/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "_cv.h"
typedef struct CvFFillSegment
{
ushort y;
ushort l;
ushort r;
ushort prevl;
ushort prevr;
short dir;
}
CvFFillSegment;
#define UP 1
#define DOWN -1
#define ICV_PUSH( Y, L, R, PREV_L, PREV_R, DIR )\
{ \
tail->y = (ushort)(Y); \
tail->l = (ushort)(L); \
tail->r = (ushort)(R); \
tail->prevl = (ushort)(PREV_L); \
tail->prevr = (ushort)(PREV_R); \
tail->dir = (short)(DIR); \
if( ++tail >= buffer_end ) \
tail = buffer; \
}
#define ICV_POP( Y, L, R, PREV_L, PREV_R, DIR ) \
{ \
Y = head->y; \
L = head->l; \
R = head->r; \
PREV_L = head->prevl; \
PREV_R = head->prevr; \
DIR = head->dir; \
if( ++head >= buffer_end ) \
head = buffer; \
}
#define ICV_EQ_C3( p1, p2 ) \
((p1)[0] == (p2)[0] && (p1)[1] == (p2)[1] && (p1)[2] == (p2)[2])
#define ICV_SET_C3( p, q ) \
((p)[0] = (q)[0], (p)[1] = (q)[1], (p)[2] = (q)[2])
/****************************************************************************************\
* Simple Floodfill (repainting single-color connected component) *
\****************************************************************************************/
static CvStatus
icvFloodFill_8u_CnIR( uchar* pImage, int step, CvSize roi, CvPoint seed,
uchar* _newVal, CvConnectedComp* region, int flags,
CvFFillSegment* buffer, int buffer_size, int cn )
{
uchar* img = pImage + step * seed.y;
int i, L, R;
int area = 0;
int val0[] = {0,0,0};
uchar newVal[] = {0,0,0};
int XMin, XMax, YMin = seed.y, YMax = seed.y;
int _8_connectivity = (flags & 255) == 8;
CvFFillSegment* buffer_end = buffer + buffer_size, *head = buffer, *tail = buffer;
L = R = XMin = XMax = seed.x;
if( cn == 1 )
{
val0[0] = img[L];
newVal[0] = _newVal[0];
img[L] = newVal[0];
while( ++R < roi.width && img[R] == val0[0] )
img[R] = newVal[0];
while( --L >= 0 && img[L] == val0[0] )
img[L] = newVal[0];
}
else
{
assert( cn == 3 );
ICV_SET_C3( val0, img + L*3 );
ICV_SET_C3( newVal, _newVal );
ICV_SET_C3( img + L*3, newVal );
while( --L >= 0 && ICV_EQ_C3( img + L*3, val0 ))
ICV_SET_C3( img + L*3, newVal );
while( ++R < roi.width && ICV_EQ_C3( img + R*3, val0 ))
ICV_SET_C3( img + R*3, newVal );
}
XMax = --R;
XMin = ++L;
ICV_PUSH( seed.y, L, R, R + 1, R, UP );
while( head != tail )
{
int k, YC, PL, PR, dir;
ICV_POP( YC, L, R, PL, PR, dir );
int data[][3] =
{
{-dir, L - _8_connectivity, R + _8_connectivity},
{dir, L - _8_connectivity, PL - 1},
{dir, PR + 1, R + _8_connectivity}
};
if( region )
{
area += R - L + 1;
if( XMax < R ) XMax = R;
if( XMin > L ) XMin = L;
if( YMax < YC ) YMax = YC;
if( YMin > YC ) YMin = YC;
}
for( k = 0/*(unsigned)(YC - dir) >= (unsigned)roi.height*/; k < 3; k++ )
{
dir = data[k][0];
img = pImage + (YC + dir) * step;
int left = data[k][1];
int right = data[k][2];
if( (unsigned)(YC + dir) >= (unsigned)roi.height )
continue;
if( cn == 1 )
for( i = left; i <= right; i++ )
{
if( (unsigned)i < (unsigned)roi.width && img[i] == val0[0] )
{
int j = i;
img[i] = newVal[0];
while( --j >= 0 && img[j] == val0[0] )
img[j] = newVal[0];
while( ++i < roi.width && img[i] == val0[0] )
img[i] = newVal[0];
ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir );
}
}
else
for( i = left; i <= right; i++ )
{
if( (unsigned)i < (unsigned)roi.width && ICV_EQ_C3( img + i*3, val0 ))
