// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <algorithm>
#include <cmath>
#include "base/logging.h"
#include "cc/animation/timing_function.h"
namespace cc {
namespace {
static const double kBezierEpsilon = 1e-7;
static const int MAX_STEPS = 30;
static double eval_bezier(double x1, double x2, double t) {
const double x1_times_3 = 3.0 * x1;
const double x2_times_3 = 3.0 * x2;
const double h3 = x1_times_3;
const double h1 = x1_times_3 - x2_times_3 + 1.0;
const double h2 = x2_times_3 - 6.0 * x1;
return t * (t * (t * h1 + h2) + h3);
}
static double bezier_interp(double x1,
double y1,
double x2,
double y2,
double x) {
DCHECK_GE(1.0, x1);
DCHECK_LE(0.0, x1);
DCHECK_GE(1.0, x2);
DCHECK_LE(0.0, x2);
x1 = std::min(std::max(x1, 0.0), 1.0);
x2 = std::min(std::max(x2, 0.0), 1.0);
x = std::min(std::max(x, 0.0), 1.0);
// Step 1. Find the t corresponding to the given x. I.e., we want t such that
// eval_bezier(x1, x2, t) = x. There is a unique solution if x1 and x2 lie
// within (0, 1).
//
// We're just going to do bisection for now (for simplicity), but we could
// easily do some newton steps if this turns out to be a bottleneck.
double t = 0.0;
double step = 1.0;
for (int i = 0; i < MAX_STEPS; ++i, step *= 0.5) {
const double error = eval_bezier(x1, x2, t) - x;
if (std::abs(error) < kBezierEpsilon)
break;
t += error > 0.0 ? -step : step;
}
// We should have terminated the above loop because we got close to x, not
// because we exceeded MAX_STEPS. Do a DCHECK here to confirm.
DCHECK_GT(kBezierEpsilon, std::abs(eval_bezier(x1, x2, t) - x));
// Step 2. Return the interpolated y values at the t we computed above.
return eval_bezier(y1, y2, t);
}
} // namespace
TimingFunction::TimingFunction() {}
TimingFunction::~TimingFunction() {}
double TimingFunction::Duration() const {
return 1.0;
}
scoped_ptr<CubicBezierTimingFunction> CubicBezierTimingFunction::Create(
double x1, double y1, double x2, double y2) {
return make_scoped_ptr(new CubicBezierTimingFunction(x1, y1, x2, y2));
}
CubicBezierTimingFunction::CubicBezierTimingFunction(double x1,
double y1,
double x2,
double y2)
: x1_(x1), y1_(y1), x2_(x2), y2_(y2) {}
CubicBezierTimingFunction::~CubicBezierTimingFunction() {}
float CubicBezierTimingFunction::GetValue(double x) const {
return static_cast<float>(bezier_interp(x1_, y1_, x2_, y2_, x));
}
scoped_ptr<AnimationCurve> CubicBezierTimingFunction::Clone() const {
return make_scoped_ptr(
new CubicBezierTimingFunction(*this)).PassAs<AnimationCurve>();
}
void CubicBezierTimingFunction::Range(float* min, float* max) const {
*min = 0.f;
*max = 1.f;
if (0.f <= y1_ && y1_ < 1.f && 0.f <= y2_ && y2_ <= 1.f)
return;
// Represent the function's derivative in the form at^2 + bt + c.
float a = 3.f * (y1_ - y2_) + 1.f;
float b = 2.f * (y2_ - 2.f * y1_);
float c = y1_;
// Check if the derivative is constant.
if (std::abs(a) < kBezierEpsilon &&
std::abs(b) < kBezierEpsilon)
return;
// Zeros of the function's derivative.
float t_1 = 0.f;
float t_2 = 0.f;
if (std::abs(a) < kBezierEpsilon) {
// The function's derivative is linear.
t_1 = -c / b;
} else {
// The function's derivative is a quadratic. We find the zeros of this
// quadratic using the quadratic formula.
float discriminant = b * b - 4 * a * c;
if (discriminant < 0.f)
return;
float discriminant_sqrt = sqrt(discriminant);
t_1 = (-b + discriminant_sqrt) / (2.f * a);
t_2 = (-b - discriminant_sqrt) / (2.f * a);
}
float sol_1 = 0.f;
float sol_2 = 0.f;
if (0.f < t_1 && t_1 < 1.f)
sol_1 = eval_bezier(y1_, y2_, t_1);
if (0.f < t_2 && t_2 < 1.f)
sol_2 = eval_bezier(y1_, y2_, t_2);
*min = std::min(std::min(*min, sol_1), sol_2);
*max = std::max(std::max(*max, sol_1), sol_2);
}
// These numbers come from
// http://www.w3.org/TR/css3-transitions/#transition-timing-function_tag.
scoped_ptr<TimingFunction> EaseTimingFunction::Create() {
return CubicBezierTimingFunction::Create(
0.25, 0.1, 0.25, 1.0).PassAs<TimingFunction>();
}
scoped_ptr<TimingFunction> EaseInTimingFunction::Create() {
return CubicBezierTimingFunction::Create(
0.42, 0.0, 1.0, 1.0).PassAs<TimingFunction>();
}
scoped_ptr<TimingFunction> EaseOutTimingFunction::Create() {
return CubicBezierTimingFunction::Create(
0.0, 0.0, 0.58, 1.0).PassAs<TimingFunction>();
}
scoped_ptr<TimingFunction> EaseInOutTimingFunction::Create() {
return CubicBezierTimingFunction::Create(
0.42, 0.0, 0.58, 1).PassAs<TimingFunction>();
}
} // namespace cc