32RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RMI", "!0r,[!1r+!2d],!3d" },
{ kX86Imul32RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
{ kX86Imul32RRI8, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RRI8", "!0r,!1r,!2d" },
{ kX86Imul32RMI8, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" },
{ kX86Imul32RAI8, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
{ kX86Mov8MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8MR", "[!0r+!1d],!2r" },
{ kX86Mov8AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" },
{ kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8TR", "fs:[!0d],!1r" },
{ kX86Mov8RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RR", "!0r,!1r" },
{ kX86Mov8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RM", "!0r,[!1r+!2d]" },
{ kX86Mov8RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" },
{ kX86Mov8RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RT", "!0r,fs:[!1d]" },
{ kX86Mov8RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB0, 0, 0, 0, 0, 1 }, "Mov8RI", "!0r,!1d" },
{ kX86Mov8MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8MI", "[!0r+!1d],!2d" },
{ kX86Mov8AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" },
{ kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8TI", "fs:[!0d],!1d" },
{ kX86Mov16MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16MR", "[!0r+!1d],!2r" },
{ kX86Mov16AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" },
{ kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0 }, "Mov16TR", "fs:[!0d],!1r" },
{ kX86Mov16RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RR", "!0r,!1r" },
{ kX86Mov16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RM", "!0r,[!1r+!2d]" },
{ kX86Mov16RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" },
{ kX86Mov16RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RT", "!0r,fs:[!1d]" },
{ kX86Mov16RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0x66, 0, 0xB8, 0, 0, 0, 0, 2 }, "Mov16RI", "!0r,!1d" },
{ kX86Mov16MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16MI", "[!0r+!1d],!2d" },
{ kX86Mov16AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" },
{ kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2 }, "Mov16TI", "fs:[!0d],!1d" },
{ kX86Mov32MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32MR", "[!0r+!1d],!2r" },
{ kX86Mov32AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" },
{ kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32TR", "fs:[!0d],!1r" },
{ kX86Mov32RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RR", "!0r,!1r" },
{ kX86Mov32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RM", "!0r,[!1r+!2d]" },
{ kX86Mov32RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
{ kX86Mov32RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RT", "!0r,fs:[!1d]" },
{ kX86Mov32RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "Mov32RI", "!0r,!1d" },
{ kX86Mov32MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32MI", "[!0r+!1d],!2d" },
{ kX86Mov32AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" },
{ kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32TI", "fs:[!0d],!1d" },
{ kX86Lea32RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8D, 0, 0, 0, 0, 0 }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
#define SHIFT_ENCODING_MAP(opname, modrm_opcode) \
{ kX86 ## opname ## 8RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8RI", "!0r,!1d" }, \
{ kX86 ## opname ## 8MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
{ kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
{ kX86 ## opname ## 8RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8RC", "!0r,cl" }, \
{ kX86 ## opname ## 8MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8MC", "[!0r+!1d],cl" }, \
{ kX86 ## opname ## 8AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \
\
{ kX86 ## opname ## 16RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16RI", "!0r,!1d" }, \
{ kX86 ## opname ## 16MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16MI", "[!0r+!1d],!2d" }, \
{ kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
{ kX86 ## opname ## 16RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16RC", "!0r,cl" }, \
{ kX86 ## opname ## 16MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16MC", "[!0r+!1d],cl" }, \
{ kX86 ## opname ## 16AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \
\
{ kX86 ## opname ## 32RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32RI", "!0r,!1d" }, \
{ kX86 ## opname ## 32MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32MI", "[!0r+!1d],!2d" }, \
{ kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
{ kX86 ## opname ## 32RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32RC", "!0r,cl" }, \
{ kX86 ## opname ## 32MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32MC", "[!0r+!1d],cl" }, \
{ kX86 ## opname ## 32AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" }
SHIFT_ENCODING_MAP(Rol, 0x0),
SHIFT_ENCODING_MAP(Ror, 0x1),
SHIFT_ENCODING_MAP(Rcl, 0x2),
SHIFT_ENCODING_MAP(Rcr, 0x3),
SHIFT_ENCODING_MAP(Sal, 0x4),
SHIFT_ENCODING_MAP(Shr, 0x5),
SHIFT_ENCODING_MAP(Sar, 0x7),
#undef SHIFT_ENCODING_MAP
{ kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0}, "Cmc", "" },
{ kX86Test8RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8RI", "!0r,!1d" },
{ kX86Test8MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8MI", "[!0r+!1d],!2d" },
{ kX86Test8AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" },
{ kX86Test16RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16RI", "!0r,!1d" },
{ kX86Test16MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16MI", "[!0r+!1d],!2d" },
{ kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" },
{ kX86Test32RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32RI", "!0r,!1d" },
{ kX86Test32MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32MI", "[!0r+!1d],!2d" },
{ kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" },
{ kX86Test32RR, kRegReg, IS_BINARY_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0x85, 0, 0, 0, 0, 0}, "Test32RR", "!0r,!1r" },
#define UNARY_ENCODING_MAP(opname, modrm, is_store, sets_ccodes, \
reg, reg_kind, reg_flags, \
mem, mem_kind, mem_flags, \
arr, arr_kind, arr_flags, imm, \
b_flags, hw_flags, w_flags, \
b_format, hw_format, w_format) \
{ kX86 ## opname ## 8 ## reg, reg_kind, reg_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #reg, #b_format "!0r" }, \
{ kX86 ## opname ## 8 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #mem, #b_format "[!0r+!1d]" }, \
{ kX86 ## opname ## 8 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #arr, #b_format "[!0r+!1r<<!2d+!3d]" }, \
{ kX86 ## opname ## 16 ## reg, reg_kind, reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #reg, #hw_format "!0r" }, \
{ kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #mem, #hw_format "[!0r+!1d]" }, \
{ kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #arr, #hw_format "[!0r+!1r<<!2d+!3d]" }, \
{ kX86 ## opname ## 32 ## reg, reg_kind, reg_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #reg, #w_format "!0r" }, \
{ kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #mem, #w_format "[!0r+!1d]" }, \
{ kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #arr, #w_format "[!0r+!1r<<!2d+!3d]" }
UNARY_ENCODING_MAP(Not, 0x2, IS_STORE, 0, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
UNARY_ENCODING_MAP(Neg, 0x3, IS_STORE, SETS_CCODES, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
UNARY_ENCODING_MAP(Mul, 0x4, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
UNARY_ENCODING_MAP(Imul, 0x5, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
UNARY_ENCODING_MAP(Divmod, 0x6, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
UNARY_ENCODING_MAP(Idivmod, 0x7, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
#undef UNARY_ENCODING_MAP
#define EXT_0F_ENCODING_MAP(opname, prefix, opcode, reg_def) \
{ kX86 ## opname ## RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RR", "!0r,!1r" }, \
{ kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RM", "!0r,[!1r+!2d]" }, \
{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10, REG_DEF0),
{ kX86MovsdMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdMR", "[!0r+!1d],!2r" },
{ kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" },
EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10, REG_DEF0),
{ kX86MovssMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssMR", "[!0r+!1d],!2r" },
{ kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" },
EXT_0F_ENCODING_MAP(Cvtsi2sd, 0xF2, 0x2A, REG_DEF0),
EXT_0F_ENCODING_MAP(Cvtsi2ss, 0xF3, 0x2A, REG_DEF0),
EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C, REG_DEF0),
EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C, REG_DEF0),
EXT_0F_ENCODING_MAP(Cvtsd2si, 0xF2, 0x2D, REG_DEF0),
EXT_0F_ENCODING_MAP(Cvtss2si, 0xF3, 0x2D, REG_DEF0),
EXT_0F_ENCODING_MAP(Ucomisd, 0x66, 0x2E, SETS_CCODES),
EXT_0F_ENCODING_MAP(Ucomiss, 0x00, 0x2E, SETS_CCODES),
EXT_0F_ENCODING_MAP(Comisd, 0x66, 0x2F, SETS_CCODES),
EXT_0F_ENCODING_MAP(Comiss, 0x00, 0x2F, SETS_CCODES),
EXT_0F_ENCODING_MAP(Orps, 0x00, 0x56, REG_DEF0),
EXT_0F_ENCODING_MAP(Xorps, 0x00, 0x57, REG_DEF0),
EXT_0F_ENCODING_MAP(Addsd, 0xF2, 0x58, REG_DEF0),
EXT_0F_ENCODING_MAP(Addss, 0xF3, 0x58, REG_DEF0),
EXT_0F_ENCODING_MAP(Mulsd, 0xF2, 0x59, REG_DEF0),
EXT_0F_ENCODING_MAP(Mulss, 0xF3, 0x59, REG_DEF0),
EXT_0F_ENCODING_MAP(Cvtsd2ss, 0xF2, 0x5A, REG_DEF0),
EXT_0F_ENCODING_MAP(Cvtss2sd, 0xF3, 0x5A, REG_DEF0),
EXT_0F_ENCODING_MAP(Subsd, 0xF2, 0x5C, REG_DEF0),
EXT_0F_ENCODING_MAP(Subss, 0xF3, 0x5C, REG_DEF0),
EXT_0F_ENCODING_MAP(Divsd, 0xF2, 0x5E, REG_DEF0),
EXT_0F_ENCODING_MAP(Divss, 0xF3, 0x5E, REG_DEF0),
{ kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1 }, "PsrlqRI", "!0r,!1d" },
{ kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1 }, "PsllqRI", "!0r,!1d" },
EXT_0F_ENCODING_MAP(Movdxr, 0x66, 0x6E, REG_DEF0),
{ kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxRR", "!0r,!1r" },
{ kX86MovdrxMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxMR", "[!0r+!1d],!2r" },
{ kX86MovdrxAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
{ kX86Set8R, kRegCond, IS_BINARY_OP | REG_DEF0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8R", "!1c !0r" },
{ kX86Set8M, kMemCond, IS_STORE | IS_TERTIARY_OP | REG_USE0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8M", "!2c [!0r+!1d]" },
{ kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" },
// TODO: load/store?
// Encode the modrm opcode as an extra opcode byte to avoid computation during assembly.
{ kX86Mfence, kReg, NO_OPERAND, { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0 }, "Mfence", "" },
EXT_0F_ENCODING_MAP(Imul16, 0x66, 0xAF, REG_DEF0 | SETS_CCODES),
EXT_0F_ENCODING_MAP(Imul32, 0x00, 0xAF, REG_DEF0 | SETS_CCODES),
{ kX86CmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "!0r,!1r" },
{ kX86CmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1d],!2r" },
{ kX86CmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
{ kX86LockCmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "!0r,!1r" },
{ kX86LockCmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1d],!2r" },
{ kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
EXT_0F_ENCODING_MAP(Movzx8, 0x00, 0xB6, REG_DEF0),
EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7, REG_DEF0),
EXT_0F_ENCODING_MAP(Movsx8, 0x00, 0xBE, REG_DEF0),
EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF, REG_DEF0),
#undef EXT_0F_ENCODING_MAP
{ kX86Jcc8, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x70, 0, 0, 0, 0, 0 }, "Jcc8", "!1c !0t" },
{ kX86Jcc32, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x0F, 0x80, 0, 0, 0, 0 }, "Jcc32", "!1c !0t" },
{ kX86Jmp8, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xEB, 0, 0, 0, 0, 0 }, "Jmp8", "!0t" },
{ kX86Jmp32, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xE9, 0, 0, 0, 0, 0 }, "Jmp32", "!0t" },
{ kX86JmpR, kJmp, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xFF, 0, 0, 4, 0, 0 }, "JmpR", "!0r" },
{ kX86JmpT, kJmp, IS_UNARY_OP | IS_BRANCH | IS_LOAD, { THREAD_PREFIX, 0, 0xFF, 0, 0, 4, 0, 0 }, "JmpT", "fs:[!0d]" },
{ kX86CallR, kCall, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xE8, 0, 0, 0, 0, 0 }, "CallR", "!0r" },
{ kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallM", "[!0r+!1d]" },
{ kX86CallA, kCall, IS_QUAD_OP | IS_BRANCH | IS_LOAD | REG_USE01, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallA", "[!0r+!1r<<!2d+!3d]" },
{ kX86CallT, kCall, IS_UNARY_OP | IS_BRANCH | IS_LOAD, { THREAD_PREFIX, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallT", "fs:[!0d]" },
{ kX86Ret, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xC3, 0, 0, 0, 0, 0 }, "Ret", "" },
{ kX86StartOfMethod, kMacro, IS_UNARY_OP | SETS_CCODES, { 0, 0, 0, 0, 0, 0, 0, 0 }, "StartOfMethod", "!0r" },
{ kX86PcRelLoadRA, kPcRel, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "PcRelLoadRA", "!0r,[!1r+!2r<<!3d+!4p]" },
{ kX86PcRelAdr, kPcRel, IS_LOAD | IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "PcRelAdr", "!0r,!1d" },
};
static size_t ComputeSize(const X86EncodingMap* entry, int base, int displacement, bool has_sib) {
size_t size = 0;
if (entry->skeleton.prefix1 > 0) {
++size;
if (entry->skeleton.prefix2 > 0) {
++size;
}
}
++size; // opcode
if (entry->skeleton.opcode == 0x0F) {
++size;
if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
++size;
}
}
++size; // modrm
if (has_sib || base == rX86_SP) {
// SP requires a SIB byte.