{
int j = i;
ICV_SET_C3( img + i*3, newVal );
while( --j >= 0 && ICV_EQ_C3( img + j*3, val0 ))
ICV_SET_C3( img + j*3, newVal );
while( ++i < roi.width && ICV_EQ_C3( img + i*3, val0 ))
ICV_SET_C3( img + i*3, newVal );
ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir );
}
}
}
}
if( region )
{
region->area = area;
region->rect.x = XMin;
region->rect.y = YMin;
region->rect.width = XMax - XMin + 1;
region->rect.height = YMax - YMin + 1;
region->value = cvScalar(newVal[0], newVal[1], newVal[2], 0);
}
return CV_NO_ERR;
}
/* because all the operations on floats that are done during non-gradient floodfill
are just copying and comparison on equality,
we can do the whole op on 32-bit integers instead */
static CvStatus
icvFloodFill_32f_CnIR( int* pImage, int step, CvSize roi, CvPoint seed,
int* _newVal, CvConnectedComp* region, int flags,
CvFFillSegment* buffer, int buffer_size, int cn )
{
int* img = pImage + (step /= sizeof(pImage[0])) * seed.y;
int i, L, R;
int area = 0;
int val0[] = {0,0,0};
int newVal[] = {0,0,0};
int XMin, XMax, YMin = seed.y, YMax = seed.y;
int _8_connectivity = (flags & 255) == 8;
CvFFillSegment* buffer_end = buffer + buffer_size, *head = buffer, *tail = buffer;
L = R = XMin = XMax = seed.x;
if( cn == 1 )
{
val0[0] = img[L];
newVal[0] = _newVal[0];
img[L] = newVal[0];
while( ++R < roi.width && img[R] == val0[0] )
img[R] = newVal[0];
while( --L >= 0 && img[L] == val0[0] )
img[L] = newVal[0];
}
else
{
assert( cn == 3 );
ICV_SET_C3( val0, img + L*3 );
ICV_SET_C3( newVal, _newVal );
ICV_SET_C3( img + L*3, newVal );
while( --L >= 0 && ICV_EQ_C3( img + L*3, val0 ))
ICV_SET_C3( img + L*3, newVal );
while( ++R < roi.width && ICV_EQ_C3( img + R*3, val0 ))
ICV_SET_C3( img + R*3, newVal );
}
XMax = --R;
XMin = ++L;
ICV_PUSH( seed.y, L, R, R + 1, R, UP );
while( head != tail )
{
int k, YC, PL, PR, dir;
ICV_POP( YC, L, R, PL, PR, dir );
int data[][3] =
{
{-dir, L - _8_connectivity, R + _8_connectivity},
{dir, L - _8_connectivity, PL - 1},
{dir, PR + 1, R + _8_connectivity}
};
if( region )
{
area += R - L + 1;
if( XMax < R ) XMax = R;
if( XMin > L ) XMin = L;
if( YMax < YC ) YMax = YC;
if( YMin > YC ) YMin = YC;
}
for( k = 0/*(unsigned)(YC - dir) >= (unsigned)roi.height*/; k < 3; k++ )
{
dir = data[k][0];
img = pImage + (YC + dir) * step;
int left = data[k][1];
int right = data[k][2];
if( (unsigned)(YC + dir) >= (unsigned)roi.height )
continue;
if( cn == 1 )
for( i = left; i <= right; i++ )
{
if( (unsigned)i < (unsigned)roi.width && img[i] == val0[0] )
{
int j = i;
img[i] = newVal[0];
while( --j >= 0 && img[j] == val0[0] )
img[j] = newVal[0];
while( ++i < roi.width && img[i] == val0[0] )
img[i] = newVal[0];
ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir );
}
}
else
for( i = left; i <= right; i++ )
{
if( (unsigned)i < (unsigned)roi.width && ICV_EQ_C3( img + i*3, val0 ))
{
int j = i;
ICV_SET_C3( img + i*3, newVal );
while( --j >= 0 && ICV_EQ_C3( img + j*3, val0 ))
ICV_SET_C3( img + j*3, newVal );
while( ++i < roi.width && ICV_EQ_C3( img + i*3, val0 ))
ICV_SET_C3( img + i*3, newVal );
ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir );
}
}
}
}
if( region )
{
Cv32suf v0, v1, v2;
region->area = area;
region->rect.x = XMin;
