//M*//////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/****************************************************************************************\
* Very fast SAD-based (Sum-of-Absolute-Diffrences) stereo correspondence algorithm. *
* Contributed by Kurt Konolige *
\****************************************************************************************/
#include "_cv.h"
/*
#undef CV_SSE2
#define CV_SSE2 1
#include "emmintrin.h"
*/
CV_IMPL CvStereoBMState*
cvCreateStereoBMState( int /*preset*/, int numberOfDisparities )
{
CvStereoBMState* state = 0;
//CV_FUNCNAME( "cvCreateStereoBMState" );
__BEGIN__;
state = (CvStereoBMState*)cvAlloc( sizeof(*state) );
if( !state )
EXIT;
state->preFilterType = CV_STEREO_BM_NORMALIZED_RESPONSE;
state->preFilterSize = 9;
state->preFilterCap = 31;
state->SADWindowSize = 15;
state->minDisparity = 0;
state->numberOfDisparities = numberOfDisparities > 0 ? numberOfDisparities : 64;
state->textureThreshold = 10;
state->uniquenessRatio = 15;
state->speckleRange = state->speckleWindowSize = 0;
state->preFilteredImg0 = state->preFilteredImg1 = state->slidingSumBuf = 0;
__END__;
if( cvGetErrStatus() < 0 )
cvReleaseStereoBMState( &state );
return state;
}
CV_IMPL void
cvReleaseStereoBMState( CvStereoBMState** state )
{
CV_FUNCNAME( "cvReleaseStereoBMState" );
__BEGIN__;
if( !state )
CV_ERROR( CV_StsNullPtr, "" );
if( !*state )
EXIT;
cvReleaseMat( &(*state)->preFilteredImg0 );
cvReleaseMat( &(*state)->preFilteredImg1 );
cvReleaseMat( &(*state)->slidingSumBuf );
cvFree( state );
__END__;
}
static void icvPrefilter( const CvMat* src, CvMat* dst, int winsize, int ftzero, uchar* buf )
{
int x, y, wsz2 = winsize/2;
int* vsum = (int*)cvAlignPtr(buf + (wsz2 + 1)*sizeof(vsum[0]), 32);
int scale_g = winsize*winsize/8, scale_s = (1024 + scale_g)/(scale_g*2);
const int OFS = 256*5, TABSZ = OFS*2 + 256;
uchar tab[TABSZ];
const uchar* sptr = src->data.ptr;
int srcstep = src->step;
CvSize size = cvGetMatSize(src);
scale_g *= scale_s;
for( x = 0; x < TABSZ; x++ )
tab[x] = (uchar)(x - OFS < -ftzero ? 0 : x - OFS > ftzero ? ftzero*2 : x - OFS + ftzero);
for( x = 0; x < size.width; x++ )
vsum[x] = (ushort)(sptr[x]*(wsz2 + 2));
for( y = 1; y < wsz2; y++ )
{
for( x = 0; x < size.width; x++ )
vsum[x] = (ushort)(vsum[x] + sptr[srcstep*y + x]);
}
for( y = 0; y < size.height; y++ )
{
const uchar* top = sptr + srcstep*MAX(y-wsz2-1,0);
const uchar* bottom = sptr + srcstep*MIN(y+wsz2,size.height-1);
const uchar* prev = sptr + srcstep*MAX(y-1,0);
const uchar* curr = sptr + srcstep*y;
const uchar* next = sptr + srcstep*MIN(y+1,size.height-1);
uchar* dptr = dst->data.ptr + dst->step*y;
x = 0;
for( ; x < size.width; x++ )
vsum[x] = (ushort)(vsum[x] + bottom[x] - top[x]);
for( x = 0; x <= wsz2; x++ )
{
vsum[-x-1] = vsum[0];
vsum[size.width+x] = vsum[size.width-1];