++size;
}
if (displacement != 0 || base == rBP) {
// BP requires an explicit displacement, even when it's 0.
if (entry->opcode != kX86Lea32RA) {
DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), 0ULL) << entry->name;
}
size += IS_SIMM8(displacement) ? 1 : 4;
}
size += entry->skeleton.immediate_bytes;
return size;
}
int X86Mir2Lir::GetInsnSize(LIR* lir) {
const X86EncodingMap* entry = &X86Mir2Lir::EncodingMap[lir->opcode];
switch (entry->kind) {
case kData:
return 4; // 4 bytes of data
case kNop:
return lir->operands[0]; // length of nop is sole operand
case kNullary:
return 1; // 1 byte of opcode
case kReg: // lir operands - 0: reg
return ComputeSize(entry, 0, 0, false);
case kMem: // lir operands - 0: base, 1: disp
return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp
return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
case kThreadReg: // lir operands - 0: disp, 1: reg
return ComputeSize(entry, 0, lir->operands[0], false);
case kRegReg:
return ComputeSize(entry, 0, 0, false);
case kRegRegStore:
return ComputeSize(entry, 0, 0, false);
case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
case kRegThread: // lir operands - 0: reg, 1: disp
return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
case kRegImm: { // lir operands - 0: reg, 1: immediate
size_t size = ComputeSize(entry, 0, 0, false);
if (entry->skeleton.ax_opcode == 0) {
return size;
} else {
// AX opcodes don't require the modrm byte.
int reg = lir->operands[0];
return size - (reg == rAX ? 1 : 0);
}
}
case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate
return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
case kArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
case kThreadImm: // lir operands - 0: disp, 1: imm
return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
case kRegRegImm: // lir operands - 0: reg, 1: reg, 2: imm
return ComputeSize(entry, 0, 0, false);
case kRegMemImm: // lir operands - 0: reg, 1: base, 2: disp, 3: imm
return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
case kRegArrayImm: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm
return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
case kMovRegImm: // lir operands - 0: reg, 1: immediate
return 1 + entry->skeleton.immediate_bytes;
case kShiftRegImm: // lir operands - 0: reg, 1: immediate
// Shift by immediate one has a shorter opcode.
return ComputeSize(entry, 0, 0, false) - (lir->operands[1] == 1 ? 1 : 0);
case kShiftMemImm: // lir operands - 0: base, 1: disp, 2: immediate
// Shift by immediate one has a shorter opcode.
return ComputeSize(entry, lir->operands[0], lir->operands[1], false) -
(lir->operands[2] == 1 ? 1 : 0);
case kShiftArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
// Shift by immediate one has a shorter opcode.
return ComputeSize(entry, lir->operands[0], lir->operands[3], true) -
(lir->operands[4] == 1 ? 1 : 0);
case kShiftRegCl:
return ComputeSize(entry, 0, 0, false);
case kShiftMemCl: // lir operands - 0: base, 1: disp, 2: cl
return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
case kShiftArrayCl: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
case kRegCond: // lir operands - 0: reg, 1: cond
return ComputeSize(entry, 0, 0, false);
case kMemCond: // lir operands - 0: base, 1: disp, 2: cond
return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
case kArrayCond: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond
return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
case kJcc:
if (lir->opcode == kX86Jcc8) {
return 2; // opcode + rel8
} else {
DCHECK(lir->opcode == kX86Jcc32);
return 6; // 2 byte opcode + rel32
}
case kJmp:
if (lir->opcode == kX86Jmp8) {
return 2; // opcode + rel8
} else if (lir->opcode == kX86Jmp32) {
return 5; // opcode + rel32
} else if (lir->opcode == kX86JmpT) {
return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
} else {
DCHECK(lir->opcode == kX86JmpR);
return 2; // opcode + modrm
}
case kCall:
switch (lir->opcode) {
case kX86CallR: return 2; // opcode modrm
case kX86CallM: // lir operands - 0: base, 1: disp
return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
case kX86CallA: // lir operands - 0: base, 1: index, 2: scale, 3: disp
return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
case kX86CallT: // lir operands - 0: disp
return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
default:
break;
}
break;
case kPcRel:
if (entry->opcode == kX86PcRelLoadRA) {
// lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
return ComputeSize(entry, lir->operands[1], 0x12345678, true);
} else {
DCHECK(entry->opcode == kX86PcRelAdr);
return 5; // opcode with reg + 4 byte immediate
}
case kMacro:
DCHECK_EQ(lir->opcode, static_cast<int>(kX86StartOfMethod));
return 5 /* call opcode + 4 byte displacement */ + 1 /* pop reg */ +
ComputeSize(&X86Mir2Lir::EncodingMap[kX86Sub32RI], 0, 0, false) -
(lir->operands[0] == rAX ? 1 : 0); // shorter ax encoding