region->rect.y = YMin;
region->rect.width = XMax - XMin + 1;
region->rect.height = YMax - YMin + 1;
v0.i = newVal[0]; v1.i = newVal[1]; v2.i = newVal[2];
region->value = cvScalar( v0.f, v1.f, v2.f );
}
return CV_NO_ERR;
}
/****************************************************************************************\
* Gradient Floodfill *
\****************************************************************************************/
#define DIFF_INT_C1(p1,p2) ((unsigned)((p1)[0] - (p2)[0] + d_lw[0]) <= interval[0])
#define DIFF_INT_C3(p1,p2) ((unsigned)((p1)[0] - (p2)[0] + d_lw[0])<= interval[0] && \
(unsigned)((p1)[1] - (p2)[1] + d_lw[1])<= interval[1] && \
(unsigned)((p1)[2] - (p2)[2] + d_lw[2])<= interval[2])
#define DIFF_FLT_C1(p1,p2) (fabs((p1)[0] - (p2)[0] + d_lw[0]) <= interval[0])
#define DIFF_FLT_C3(p1,p2) (fabs((p1)[0] - (p2)[0] + d_lw[0]) <= interval[0] && \
fabs((p1)[1] - (p2)[1] + d_lw[1]) <= interval[1] && \
fabs((p1)[2] - (p2)[2] + d_lw[2]) <= interval[2])
static CvStatus
icvFloodFill_Grad_8u_CnIR( uchar* pImage, int step, uchar* pMask, int maskStep,
CvSize /*roi*/, CvPoint seed, uchar* _newVal, uchar* _d_lw,
uchar* _d_up, CvConnectedComp* region, int flags,
CvFFillSegment* buffer, int buffer_size, int cn )
{
uchar* img = pImage + step*seed.y;
uchar* mask = (pMask += maskStep + 1) + maskStep*seed.y;
int i, L, R;
int area = 0;
int sum[] = {0,0,0}, val0[] = {0,0,0};
uchar newVal[] = {0,0,0};
int d_lw[] = {0,0,0};
unsigned interval[] = {0,0,0};
int XMin, XMax, YMin = seed.y, YMax = seed.y;
int _8_connectivity = (flags & 255) == 8;
int fixedRange = flags & CV_FLOODFILL_FIXED_RANGE;
int fillImage = (flags & CV_FLOODFILL_MASK_ONLY) == 0;
uchar newMaskVal = (uchar)(flags & 0xff00 ? flags >> 8 : 1);
CvFFillSegment* buffer_end = buffer + buffer_size, *head = buffer, *tail = buffer;
L = R = seed.x;
if( mask[L] )
return CV_OK;
mask[L] = newMaskVal;
for( i = 0; i < cn; i++ )
{
newVal[i] = _newVal[i];
d_lw[i] = _d_lw[i];
interval[i] = (unsigned)(_d_up[i] + _d_lw[i]);
if( fixedRange )
val0[i] = img[L*cn+i];
}
if( cn == 1 )
{
if( fixedRange )
{
while( !mask[R + 1] && DIFF_INT_C1( img + (R+1), val0 ))
mask[++R] = newMaskVal;
while( !mask[L - 1] && DIFF_INT_C1( img + (L-1), val0 ))
mask[--L] = newMaskVal;
}
else
{
while( !mask[R + 1] && DIFF_INT_C1( img + (R+1), img + R ))
mask[++R] = newMaskVal;
while( !mask[L - 1] && DIFF_INT_C1( img + (L-1), img + L ))
mask[--L] = newMaskVal;
}
}
else
{
if( fixedRange )
{
while( !mask[R + 1] && DIFF_INT_C3( img + (R+1)*3, val0 ))
mask[++R] = newMaskVal;
while( !mask[L - 1] && DIFF_INT_C3( img + (L-1)*3, val0 ))
mask[--L] = newMaskVal;
}
else
{
while( !mask[R + 1] && DIFF_INT_C3( img + (R+1)*3, img + R*3 ))
mask[++R] = newMaskVal;
while( !mask[L - 1] && DIFF_INT_C3( img + (L-1)*3, img + L*3 ))
mask[--L] = newMaskVal;
}
}
XMax = R;
XMin = L;
ICV_PUSH( seed.y, L, R, R + 1, R, UP );
while( head != tail )
{
int k, YC, PL, PR, dir, curstep;
ICV_POP( YC, L, R, PL, PR, dir );
int data[][3] =
{
{-dir, L - _8_connectivity, R + _8_connectivity},
{dir, L - _8_connectivity, PL - 1},
{dir, PR + 1, R + _8_connectivity}
};
unsigned length = (unsigned)(R-L);
if( region )
{
area += (int)length + 1;
if( XMax < R ) XMax = R;