}
int sum = vsum[0]*(wsz2 + 1);
for( x = 1; x <= wsz2; x++ )
sum += vsum[x];
int val = ((curr[0]*5 + curr[1] + prev[0] + next[0])*scale_g - sum*scale_s) >> 10;
dptr[0] = tab[val + OFS];
for( x = 1; x < size.width-1; x++ )
{
sum += vsum[x+wsz2] - vsum[x-wsz2-1];
val = ((curr[x]*4 + curr[x-1] + curr[x+1] + prev[x] + next[x])*scale_g - sum*scale_s) >> 10;
dptr[x] = tab[val + OFS];
}
sum += vsum[x+wsz2] - vsum[x-wsz2-1];
val = ((curr[x]*5 + curr[x-1] + prev[x] + next[x])*scale_g - sum*scale_s) >> 10;
dptr[x] = tab[val + OFS];
}
}
static const int DISPARITY_SHIFT = 4;
#if CV_SSE2
static void
icvFindStereoCorrespondenceBM_SSE2( const CvMat* left, const CvMat* right,
CvMat* disp, CvStereoBMState* state,
uchar* buf, int _dy0, int _dy1 )
{
int x, y, d;
int wsz = state->SADWindowSize, wsz2 = wsz/2;
int dy0 = MIN(_dy0, wsz2+1), dy1 = MIN(_dy1, wsz2+1);
int ndisp = state->numberOfDisparities;
int mindisp = state->minDisparity;
int lofs = MAX(ndisp - 1 + mindisp, 0);
int rofs = -MIN(ndisp - 1 + mindisp, 0);
int width = left->cols, height = left->rows;
int width1 = width - rofs - ndisp + 1;
int ftzero = state->preFilterCap;
int textureThreshold = state->textureThreshold;
int uniquenessRatio = state->uniquenessRatio;
short FILTERED = (short)((mindisp - 1) << DISPARITY_SHIFT);
ushort *sad, *hsad0, *hsad, *hsad_sub;
int *htext;
uchar *cbuf0, *cbuf;
const uchar* lptr0 = left->data.ptr + lofs;
const uchar* rptr0 = right->data.ptr + rofs;
const uchar *lptr, *lptr_sub, *rptr;
short* dptr = disp->data.s;
int sstep = left->step;
int dstep = disp->step/sizeof(dptr[0]);
int cstep = (height + dy0 + dy1)*ndisp;
const int TABSZ = 256;
uchar tab[TABSZ];
const __m128i d0_8 = _mm_setr_epi16(0,1,2,3,4,5,6,7), dd_8 = _mm_set1_epi16(8);
sad = (ushort*)cvAlignPtr(buf + sizeof(sad[0]));
hsad0 = (ushort*)cvAlignPtr(sad + ndisp + 1 + dy0*ndisp);
htext = (int*)cvAlignPtr((int*)(hsad0 + (height+dy1)*ndisp) + wsz2 + 2);
cbuf0 = (uchar*)cvAlignPtr(htext + height + wsz2 + 2 + dy0*ndisp);
for( x = 0; x < TABSZ; x++ )
tab[x] = (uchar)abs(x - ftzero);
// initialize buffers
memset( hsad0 - dy0*ndisp, 0, (height + dy0 + dy1)*ndisp*sizeof(hsad0[0]) );
memset( htext - wsz2 - 1, 0, (height + wsz + 1)*sizeof(htext[0]) );
for( x = -wsz2-1; x < wsz2; x++ )
{
hsad = hsad0 - dy0*ndisp; cbuf = cbuf0 + (x + wsz2 + 1)*cstep - dy0*ndisp;
lptr = lptr0 + MIN(MAX(x, -lofs), width-lofs-1) - dy0*sstep;
rptr = rptr0 + MIN(MAX(x, -rofs), width-rofs-1) - dy0*sstep;
for( y = -dy0; y < height + dy1; y++, hsad += ndisp, cbuf += ndisp, lptr += sstep, rptr += sstep )
{
int lval = lptr[0];
for( d = 0; d < ndisp; d++ )
{
int diff = abs(lval - rptr[d]);
cbuf[d] = (uchar)diff;
hsad[d] = (ushort)(hsad[d] + diff);
}
htext[y] += tab[lval];
}
}
// initialize the left and right borders of the disparity map