default:
break;
}
UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name;
return 0;
}
static uint8_t ModrmForDisp(int base, int disp) {
// BP requires an explicit disp, so do not omit it in the 0 case
if (disp == 0 && base != rBP) {
return 0;
} else if (IS_SIMM8(disp)) {
return 1;
} else {
return 2;
}
}
void X86Mir2Lir::EmitDisp(int base, int disp) {
// BP requires an explicit disp, so do not omit it in the 0 case
if (disp == 0 && base != rBP) {
return;
} else if (IS_SIMM8(disp)) {
code_buffer_.push_back(disp & 0xFF);
} else {
code_buffer_.push_back(disp & 0xFF);
code_buffer_.push_back((disp >> 8) & 0xFF);
code_buffer_.push_back((disp >> 16) & 0xFF);
code_buffer_.push_back((disp >> 24) & 0xFF);
}
}
void X86Mir2Lir::EmitOpReg(const X86EncodingMap* entry, uint8_t reg) {
if (entry->skeleton.prefix1 != 0) {
code_buffer_.push_back(entry->skeleton.prefix1);
if (entry->skeleton.prefix2 != 0) {
code_buffer_.push_back(entry->skeleton.prefix2);
}
} else {
DCHECK_EQ(0, entry->skeleton.prefix2);
}
code_buffer_.push_back(entry->skeleton.opcode);
if (entry->skeleton.opcode == 0x0F) {
code_buffer_.push_back(entry->skeleton.extra_opcode1);
if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
code_buffer_.push_back(entry->skeleton.extra_opcode2);
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
if (X86_FPREG(reg)) {
reg = reg & X86_FP_REG_MASK;
}
if (reg >= 4) {
DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
<< " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
}
DCHECK_LT(reg, 8);
uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
code_buffer_.push_back(modrm);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
void X86Mir2Lir::EmitOpMem(const X86EncodingMap* entry, uint8_t base, int disp) {
if (entry->skeleton.prefix1 != 0) {
code_buffer_.push_back(entry->skeleton.prefix1);
if (entry->skeleton.prefix2 != 0) {
code_buffer_.push_back(entry->skeleton.prefix2);
}
} else {
DCHECK_EQ(0, entry->skeleton.prefix2);
}
code_buffer_.push_back(entry->skeleton.opcode);
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
DCHECK_LT(entry->skeleton.modrm_opcode, 8);
DCHECK_LT(base, 8);
uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (entry->skeleton.modrm_opcode << 3) | base;
code_buffer_.push_back(modrm);
EmitDisp(base, disp);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
void X86Mir2Lir::EmitMemReg(const X86EncodingMap* entry,
uint8_t base, int disp, uint8_t reg) {
if (entry->skeleton.prefix1 != 0) {
code_buffer_.push_back(entry->skeleton.prefix1);
if (entry->skeleton.prefix2 != 0) {
code_buffer_.push_back(entry->skeleton.prefix2);
}
} else {
DCHECK_EQ(0, entry->skeleton.prefix2);
}
code_buffer_.push_back(entry->skeleton.opcode);
if (entry->skeleton.opcode == 0x0F) {
code_buffer_.push_back(entry->skeleton.extra_opcode1);
if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
code_buffer_.push_back(entry->skeleton.extra_opcode2);
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
if (X86_FPREG(reg)) {
reg = reg & X86_FP_REG_MASK;
}
if (reg >= 4) {
DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
<< " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
}
DCHECK_LT(reg, 8);
DCHECK_LT(base, 8);
uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg << 3) | base;
code_buffer_.push_back(modrm);
if (base == rX86_SP) {
// Special SIB for SP base
code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP);
}
EmitDisp(base, disp);
DCHECK_EQ(0, entry->skeleton.modrm_opcode);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
void X86Mir2Lir::EmitRegMem(const X86EncodingMap* entry,
uint8_t reg, uint8_t base, int disp) {
// Opcode will flip operands.
EmitMemReg(entry, base, disp, reg);
}
void X86Mir2Lir::EmitRegArray(const X86EncodingMap* entry, uint8_t reg, uint8_t base, uint8_t index,
int scale, int disp) {
if (entry->skeleton.prefix1 != 0) {
code_buffer_.push_back(entry->skeleton.prefix1);
if (entry->skeleton.prefix2 != 0) {
code_buffer_.push_back(entry->skeleton.prefix2);
}
} else {
DCHECK_EQ(0, entry->skeleton.prefix2);
}
code_buffer_.push_back(entry->skeleton.opcode);
if (entry->skeleton.opcode == 0x0F) {
code_buffer_.push_back(entry->skeleton.extra_opcode1);
if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
code_buffer_.push_back(entry->skeleton.extra_opcode2);
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
if (X86_FPREG(reg)) {
reg = reg & X86_FP_REG_MASK;
}
DCHECK_LT(reg, 8);
uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg << 3) | rX86_SP;
code_buffer_.push_back(modrm);
DCHECK_LT(scale, 4);
DCHECK_LT(index, 8);
DCHECK_LT(base, 8);
uint8_t sib = (scale << 6) | (index << 3) | base;
code_buffer_.push_back(sib);
EmitDisp(base, disp);
DCHECK_EQ(0, entry->skeleton.modrm_opcode);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
void X86Mir2Lir::EmitArrayReg(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale, int disp,
uint8_t reg) {
// Opcode will flip operands.