if( XMin > L ) XMin = L;
if( YMax < YC ) YMax = YC;
if( YMin > YC ) YMin = YC;
}
if( cn == 1 )
{
for( k = 0; k < 3; k++ )
{
dir = data[k][0];
curstep = dir * step;
img = pImage + (YC + dir) * step;
mask = pMask + (YC + dir) * maskStep;
int left = data[k][1];
int right = data[k][2];
if( fixedRange )
for( i = left; i <= right; i++ )
{
if( !mask[i] && DIFF_INT_C1( img + i, val0 ))
{
int j = i;
mask[i] = newMaskVal;
while( !mask[--j] && DIFF_INT_C1( img + j, val0 ))
mask[j] = newMaskVal;
while( !mask[++i] && DIFF_INT_C1( img + i, val0 ))
mask[i] = newMaskVal;
ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir );
}
}
else if( !_8_connectivity )
for( i = left; i <= right; i++ )
{
if( !mask[i] && DIFF_INT_C1( img + i, img - curstep + i ))
{
int j = i;
mask[i] = newMaskVal;
while( !mask[--j] && DIFF_INT_C1( img + j, img + (j+1) ))
mask[j] = newMaskVal;
while( !mask[++i] &&
(DIFF_INT_C1( img + i, img + (i-1) ) ||
(DIFF_INT_C1( img + i, img + i - curstep) && i <= R)))
mask[i] = newMaskVal;
ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir );
}
}
else
for( i = left; i <= right; i++ )
{
int idx, val[1];
if( !mask[i] &&
(((val[0] = img[i],
(unsigned)(idx = i-L-1) <= length) &&
DIFF_INT_C1( val, img - curstep + (i-1))) ||
((unsigned)(++idx) <= length &&
DIFF_INT_C1( val, img - curstep + i )) ||
((unsigned)(++idx) <= length &&
DIFF_INT_C1( val, img - curstep + (i+1) ))))
{
int j = i;
mask[i] = newMaskVal;
while( !mask[--j] && DIFF_INT_C1( img + j, img + (j+1) ))
mask[j] = newMaskVal;
while( !mask[++i] &&
((val[0] = img[i],
DIFF_INT_C1( val, img + (i-1) )) ||
(((unsigned)(idx = i-L-1) <= length &&
DIFF_INT_C1( val, img - curstep + (i-1) ))) ||
((unsigned)(++idx) <= length &&
DIFF_INT_C1( val, img - curstep + i )) ||
((unsigned)(++idx) <= length &&
DIFF_INT_C1( val, img - curstep + (i+1) ))))
mask[i] = newMaskVal;
ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir );
}
}
}
img = pImage + YC * step;
if( fillImage )
for( i = L; i <= R; i++ )
img[i] = newVal[0];
else if( region )
for( i = L; i <= R; i++ )
sum[0] += img[i];
}
else
{
for( k = 0; k < 3; k++ )
{
dir = data[k][0];
curstep = dir * step;
img = pImage + (YC + dir) * step;
mask = pMask + (YC + dir) * maskStep;
int left = data[k][1];
int right = data[k][2];
if( fixedRange )
for( i = left; i <= right; i++ )
{
if( !mask[i] && DIFF_INT_C3( img + i*3, val0 ))
{
int j = i;
mask[i] = newMaskVal;
while( !mask[--j] && DIFF_INT_C3( img + j*3, val0 ))
mask[j] = newMaskVal;
while( !mask[++i] && DIFF_INT_C3( img + i*3, val0 ))
mask[i] = newMaskVal;
ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir );
}
}
else if( !_8_connectivity )
for( i = left; i <= right; i++ )
{
if( !mask[i] && DIFF_INT_C3( img + i*3, img - curstep + i*3 ))
{
int j = i;
mask[i] = newMaskVal;
while( !mask[--j] && DIFF_INT_C3( img + j*3, img + (j+1)*3 ))
mask[j] = newMaskVal;
while( !mask[++i] &&
(DIFF_INT_C3( img + i*3, img + (i-1)*3 ) ||
(DIFF_INT_C3( img + i*3, img + i*3 - curstep) && i <= R)))
mask[i] = newMaskVal;
ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir );
}
}
else
for( i = left; i <= right; i++ )
{
int idx, val[3];
if( !mask[i] &&
(((ICV_SET_C3( val, img+i*3 ),
(unsigned)(idx = i-L-1) <= length) &&
DIFF_INT_C3( val, img - curstep + (i-1)*3 )) ||