for( y = 0; y < height; y++ )
{
for( x = 0; x < lofs; x++ )
dptr[y*dstep + x] = FILTERED;
for( x = lofs + width1; x < width; x++ )
dptr[y*dstep + x] = FILTERED;
}
dptr += lofs;
for( x = 0; x < width1; x++, dptr++ )
{
int x0 = x - wsz2 - 1, x1 = x + wsz2;
const uchar* cbuf_sub = cbuf0 + ((x0 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp;
uchar* cbuf = cbuf0 + ((x1 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp;
hsad = hsad0 - dy0*ndisp;
lptr_sub = lptr0 + MIN(MAX(x0, -lofs), width-1-lofs) - dy0*sstep;
lptr = lptr0 + MIN(MAX(x1, -lofs), width-1-lofs) - dy0*sstep;
rptr = rptr0 + MIN(MAX(x1, -rofs), width-1-rofs) - dy0*sstep;
for( y = -dy0; y < height + dy1; y++, cbuf += ndisp, cbuf_sub += ndisp,
hsad += ndisp, lptr += sstep, lptr_sub += sstep, rptr += sstep )
{
int lval = lptr[0];
__m128i lv = _mm_set1_epi8((char)lval), z = _mm_setzero_si128();
for( d = 0; d < ndisp; d += 16 )
{
__m128i rv = _mm_loadu_si128((const __m128i*)(rptr + d));
__m128i hsad_l = _mm_load_si128((__m128i*)(hsad + d));
__m128i hsad_h = _mm_load_si128((__m128i*)(hsad + d + 8));
__m128i cbs = _mm_load_si128((const __m128i*)(cbuf_sub + d));
__m128i diff = _mm_adds_epu8(_mm_subs_epu8(lv, rv), _mm_subs_epu8(rv, lv));
__m128i diff_h = _mm_sub_epi16(_mm_unpackhi_epi8(diff, z), _mm_unpackhi_epi8(cbs, z));
_mm_store_si128((__m128i*)(cbuf + d), diff);
diff = _mm_sub_epi16(_mm_unpacklo_epi8(diff, z), _mm_unpacklo_epi8(cbs, z));
hsad_h = _mm_add_epi16(hsad_h, diff_h);
hsad_l = _mm_add_epi16(hsad_l, diff);
_mm_store_si128((__m128i*)(hsad + d), hsad_l);
_mm_store_si128((__m128i*)(hsad + d + 8), hsad_h);
}
htext[y] += tab[lval] - tab[lptr_sub[0]];
}
// fill borders
for( y = dy1; y <= wsz2; y++ )
htext[height+y] = htext[height+dy1-1];
for( y = -wsz2-1; y < -dy0; y++ )
htext[y] = htext[-dy0];
// initialize sums
for( d = 0; d < ndisp; d++ )
sad[d] = (ushort)(hsad0[d-ndisp*dy0]*(wsz2 + 2 - dy0));
hsad = hsad0 + (1 - dy0)*ndisp;
for( y = 1 - dy0; y < wsz2; y++, hsad += ndisp )
for( d = 0; d < ndisp; d++ )
sad[d] = (ushort)(sad[d] + hsad[d]);
int tsum = 0;
for( y = -wsz2-1; y < wsz2; y++ )
tsum += htext[y];
// finally, start the real processing
for( y = 0; y < height; y++ )
{
int minsad = INT_MAX, mind = -1;
hsad = hsad0 + MIN(y + wsz2, height+dy1-1)*ndisp;
hsad_sub = hsad0 + MAX(y - wsz2 - 1, -dy0)*ndisp;
__m128i minsad8 = _mm_set1_epi16(SHRT_MAX);
__m128i mind8 = _mm_set1_epi16(-1), d8 = d0_8, mask;
for( d = 0; d < ndisp; d += 8 )
{
__m128i v0 = _mm_load_si128((__m128i*)(hsad_sub + d));
__m128i v1 = _mm_load_si128((__m128i*)(hsad + d));
__m128i sad8 = _mm_load_si128((__m128i*)(sad + d));
sad8 = _mm_sub_epi16(sad8, v0);
sad8 = _mm_add_epi16(sad8, v1);
mask = _mm_cmpgt_epi16(minsad8, sad8);
_mm_store_si128((__m128i*)(sad + d), sad8);
minsad8 = _mm_min_epi16(minsad8, sad8);