EmitRegArray(entry, reg, base, index, scale, disp);
}
void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, uint8_t reg, int disp) {
DCHECK_NE(entry->skeleton.prefix1, 0);
code_buffer_.push_back(entry->skeleton.prefix1);
if (entry->skeleton.prefix2 != 0) {
code_buffer_.push_back(entry->skeleton.prefix2);
}
code_buffer_.push_back(entry->skeleton.opcode);
if (entry->skeleton.opcode == 0x0F) {
code_buffer_.push_back(entry->skeleton.extra_opcode1);
if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
code_buffer_.push_back(entry->skeleton.extra_opcode2);
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
if (X86_FPREG(reg)) {
reg = reg & X86_FP_REG_MASK;
}
if (reg >= 4) {
DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
<< " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
}
DCHECK_LT(reg, 8);
uint8_t modrm = (0 << 6) | (reg << 3) | rBP;
code_buffer_.push_back(modrm);
code_buffer_.push_back(disp & 0xFF);
code_buffer_.push_back((disp >> 8) & 0xFF);
code_buffer_.push_back((disp >> 16) & 0xFF);
code_buffer_.push_back((disp >> 24) & 0xFF);
DCHECK_EQ(0, entry->skeleton.modrm_opcode);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
void X86Mir2Lir::EmitRegReg(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2) {
if (entry->skeleton.prefix1 != 0) {
code_buffer_.push_back(entry->skeleton.prefix1);
if (entry->skeleton.prefix2 != 0) {
code_buffer_.push_back(entry->skeleton.prefix2);
}
} else {
DCHECK_EQ(0, entry->skeleton.prefix2);
}
code_buffer_.push_back(entry->skeleton.opcode);
if (entry->skeleton.opcode == 0x0F) {
code_buffer_.push_back(entry->skeleton.extra_opcode1);
if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
code_buffer_.push_back(entry->skeleton.extra_opcode2);
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
if (X86_FPREG(reg1)) {
reg1 = reg1 & X86_FP_REG_MASK;
}
if (X86_FPREG(reg2)) {
reg2 = reg2 & X86_FP_REG_MASK;
}
DCHECK_LT(reg1, 8);
DCHECK_LT(reg2, 8);
uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
code_buffer_.push_back(modrm);
DCHECK_EQ(0, entry->skeleton.modrm_opcode);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
void X86Mir2Lir::EmitRegRegImm(const X86EncodingMap* entry,
uint8_t reg1, uint8_t reg2, int32_t imm) {
if (entry->skeleton.prefix1 != 0) {
code_buffer_.push_back(entry->skeleton.prefix1);
if (entry->skeleton.prefix2 != 0) {
code_buffer_.push_back(entry->skeleton.prefix2);
}
} else {
DCHECK_EQ(0, entry->skeleton.prefix2);
}
code_buffer_.push_back(entry->skeleton.opcode);
if (entry->skeleton.opcode == 0x0F) {
code_buffer_.push_back(entry->skeleton.extra_opcode1);
if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
code_buffer_.push_back(entry->skeleton.extra_opcode2);
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
if (X86_FPREG(reg1)) {
reg1 = reg1 & X86_FP_REG_MASK;
}
if (X86_FPREG(reg2)) {
reg2 = reg2 & X86_FP_REG_MASK;
}
DCHECK_LT(reg1, 8);
DCHECK_LT(reg2, 8);
uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
code_buffer_.push_back(modrm);
DCHECK_EQ(0, entry->skeleton.modrm_opcode);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
switch (entry->skeleton.immediate_bytes) {
case 1:
DCHECK(IS_SIMM8(imm));
code_buffer_.push_back(imm & 0xFF);
break;
case 2:
DCHECK(IS_SIMM16(imm));
code_buffer_.push_back(imm & 0xFF);
code_buffer_.push_back((imm >> 8) & 0xFF);
break;
case 4:
code_buffer_.push_back(imm & 0xFF);
code_buffer_.push_back((imm >> 8) & 0xFF);
code_buffer_.push_back((imm >> 16) & 0xFF);
code_buffer_.push_back((imm >> 24) & 0xFF);
break;
default:
LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
<< ") for instruction: " << entry->name;
break;
}
}
void X86Mir2Lir::EmitRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
if (entry->skeleton.prefix1 != 0) {
code_buffer_.push_back(entry->skeleton.prefix1);
if (entry->skeleton.prefix2 != 0) {
code_buffer_.push_back(entry->skeleton.prefix2);
}
} else {
DCHECK_EQ(0, entry->skeleton.prefix2);
}
if (reg == rAX && entry->skeleton.ax_opcode != 0) {
code_buffer_.push_back(entry->skeleton.ax_opcode);
} else {
code_buffer_.push_back(entry->skeleton.opcode);
if (entry->skeleton.opcode == 0x0F) {
code_buffer_.push_back(entry->skeleton.extra_opcode1);
if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
code_buffer_.push_back(entry->skeleton.extra_opcode2);
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
if (X86_FPREG(reg)) {
reg = reg & X86_FP_REG_MASK;
}
uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
code_buffer_.push_back(modrm);
}
switch (entry->skeleton.immediate_bytes) {
case 1:
DCHECK(IS_SIMM8(imm));
code_buffer_.push_back(imm & 0xFF);
break;
case 2:
DCHECK(IS_SIMM16(imm));
code_buffer_.push_back(imm & 0xFF);
code_buffer_.push_back((imm >> 8) & 0xFF);
break;
case 4:
code_buffer_.push_back(imm & 0xFF);
code_buffer_.push_back((imm >> 8) & 0xFF);
code_buffer_.push_back((imm >> 16) & 0xFF);
code_buffer_.push_back((imm >> 24) & 0xFF);
break;
default:
LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
<< ") for instruction: " << entry->name;
break;
}
}
void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int disp, int imm) {
if (entry->skeleton.prefix1 != 0) {
code_buffer_.push_back(entry->skeleton.prefix1);
if (entry->skeleton.prefix2 != 0) {
code_buffer_.push_back(entry->skeleton.prefix2);
}
} else {
DCHECK_EQ(0, entry->skeleton.prefix2);
}
code_buffer_.push_back(entry->skeleton.opcode);
if (entry->skeleton.opcode == 0x0F) {
code_buffer_.push_back(entry->skeleton.extra_opcode1);
if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
code_buffer_.push_back(entry->skeleton.extra_opcode2);
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
code_buffer_.push_back(modrm);
code_buffer_.push_back(disp & 0xFF);