((unsigned)(++idx) <= length &&
DIFF_INT_C3( val, img - curstep + i*3 )) ||
((unsigned)(++idx) <= length &&
DIFF_INT_C3( val, img - curstep + (i+1)*3 ))))
{
int j = i;
mask[i] = newMaskVal;
while( !mask[--j] && DIFF_INT_C3( img + j*3, img + (j+1)*3 ))
mask[j] = newMaskVal;
while( !mask[++i] &&
((ICV_SET_C3( val, img + i*3 ),
DIFF_INT_C3( val, img + (i-1)*3 )) ||
(((unsigned)(idx = i-L-1) <= length &&
DIFF_INT_C3( val, img - curstep + (i-1)*3 ))) ||
((unsigned)(++idx) <= length &&
DIFF_INT_C3( val, img - curstep + i*3 )) ||
((unsigned)(++idx) <= length &&
DIFF_INT_C3( val, img - curstep + (i+1)*3 ))))
mask[i] = newMaskVal;
ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir );
}
}
}
img = pImage + YC * step;
if( fillImage )
for( i = L; i <= R; i++ )
ICV_SET_C3( img + i*3, newVal );
else if( region )
for( i = L; i <= R; i++ )
{
sum[0] += img[i*3];
sum[1] += img[i*3+1];
sum[2] += img[i*3+2];
}
}
}
if( region )
{
region->area = area;
region->rect.x = XMin;
region->rect.y = YMin;
region->rect.width = XMax - XMin + 1;
region->rect.height = YMax - YMin + 1;
if( fillImage )
region->value = cvScalar(newVal[0], newVal[1], newVal[2]);
else
{
double iarea = area ? 1./area : 0;
region->value = cvScalar(sum[0]*iarea, sum[1]*iarea, sum[2]*iarea);
}
}
return CV_NO_ERR;
}
static CvStatus
icvFloodFill_Grad_32f_CnIR( float* pImage, int step, uchar* pMask, int maskStep,
CvSize /*roi*/, CvPoint seed, float* _newVal, float* _d_lw,
float* _d_up, CvConnectedComp* region, int flags,
CvFFillSegment* buffer, int buffer_size, int cn )
{
float* img = pImage + (step /= sizeof(float))*seed.y;
uchar* mask = (pMask += maskStep + 1) + maskStep*seed.y;
int i, L, R;
int area = 0;
double sum[] = {0,0,0}, val0[] = {0,0,0};
float newVal[] = {0,0,0};
float d_lw[] = {0,0,0};
float interval[] = {0,0,0};
int XMin, XMax, YMin = seed.y, YMax = seed.y;
int _8_connectivity = (flags & 255) == 8;
int fixedRange = flags & CV_FLOODFILL_FIXED_RANGE;
int fillImage = (flags & CV_FLOODFILL_MASK_ONLY) == 0;
uchar newMaskVal = (uchar)(flags & 0xff00 ? flags >> 8 : 1);
CvFFillSegment* buffer_end = buffer + buffer_size, *head = buffer, *tail = buffer;
L = R = seed.x;
if( mask[L] )
return CV_OK;
mask[L] = newMaskVal;
for( i = 0; i < cn; i++ )
{
newVal[i] = _newVal[i];
d_lw[i] = 0.5f*(_d_lw[i] - _d_up[i]);
interval[i] = 0.5f*(_d_lw[i] + _d_up[i]);
if( fixedRange )
val0[i] = img[L*cn+i];
}
if( cn == 1 )
{
if( fixedRange )
{
while( !mask[R + 1] && DIFF_FLT_C1( img + (R+1), val0 ))
mask[++R] = newMaskVal;
while( !mask[L - 1] && DIFF_FLT_C1( img + (L-1), val0 ))
mask[--L] = newMaskVal;
}
else
{
while( !mask[R + 1] && DIFF_FLT_C1( img + (R+1), img + R ))
mask[++R] = newMaskVal;
while( !mask[L - 1] && DIFF_FLT_C1( img + (L-1), img + L ))
mask[--L] = newMaskVal;
}
}
else
{
if( fixedRange )
{
while( !mask[R + 1] && DIFF_FLT_C3( img + (R+1)*3, val0 ))
mask[++R] = newMaskVal;
while( !mask[L - 1] && DIFF_FLT_C3( img + (L-1)*3, val0 ))
mask[--L] = newMaskVal;
}
else
{
while( !mask[R + 1] && DIFF_FLT_C3( img + (R+1)*3, img + R*3 ))
mask[++R] = newMaskVal;
while( !mask[L - 1] && DIFF_FLT_C3( img + (L-1)*3, img + L*3 ))
mask[--L] = newMaskVal;
}
}
XMax = R;
XMin = L;
ICV_PUSH( seed.y, L, R, R + 1, R, UP );