mind8 = _mm_xor_si128(mind8,_mm_and_si128(_mm_xor_si128(d8,mind8),mask));
d8 = _mm_add_epi16(d8, dd_8);
}
__m128i minsad82 = _mm_unpackhi_epi64(minsad8, minsad8);
__m128i mind82 = _mm_unpackhi_epi64(mind8, mind8);
mask = _mm_cmpgt_epi16(minsad8, minsad82);
mind8 = _mm_xor_si128(mind8,_mm_and_si128(_mm_xor_si128(mind82,mind8),mask));
minsad8 = _mm_min_epi16(minsad8, minsad82);
minsad82 = _mm_shufflelo_epi16(minsad8, _MM_SHUFFLE(3,2,3,2));
mind82 = _mm_shufflelo_epi16(mind8, _MM_SHUFFLE(3,2,3,2));
mask = _mm_cmpgt_epi16(minsad8, minsad82);
mind8 = _mm_xor_si128(mind8,_mm_and_si128(_mm_xor_si128(mind82,mind8),mask));
minsad8 = _mm_min_epi16(minsad8, minsad82);
minsad82 = _mm_shufflelo_epi16(minsad8, 1);
mind82 = _mm_shufflelo_epi16(mind8, 1);
mask = _mm_cmpgt_epi16(minsad8, minsad82);
mind8 = _mm_xor_si128(mind8,_mm_and_si128(_mm_xor_si128(mind82,mind8),mask));
mind = (short)_mm_cvtsi128_si32(mind8);
minsad = sad[mind];
tsum += htext[y + wsz2] - htext[y - wsz2 - 1];
if( tsum < textureThreshold )
{
dptr[y*dstep] = FILTERED;
continue;
}
if( uniquenessRatio > 0 )
{
int thresh = minsad + (minsad * uniquenessRatio/100);
__m128i thresh8 = _mm_set1_epi16((short)(thresh + 1));
__m128i d1 = _mm_set1_epi16((short)(mind-1)), d2 = _mm_set1_epi16((short)(mind+1));
__m128i d8 = d0_8;
for( d = 0; d < ndisp; d += 8 )
{
__m128i sad8 = _mm_load_si128((__m128i*)(sad + d));
__m128i mask = _mm_cmpgt_epi16( thresh8, sad8 );
mask = _mm_and_si128(mask, _mm_or_si128(_mm_cmpgt_epi16(d1,d8), _mm_cmpgt_epi16(d8,d2)));
if( _mm_movemask_epi8(mask) )
break;
d8 = _mm_add_epi16(d8, dd_8);
}
if( d < ndisp )
{
dptr[y*dstep] = FILTERED;
continue;
}
}
{
sad[-1] = sad[1];
sad[ndisp] = sad[ndisp-2];
int p = sad[mind+1], n = sad[mind-1], d = p + n - 2*sad[mind];
dptr[y*dstep] = (short)(((ndisp - mind - 1 + mindisp)*256 + (d != 0 ? (p-n)*128/d : 0) + 15) >> 4);
}
}
}
}
#endif
static void
icvFindStereoCorrespondenceBM( const CvMat* left, const CvMat* right,
CvMat* disp, CvStereoBMState* state,
uchar* buf, int _dy0, int _dy1 )
{
int x, y, d;
int wsz = state->SADWindowSize, wsz2 = wsz/2;
int dy0 = MIN(_dy0, wsz2+1), dy1 = MIN(_dy1, wsz2+1);
int ndisp = state->numberOfDisparities;
int mindisp = state->minDisparity;
int lofs = MAX(ndisp - 1 + mindisp, 0);
int rofs = -MIN(ndisp - 1 + mindisp, 0);
int width = left->cols, height = left->rows;
int width1 = width - rofs - ndisp + 1;
int ftzero = state->preFilterCap;
int textureThreshold = state->textureThreshold;
int uniquenessRatio = state->uniquenessRatio;
short FILTERED = (short)((mindisp - 1) << DISPARITY_SHIFT);
int *sad, *hsad0, *hsad, *hsad_sub, *htext;
uchar *cbuf0, *cbuf;
const uchar* lptr0 = left->data.ptr + lofs;
const uchar* rptr0 = right->data.ptr + rofs;
const uchar *lptr, *lptr_sub, *rptr;
short* dptr = disp->data.s;
int sstep = left->step;