code_buffer_.push_back((disp >> 8) & 0xFF);
code_buffer_.push_back((disp >> 16) & 0xFF);
code_buffer_.push_back((disp >> 24) & 0xFF);
switch (entry->skeleton.immediate_bytes) {
case 1:
DCHECK(IS_SIMM8(imm));
code_buffer_.push_back(imm & 0xFF);
break;
case 2:
DCHECK(IS_SIMM16(imm));
code_buffer_.push_back(imm & 0xFF);
code_buffer_.push_back((imm >> 8) & 0xFF);
break;
case 4:
code_buffer_.push_back(imm & 0xFF);
code_buffer_.push_back((imm >> 8) & 0xFF);
code_buffer_.push_back((imm >> 16) & 0xFF);
code_buffer_.push_back((imm >> 24) & 0xFF);
break;
default:
LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
<< ") for instruction: " << entry->name;
break;
}
DCHECK_EQ(entry->skeleton.ax_opcode, 0);
}
void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
DCHECK_LT(reg, 8);
code_buffer_.push_back(0xB8 + reg);
code_buffer_.push_back(imm & 0xFF);
code_buffer_.push_back((imm >> 8) & 0xFF);
code_buffer_.push_back((imm >> 16) & 0xFF);
code_buffer_.push_back((imm >> 24) & 0xFF);
}
void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
if (entry->skeleton.prefix1 != 0) {
code_buffer_.push_back(entry->skeleton.prefix1);
if (entry->skeleton.prefix2 != 0) {
code_buffer_.push_back(entry->skeleton.prefix2);
}
} else {
DCHECK_EQ(0, entry->skeleton.prefix2);
}
if (imm != 1) {
code_buffer_.push_back(entry->skeleton.opcode);
} else {
// Shorter encoding for 1 bit shift
code_buffer_.push_back(entry->skeleton.ax_opcode);
}
if (entry->skeleton.opcode == 0x0F) {
code_buffer_.push_back(entry->skeleton.extra_opcode1);
if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
code_buffer_.push_back(entry->skeleton.extra_opcode2);
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
if (reg >= 4) {
DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
<< " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
}
DCHECK_LT(reg, 8);
uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
code_buffer_.push_back(modrm);
if (imm != 1) {
DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
DCHECK(IS_SIMM8(imm));
code_buffer_.push_back(imm & 0xFF);
}
}
void X86Mir2Lir::EmitShiftRegCl(const X86EncodingMap* entry, uint8_t reg, uint8_t cl) {
DCHECK_EQ(cl, static_cast<uint8_t>(rCX));
if (entry->skeleton.prefix1 != 0) {
code_buffer_.push_back(entry->skeleton.prefix1);
if (entry->skeleton.prefix2 != 0) {
code_buffer_.push_back(entry->skeleton.prefix2);
}
} else {
DCHECK_EQ(0, entry->skeleton.prefix2);
}
code_buffer_.push_back(entry->skeleton.opcode);
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
DCHECK_LT(reg, 8);
uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
code_buffer_.push_back(modrm);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
void X86Mir2Lir::EmitRegCond(const X86EncodingMap* entry, uint8_t reg, uint8_t condition) {
if (entry->skeleton.prefix1 != 0) {
code_buffer_.push_back(entry->skeleton.prefix1);
if (entry->skeleton.prefix2 != 0) {
code_buffer_.push_back(entry->skeleton.prefix2);
}
} else {
DCHECK_EQ(0, entry->skeleton.prefix2);
}
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0x0F, entry->skeleton.opcode);
code_buffer_.push_back(0x0F);
DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
code_buffer_.push_back(0x90 | condition);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
DCHECK_LT(reg, 8);
uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
code_buffer_.push_back(modrm);
DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
}
void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int rel) {
if (entry->opcode == kX86Jmp8) {
DCHECK(IS_SIMM8(rel));
code_buffer_.push_back(0xEB);
code_buffer_.push_back(rel & 0xFF);
} else if (entry->opcode == kX86Jmp32) {
code_buffer_.push_back(0xE9);
code_buffer_.push_back(rel & 0xFF);
code_buffer_.push_back((rel >> 8) & 0xFF);
code_buffer_.push_back((rel >> 16) & 0xFF);
code_buffer_.push_back((rel >> 24) & 0xFF);
} else {
DCHECK(entry->opcode == kX86JmpR);
code_buffer_.push_back(entry->skeleton.opcode);
uint8_t reg = static_cast<uint8_t>(rel);
DCHECK_LT(reg, 8);
uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
code_buffer_.push_back(modrm);
}
}
void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int rel, uint8_t cc) {
DCHECK_LT(cc, 16);
if (entry->opcode == kX86Jcc8) {
DCHECK(IS_SIMM8(rel));
code_buffer_.push_back(0x70 | cc);
code_buffer_.push_back(rel & 0xFF);
} else {
DCHECK(entry->opcode == kX86Jcc32);
code_buffer_.push_back(0x0F);
code_buffer_.push_back(0x80 | cc);
code_buffer_.push_back(rel & 0xFF);
code_buffer_.push_back((rel >> 8) & 0xFF);
code_buffer_.push_back((rel >> 16) & 0xFF);
code_buffer_.push_back((rel >> 24) & 0xFF);
}
}
void X86Mir2Lir::EmitCallMem(const X86EncodingMap* entry, uint8_t base, int disp) {
if (entry->skeleton.prefix1 != 0) {
code_buffer_.push_back(entry->skeleton.prefix1);
if (entry->skeleton.prefix2 != 0) {
code_buffer_.push_back(entry->skeleton.prefix2);
}
} else {
DCHECK_EQ(0, entry->skeleton.prefix2);
}
code_buffer_.push_back(entry->skeleton.opcode);
if (entry->skeleton.opcode == 0x0F) {
code_buffer_.push_back(entry->skeleton.extra_opcode1);
if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
code_buffer_.push_back(entry->skeleton.extra_opcode2);
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (entry->skeleton.modrm_opcode << 3) | base;
code_buffer_.push_back(modrm);
if (base == rX86_SP) {
// Special SIB for SP base
code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP);
}
EmitDisp(base, disp);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int disp) {
DCHECK_NE(entry->skeleton.prefix1, 0);
code_buffer_.push_back(entry->skeleton.prefix1);
if (entry->skeleton.prefix2 != 0) {
code_buffer_.push_back(entry->skeleton.prefix2);
}
code_buffer_.push_back(entry->skeleton.opcode);