while( head != tail )
{
int k, YC, PL, PR, dir, curstep;
ICV_POP( YC, L, R, PL, PR, dir );
int data[][3] =
{
{-dir, L - _8_connectivity, R + _8_connectivity},
{dir, L - _8_connectivity, PL - 1},
{dir, PR + 1, R + _8_connectivity}
};
unsigned length = (unsigned)(R-L);
if( region )
{
area += (int)length + 1;
if( XMax < R ) XMax = R;
if( XMin > L ) XMin = L;
if( YMax < YC ) YMax = YC;
if( YMin > YC ) YMin = YC;
}
if( cn == 1 )
{
for( k = 0; k < 3; k++ )
{
dir = data[k][0];
curstep = dir * step;
img = pImage + (YC + dir) * step;
mask = pMask + (YC + dir) * maskStep;
int left = data[k][1];
int right = data[k][2];
if( fixedRange )
for( i = left; i <= right; i++ )
{
if( !mask[i] && DIFF_FLT_C1( img + i, val0 ))
{
int j = i;
mask[i] = newMaskVal;
while( !mask[--j] && DIFF_FLT_C1( img + j, val0 ))
mask[j] = newMaskVal;
while( !mask[++i] && DIFF_FLT_C1( img + i, val0 ))
mask[i] = newMaskVal;
ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir );
}
}
else if( !_8_connectivity )
for( i = left; i <= right; i++ )
{
if( !mask[i] && DIFF_FLT_C1( img + i, img - curstep + i ))
{
int j = i;
mask[i] = newMaskVal;
while( !mask[--j] && DIFF_FLT_C1( img + j, img + (j+1) ))
mask[j] = newMaskVal;
while( !mask[++i] &&
(DIFF_FLT_C1( img + i, img + (i-1) ) ||
(DIFF_FLT_C1( img + i, img + i - curstep) && i <= R)))
mask[i] = newMaskVal;
ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir );
}
}
else
for( i = left; i <= right; i++ )
{
int idx;
float val[1];
if( !mask[i] &&
(((val[0] = img[i],
(unsigned)(idx = i-L-1) <= length) &&
DIFF_FLT_C1( val, img - curstep + (i-1) )) ||
((unsigned)(++idx) <= length &&
DIFF_FLT_C1( val, img - curstep + i )) ||
((unsigned)(++idx) <= length &&
DIFF_FLT_C1( val, img - curstep + (i+1) ))))
{
int j = i;
mask[i] = newMaskVal;
while( !mask[--j] && DIFF_FLT_C1( img + j, img + (j+1) ))
mask[j] = newMaskVal;
while( !mask[++i] &&
((val[0] = img[i],
DIFF_FLT_C1( val, img + (i-1) )) ||
(((unsigned)(idx = i-L-1) <= length &&
DIFF_FLT_C1( val, img - curstep + (i-1) ))) ||
((unsigned)(++idx) <= length &&
DIFF_FLT_C1( val, img - curstep + i )) ||
((unsigned)(++idx) <= length &&
DIFF_FLT_C1( val, img - curstep + (i+1) ))))
mask[i] = newMaskVal;
ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir );
}
}
}
img = pImage + YC * step;
if( fillImage )
for( i = L; i <= R; i++ )
img[i] = newVal[0];
else if( region )
for( i = L; i <= R; i++ )
sum[0] += img[i];
}
else
{
for( k = 0; k < 3; k++ )
{
dir = data[k][0];
curstep = dir * step;
img = pImage + (YC + dir) * step;
mask = pMask + (YC + dir) * maskStep;
int left = data[k][1];
int right = data[k][2];
if( fixedRange )
for( i = left; i <= right; i++ )
{
if( !mask[i] && DIFF_FLT_C3( img + i*3, val0 ))
{
int j = i;
mask[i] = newMaskVal;
while( !mask[--j] && DIFF_FLT_C3( img + j*3, val0 ))
mask[j] = newMaskVal;
while( !mask[++i] && DIFF_FLT_C3( img + i*3, val0 ))
mask[i] = newMaskVal;
ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir );
}
}
else if( !_8_connectivity )
for( i = left; i <= right; i++ )
{
if( !mask[i] && DIFF_FLT_C3( img + i*3, img - curstep + i*3 ))
{
int j = i;
mask[i] = newMaskVal;
while( !mask[--j] && DIFF_FLT_C3( img + j*3, img + (j+1)*3 ))
mask[j] = newMaskVal;
while( !mask[++i] &&