int dstep = disp->step/sizeof(dptr[0]);
int cstep = (height+dy0+dy1)*ndisp;
const int TABSZ = 256;
uchar tab[TABSZ];
sad = (int*)cvAlignPtr(buf + sizeof(sad[0]));
hsad0 = (int*)cvAlignPtr(sad + ndisp + 1 + dy0*ndisp);
htext = (int*)cvAlignPtr((int*)(hsad0 + (height+dy1)*ndisp) + wsz2 + 2);
cbuf0 = (uchar*)cvAlignPtr(htext + height + wsz2 + 2 + dy0*ndisp);
for( x = 0; x < TABSZ; x++ )
tab[x] = (uchar)abs(x - ftzero);
// initialize buffers
memset( hsad0 - dy0*ndisp, 0, (height + dy0 + dy1)*ndisp*sizeof(hsad0[0]) );
memset( htext - wsz2 - 1, 0, (height + wsz + 1)*sizeof(htext[0]) );
for( x = -wsz2-1; x < wsz2; x++ )
{
hsad = hsad0 - dy0*ndisp; cbuf = cbuf0 + (x + wsz2 + 1)*cstep - dy0*ndisp;
lptr = lptr0 + MIN(MAX(x, -lofs), width-lofs-1) - dy0*sstep;
rptr = rptr0 + MIN(MAX(x, -rofs), width-rofs-1) - dy0*sstep;
for( y = -dy0; y < height + dy1; y++, hsad += ndisp, cbuf += ndisp, lptr += sstep, rptr += sstep )
{
int lval = lptr[0];
for( d = 0; d < ndisp; d++ )
{
int diff = abs(lval - rptr[d]);
cbuf[d] = (uchar)diff;
hsad[d] = (int)(hsad[d] + diff);
}
htext[y] += tab[lval];
}
}
// initialize the left and right borders of the disparity map
for( y = 0; y < height; y++ )
{
for( x = 0; x < lofs; x++ )
dptr[y*dstep + x] = FILTERED;
for( x = lofs + width1; x < width; x++ )
dptr[y*dstep + x] = FILTERED;
}
dptr += lofs;
for( x = 0; x < width1; x++, dptr++ )
{
int x0 = x - wsz2 - 1, x1 = x + wsz2;
const uchar* cbuf_sub = cbuf0 + ((x0 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp;
uchar* cbuf = cbuf0 + ((x1 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp;
hsad = hsad0 - dy0*ndisp;
lptr_sub = lptr0 + MIN(MAX(x0, -lofs), width-1-lofs) - dy0*sstep;
lptr = lptr0 + MIN(MAX(x1, -lofs), width-1-lofs) - dy0*sstep;
rptr = rptr0 + MIN(MAX(x1, -rofs), width-1-rofs) - dy0*sstep;
for( y = -dy0; y < height + dy1; y++, cbuf += ndisp, cbuf_sub += ndisp,
hsad += ndisp, lptr += sstep, lptr_sub += sstep, rptr += sstep )
{
int lval = lptr[0];
for( d = 0; d < ndisp; d++ )
{
int diff = abs(lval - rptr[d]);
cbuf[d] = (uchar)diff;
hsad[d] = hsad[d] + diff - cbuf_sub[d];
}
htext[y] += tab[lval] - tab[lptr_sub[0]];
}
// fill borders
for( y = dy1; y <= wsz2; y++ )
htext[height+y] = htext[height+dy1-1];
for( y = -wsz2-1; y < -dy0; y++ )
htext[y] = htext[-dy0];
// initialize sums
for( d = 0; d < ndisp; d++ )
sad[d] = (int)(hsad0[d-ndisp*dy0]*(wsz2 + 2 - dy0));
hsad = hsad0 + (1 - dy0)*ndisp;
for( y = 1 - dy0; y < wsz2; y++, hsad += ndisp )
for( d = 0; d < ndisp; d++ )
sad[d] = (int)(sad[d] + hsad[d]);
int tsum = 0;
for( y = -wsz2-1; y < wsz2; y++ )
tsum += htext[y];
// finally, start the real processing
for( y = 0; y < height; y++ )
{
int minsad = INT_MAX, mind = -1;
hsad = hsad0 + MIN(y + wsz2, height+dy1-1)*ndisp;
hsad_sub = hsad0 + MAX(y - wsz2 - 1, -dy0)*ndisp;