if (entry->skeleton.opcode == 0x0F) {
code_buffer_.push_back(entry->skeleton.extra_opcode1);
if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
code_buffer_.push_back(entry->skeleton.extra_opcode2);
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
code_buffer_.push_back(modrm);
code_buffer_.push_back(disp & 0xFF);
code_buffer_.push_back((disp >> 8) & 0xFF);
code_buffer_.push_back((disp >> 16) & 0xFF);
code_buffer_.push_back((disp >> 24) & 0xFF);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, uint8_t reg,
int base_or_table, uint8_t index, int scale, int table_or_disp) {
int disp;
if (entry->opcode == kX86PcRelLoadRA) {
Mir2Lir::SwitchTable *tab_rec = reinterpret_cast<Mir2Lir::SwitchTable*>(table_or_disp);
disp = tab_rec->offset;
} else {
DCHECK(entry->opcode == kX86PcRelAdr);
Mir2Lir::FillArrayData *tab_rec = reinterpret_cast<Mir2Lir::FillArrayData*>(base_or_table);
disp = tab_rec->offset;
}
if (entry->skeleton.prefix1 != 0) {
code_buffer_.push_back(entry->skeleton.prefix1);
if (entry->skeleton.prefix2 != 0) {
code_buffer_.push_back(entry->skeleton.prefix2);
}
} else {
DCHECK_EQ(0, entry->skeleton.prefix2);
}
if (X86_FPREG(reg)) {
reg = reg & X86_FP_REG_MASK;
}
DCHECK_LT(reg, 8);
if (entry->opcode == kX86PcRelLoadRA) {
code_buffer_.push_back(entry->skeleton.opcode);
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
uint8_t modrm = (2 << 6) | (reg << 3) | rX86_SP;
code_buffer_.push_back(modrm);
DCHECK_LT(scale, 4);
DCHECK_LT(index, 8);
DCHECK_LT(base_or_table, 8);
uint8_t base = static_cast<uint8_t>(base_or_table);
uint8_t sib = (scale << 6) | (index << 3) | base;
code_buffer_.push_back(sib);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
} else {
code_buffer_.push_back(entry->skeleton.opcode + reg);
}
code_buffer_.push_back(disp & 0xFF);
code_buffer_.push_back((disp >> 8) & 0xFF);
code_buffer_.push_back((disp >> 16) & 0xFF);
code_buffer_.push_back((disp >> 24) & 0xFF);
DCHECK_EQ(0, entry->skeleton.modrm_opcode);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
}
void X86Mir2Lir::EmitMacro(const X86EncodingMap* entry, uint8_t reg, int offset) {
DCHECK(entry->opcode == kX86StartOfMethod) << entry->name;
code_buffer_.push_back(0xE8); // call +0
code_buffer_.push_back(0);
code_buffer_.push_back(0);
code_buffer_.push_back(0);
code_buffer_.push_back(0);
DCHECK_LT(reg, 8);
code_buffer_.push_back(0x58 + reg); // pop reg
EmitRegImm(&X86Mir2Lir::EncodingMap[kX86Sub32RI], reg, offset + 5 /* size of call +0 */);
}
void X86Mir2Lir::EmitUnimplemented(const X86EncodingMap* entry, LIR* lir) {
UNIMPLEMENTED(WARNING) << "encoding kind for " << entry->name << " "
<< BuildInsnString(entry->fmt, lir, 0);
for (int i = 0; i < GetInsnSize(lir); ++i) {
code_buffer_.push_back(0xCC); // push breakpoint instruction - int 3
}
}
/*
* Assemble the LIR into binary instruction format. Note that we may
* discover that pc-relative displacements may not fit the selected
* instruction. In those cases we will try to substitute a new code
* sequence or request that the trace be shortened and retried.
*/
AssemblerStatus X86Mir2Lir::AssembleInstructions(uintptr_t start_addr) {
LIR *lir;
AssemblerStatus res = kSuccess; // Assume success
const bool kVerbosePcFixup = false;
for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
if (lir->opcode < 0) {
continue;
}
if (lir->flags.is_nop) {
continue;
}
if (lir->flags.pcRelFixup) {
switch (lir->opcode) {
case kX86Jcc8: {
LIR *target_lir = lir->target;
DCHECK(target_lir != NULL);
int delta = 0;
uintptr_t pc;
if (IS_SIMM8(lir->operands[0])) {
pc = lir->offset + 2 /* opcode + rel8 */;
} else {
pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
}
uintptr_t target = target_lir->offset;
delta = target - pc;
if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
if (kVerbosePcFixup) {
LOG(INFO) << "Retry for JCC growth at " << lir->offset
<< " delta: " << delta << " old delta: " << lir->operands[0];
}
lir->opcode = kX86Jcc32;
SetupResourceMasks(lir);
res = kRetryAll;
}
if (kVerbosePcFixup) {
LOG(INFO) << "Source:";
DumpLIRInsn(lir, 0);
LOG(INFO) << "Target:";
DumpLIRInsn(target_lir, 0);
LOG(INFO) << "Delta " << delta;
}
lir->operands[0] = delta;
break;
}
case kX86Jcc32: {
LIR *target_lir = lir->target;
DCHECK(target_lir != NULL);
uintptr_t pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
uintptr_t target = target_lir->offset;
int delta = target - pc;
if (kVerbosePcFixup) {
LOG(INFO) << "Source:";
DumpLIRInsn(lir, 0);
LOG(INFO) << "Target:";
DumpLIRInsn(target_lir, 0);
LOG(INFO) << "Delta " << delta;
}
lir->operands[0] = delta;
break;
}
case kX86Jmp8: {
LIR *target_lir = lir->target;
DCHECK(target_lir != NULL);
int delta = 0;
uintptr_t pc;
if (IS_SIMM8(lir->operands[0])) {
pc = lir->offset + 2 /* opcode + rel8 */;
} else {
pc = lir->offset + 5 /* opcode + rel32 */;
}
uintptr_t target = target_lir->offset;
delta = target - pc;
if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && delta == 0) {
// Useless branch
lir->flags.is_nop = true;
if (kVerbosePcFixup) {
LOG(INFO) << "Retry for useless branch at " << lir->offset;
}
res = kRetryAll;
} else if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
if (kVerbosePcFixup) {
LOG(INFO) << "Retry for JMP growth at " << lir->offset;
}
lir->opcode = kX86Jmp32;
SetupResourceMasks(lir);
res = kRetryAll;
}
lir->operands[0] = delta;
break;
}
case kX86Jmp32: {
LIR *target_lir = lir->target;
DCHECK(target_lir != NULL);
uintptr_t pc = lir->offset + 5 /* opcode + rel32 */;
uintptr_t target = target_lir->offset;
int delta = target - pc;
lir->operands[0] = delta;
break;
}
default:
break;
}
}
/*
* If one of the pc-relative instructions expanded we'll have
* to make another pass. Don't bother to fully assemble the
* instruction.