(DIFF_FLT_C3( img + i*3, img + (i-1)*3 ) ||
(DIFF_FLT_C3( img + i*3, img + i*3 - curstep) && i <= R)))
mask[i] = newMaskVal;
ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir );
}
}
else
for( i = left; i <= right; i++ )
{
int idx;
float val[3];
if( !mask[i] &&
(((ICV_SET_C3( val, img+i*3 ),
(unsigned)(idx = i-L-1) <= length) &&
DIFF_FLT_C3( val, img - curstep + (i-1)*3 )) ||
((unsigned)(++idx) <= length &&
DIFF_FLT_C3( val, img - curstep + i*3 )) ||
((unsigned)(++idx) <= length &&
DIFF_FLT_C3( val, img - curstep + (i+1)*3 ))))
{
int j = i;
mask[i] = newMaskVal;
while( !mask[--j] && DIFF_FLT_C3( img + j*3, img + (j+1)*3 ))
mask[j] = newMaskVal;
while( !mask[++i] &&
((ICV_SET_C3( val, img + i*3 ),
DIFF_FLT_C3( val, img + (i-1)*3 )) ||
(((unsigned)(idx = i-L-1) <= length &&
DIFF_FLT_C3( val, img - curstep + (i-1)*3 ))) ||
((unsigned)(++idx) <= length &&
DIFF_FLT_C3( val, img - curstep + i*3 )) ||
((unsigned)(++idx) <= length &&
DIFF_FLT_C3( val, img - curstep + (i+1)*3 ))))
mask[i] = newMaskVal;
ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir );
}
}
}
img = pImage + YC * step;
if( fillImage )
for( i = L; i <= R; i++ )
ICV_SET_C3( img + i*3, newVal );
else if( region )
for( i = L; i <= R; i++ )
{
sum[0] += img[i*3];
sum[1] += img[i*3+1];
sum[2] += img[i*3+2];
}
}
}
if( region )
{
region->area = area;
region->rect.x = XMin;
region->rect.y = YMin;
region->rect.width = XMax - XMin + 1;
region->rect.height = YMax - YMin + 1;
if( fillImage )
region->value = cvScalar(newVal[0], newVal[1], newVal[2]);
else
{
double iarea = area ? 1./area : 0;
region->value = cvScalar(sum[0]*iarea, sum[1]*iarea, sum[2]*iarea);
}
}
return CV_NO_ERR;
}
/****************************************************************************************\
* External Functions *
\****************************************************************************************/
typedef CvStatus (CV_CDECL* CvFloodFillFunc)(
void* img, int step, CvSize size, CvPoint seed, void* newval,
CvConnectedComp* comp, int flags, void* buffer, int buffer_size, int cn );
typedef CvStatus (CV_CDECL* CvFloodFillGradFunc)(
void* img, int step, uchar* mask, int maskStep, CvSize size,
CvPoint seed, void* newval, void* d_lw, void* d_up, void* ccomp,
int flags, void* buffer, int buffer_size, int cn );
static void icvInitFloodFill( void** ffill_tab,
void** ffillgrad_tab )
{
ffill_tab[0] = (void*)icvFloodFill_8u_CnIR;
ffill_tab[1] = (void*)icvFloodFill_32f_CnIR;
ffillgrad_tab[0] = (void*)icvFloodFill_Grad_8u_CnIR;
ffillgrad_tab[1] = (void*)icvFloodFill_Grad_32f_CnIR;
}
CV_IMPL void
cvFloodFill( CvArr* arr, CvPoint seed_point,
CvScalar newVal, CvScalar lo_diff, CvScalar up_diff,
CvConnectedComp* comp, int flags, CvArr* maskarr )
{
static void* ffill_tab[4];
static void* ffillgrad_tab[4];
static int inittab = 0;
CvMat* tempMask = 0;
CvFFillSegment* buffer = 0;
CV_FUNCNAME( "cvFloodFill" );
if( comp )
memset( comp, 0, sizeof(*comp) );
__BEGIN__;
int i, type, depth, cn, is_simple, idx;
int buffer_size, connectivity = flags & 255;
double nv_buf[4] = {0,0,0,0};
union { uchar b[4]; float f[4]; } ld_buf, ud_buf;
CvMat stub, *img = (CvMat*)arr;
CvMat maskstub, *mask = (CvMat*)maskarr;
CvSize size;
if( !inittab )
{