*/
if (res != kSuccess) {
continue;
}
CHECK_EQ(static_cast<size_t>(lir->offset), code_buffer_.size());
const X86EncodingMap *entry = &X86Mir2Lir::EncodingMap[lir->opcode];
size_t starting_cbuf_size = code_buffer_.size();
switch (entry->kind) {
case kData: // 4 bytes of data
code_buffer_.push_back(lir->operands[0]);
break;
case kNullary: // 1 byte of opcode
DCHECK_EQ(0, entry->skeleton.prefix1);
DCHECK_EQ(0, entry->skeleton.prefix2);
code_buffer_.push_back(entry->skeleton.opcode);
if (entry->skeleton.extra_opcode1 != 0) {
code_buffer_.push_back(entry->skeleton.extra_opcode1);
if (entry->skeleton.extra_opcode2 != 0) {
code_buffer_.push_back(entry->skeleton.extra_opcode2);
}
} else {
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
}
DCHECK_EQ(0, entry->skeleton.modrm_opcode);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
break;
case kReg: // lir operands - 0: reg
EmitOpReg(entry, lir->operands[0]);
break;
case kMem: // lir operands - 0: base, 1: disp
EmitOpMem(entry, lir->operands[0], lir->operands[1]);
break;
case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
EmitMemReg(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
break;
case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
EmitArrayReg(entry, lir->operands[0], lir->operands[1], lir->operands[2],
lir->operands[3], lir->operands[4]);
break;
case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
EmitRegMem(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
break;
case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
EmitRegArray(entry, lir->operands[0], lir->operands[1], lir->operands[2],
lir->operands[3], lir->operands[4]);
break;
case kRegThread: // lir operands - 0: reg, 1: disp
EmitRegThread(entry, lir->operands[0], lir->operands[1]);
break;
case kRegReg: // lir operands - 0: reg1, 1: reg2
EmitRegReg(entry, lir->operands[0], lir->operands[1]);
break;
case kRegRegStore: // lir operands - 0: reg2, 1: reg1
EmitRegReg(entry, lir->operands[1], lir->operands[0]);
break;
case kRegRegImm:
EmitRegRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
break;
case kRegImm: // lir operands - 0: reg, 1: immediate
EmitRegImm(entry, lir->operands[0], lir->operands[1]);
break;
case kThreadImm: // lir operands - 0: disp, 1: immediate
EmitThreadImm(entry, lir->operands[0], lir->operands[1]);
break;
case kMovRegImm: // lir operands - 0: reg, 1: immediate
EmitMovRegImm(entry, lir->operands[0], lir->operands[1]);
break;
case kShiftRegImm: // lir operands - 0: reg, 1: immediate
EmitShiftRegImm(entry, lir->operands[0], lir->operands[1]);
break;
case kShiftRegCl: // lir operands - 0: reg, 1: cl
EmitShiftRegCl(entry, lir->operands[0], lir->operands[1]);
break;
case kRegCond: // lir operands - 0: reg, 1: condition
EmitRegCond(entry, lir->operands[0], lir->operands[1]);
break;
case kJmp: // lir operands - 0: rel
if (entry->opcode == kX86JmpT) {
// This works since the instruction format for jmp and call is basically the same and
// EmitCallThread loads opcode info.
EmitCallThread(entry, lir->operands[0]);
} else {
EmitJmp(entry, lir->operands[0]);
}
break;
case kJcc: // lir operands - 0: rel, 1: CC, target assigned
EmitJcc(entry, lir->operands[0], lir->operands[1]);
break;
case kCall:
switch (entry->opcode) {
case kX86CallM: // lir operands - 0: base, 1: disp
EmitCallMem(entry, lir->operands[0], lir->operands[1]);
break;
case kX86CallT: // lir operands - 0: disp
EmitCallThread(entry, lir->operands[0]);
break;
default:
EmitUnimplemented(entry, lir);
break;
}
break;
case kPcRel: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
EmitPcRel(entry, lir->operands[0], lir->operands[1], lir->operands[2],
lir->operands[3], lir->operands[4]);
break;
case kMacro:
EmitMacro(entry, lir->operands[0], lir->offset);
break;
default:
EmitUnimplemented(entry, lir);
break;
}
CHECK_EQ(static_cast<size_t>(GetInsnSize(lir)),
code_buffer_.size() - starting_cbuf_size)
<< "Instruction size mismatch for entry: " << X86Mir2Lir::EncodingMap[lir->opcode].name;
}
return res;
}
} // namespace art