icvInitFloodFill( ffill_tab, ffillgrad_tab );
inittab = 1;
}
CV_CALL( img = cvGetMat( img, &stub ));
type = CV_MAT_TYPE( img->type );
depth = CV_MAT_DEPTH(type);
cn = CV_MAT_CN(type);
idx = type == CV_8UC1 || type == CV_8UC3 ? 0 :
type == CV_32FC1 || type == CV_32FC3 ? 1 : -1;
if( idx < 0 )
CV_ERROR( CV_StsUnsupportedFormat, "" );
if( connectivity == 0 )
connectivity = 4;
else if( connectivity != 4 && connectivity != 8 )
CV_ERROR( CV_StsBadFlag, "Connectivity must be 4, 0(=4) or 8" );
is_simple = mask == 0 && (flags & CV_FLOODFILL_MASK_ONLY) == 0;
for( i = 0; i < cn; i++ )
{
if( lo_diff.val[i] < 0 || up_diff.val[i] < 0 )
CV_ERROR( CV_StsBadArg, "lo_diff and up_diff must be non-negative" );
is_simple &= fabs(lo_diff.val[i]) < DBL_EPSILON && fabs(up_diff.val[i]) < DBL_EPSILON;
}
size = cvGetMatSize( img );
if( (unsigned)seed_point.x >= (unsigned)size.width ||
(unsigned)seed_point.y >= (unsigned)size.height )
CV_ERROR( CV_StsOutOfRange, "Seed point is outside of image" );
cvScalarToRawData( &newVal, &nv_buf, type, 0 );
buffer_size = MAX( size.width, size.height )*2;
CV_CALL( buffer = (CvFFillSegment*)cvAlloc( buffer_size*sizeof(buffer[0])));
if( is_simple )
{
int elem_size = CV_ELEM_SIZE(type);
const uchar* seed_ptr = img->data.ptr + img->step*seed_point.y + elem_size*seed_point.x;
CvFloodFillFunc func = (CvFloodFillFunc)ffill_tab[idx];
if( !func )
CV_ERROR( CV_StsUnsupportedFormat, "" );
// check if the new value is different from the current value at the seed point.
// if they are exactly the same, use the generic version with mask to avoid infinite loops.
for( i = 0; i < elem_size; i++ )
if( seed_ptr[i] != ((uchar*)nv_buf)[i] )
break;
if( i < elem_size )
{
IPPI_CALL( func( img->data.ptr, img->step, size,
seed_point, &nv_buf, comp, flags,
buffer, buffer_size, cn ));
EXIT;
}
}
{
CvFloodFillGradFunc func = (CvFloodFillGradFunc)ffillgrad_tab[idx];
if( !func )
CV_ERROR( CV_StsUnsupportedFormat, "" );
if( !mask )
{
/* created mask will be 8-byte aligned */
tempMask = cvCreateMat( size.height + 2, (size.width + 9) & -8, CV_8UC1 );
mask = tempMask;
}
else
{
CV_CALL( mask = cvGetMat( mask, &maskstub ));
if( !CV_IS_MASK_ARR( mask ))
CV_ERROR( CV_StsBadMask, "" );
if( mask->width != size.width + 2 || mask->height != size.height + 2 )
CV_ERROR( CV_StsUnmatchedSizes, "mask must be 2 pixel wider "
"and 2 pixel taller than filled image" );
}
{
int width = tempMask ? mask->step : size.width + 2;
uchar* mask_row = mask->data.ptr + mask->step;
memset( mask_row - mask->step, 1, width );
for( i = 1; i <= size.height; i++, mask_row += mask->step )
{
if( tempMask )
memset( mask_row, 0, width );
mask_row[0] = mask_row[size.width+1] = (uchar)1;
}
memset( mask_row, 1, width );
}
if( depth == CV_8U )
for( i = 0; i < cn; i++ )
{
int t = cvFloor(lo_diff.val[i]);
ld_buf.b[i] = CV_CAST_8U(t);
t = cvFloor(up_diff.val[i]);
ud_buf.b[i] = CV_CAST_8U(t);
}
else
for( i = 0; i < cn; i++ )
{
ld_buf.f[i] = (float)lo_diff.val[i];
ud_buf.f[i] = (float)up_diff.val[i];
}
IPPI_CALL( func( img->data.ptr, img->step, mask->data.ptr, mask->step,
size, seed_point, &nv_buf, ld_buf.f, ud_buf.f,
comp, flags, buffer, buffer_size, cn ));
}
__END__;
cvFree( &buffer );
cvReleaseMat( &tempMask );
}
/* End of file. */