for( d = 0; d < ndisp; d++ )
{
int currsad = sad[d] + hsad[d] - hsad_sub[d];
sad[d] = currsad;
if( currsad < minsad )
{
minsad = currsad;
mind = d;
}
}
tsum += htext[y + wsz2] - htext[y - wsz2 - 1];
if( tsum < textureThreshold )
{
dptr[y*dstep] = FILTERED;
continue;
}
if( uniquenessRatio > 0 )
{
int thresh = minsad + (minsad * uniquenessRatio/100);
for( d = 0; d < ndisp; d++ )
{
if( sad[d] <= thresh && (d < mind-1 || d > mind+1))
break;
}
if( d < ndisp )
{
dptr[y*dstep] = FILTERED;
continue;
}
}
{
sad[-1] = sad[1];
sad[ndisp] = sad[ndisp-2];
int p = sad[mind+1], n = sad[mind-1], d = p + n - 2*sad[mind];
dptr[y*dstep] = (short)(((ndisp - mind - 1 + mindisp)*256 + (d != 0 ? (p-n)*128/d : 0) + 15) >> 4);
}
}
}
}
CV_IMPL void
cvFindStereoCorrespondenceBM( const CvArr* leftarr, const CvArr* rightarr,
CvArr* disparr, CvStereoBMState* state )
{
CV_FUNCNAME( "cvFindStereoCorrespondenceBM" );
__BEGIN__;
CvMat lstub, *left0 = cvGetMat( leftarr, &lstub );
CvMat rstub, *right0 = cvGetMat( rightarr, &rstub );
CvMat left, right;
CvMat dstub, *disp = cvGetMat( disparr, &dstub );
int bufSize0, bufSize1, bufSize, width, width1, height;
int wsz, ndisp, mindisp, lofs, rofs;
int i, n = cvGetNumThreads();
if( !CV_ARE_SIZES_EQ(left0, right0) ||
!CV_ARE_SIZES_EQ(disp, left0) )
CV_ERROR( CV_StsUnmatchedSizes, "All the images must have the same size" );
if( CV_MAT_TYPE(left0->type) != CV_8UC1 ||
!CV_ARE_TYPES_EQ(left0, right0) ||
CV_MAT_TYPE(disp->type) != CV_16SC1 )
CV_ERROR( CV_StsUnsupportedFormat,
"Both input images must have 8uC1 format and the disparity image must have 16sC1 format" );
if( !state )
CV_ERROR( CV_StsNullPtr, "Stereo BM state is NULL." );
if( state->preFilterType != CV_STEREO_BM_NORMALIZED_RESPONSE )
CV_ERROR( CV_StsOutOfRange, "preFilterType must be =CV_STEREO_BM_NORMALIZED_RESPONSE" );
if( state->preFilterSize < 5 || state->preFilterSize > 255 || state->preFilterSize % 2 == 0 )
CV_ERROR( CV_StsOutOfRange, "preFilterSize must be odd and be within 5..255" );
if( state->preFilterCap < 1 || state->preFilterCap > 63 )
CV_ERROR( CV_StsOutOfRange, "preFilterCap must be within 1..63" );
if( state->SADWindowSize < 5 || state->SADWindowSize > 255 || state->SADWindowSize % 2 == 0 ||
state->SADWindowSize >= MIN(left0->cols, left0->rows) )
CV_ERROR( CV_StsOutOfRange, "SADWindowSize must be odd, be within 5..255 and "
"be not larger than image width or height" );
if( state->numberOfDisparities <= 0 || state->numberOfDisparities % 16 != 0 )
CV_ERROR( CV_StsOutOfRange, "numberOfDisparities must be positive and divisble by 16" );
if( state->textureThreshold < 0 )
CV_ERROR( CV_StsOutOfRange, "texture threshold must be non-negative" );
if( state->uniquenessRatio < 0 )
CV_ERROR( CV_StsOutOfRange, "uniqueness ratio must be non-negative" );
if( !state->preFilteredImg0 ||
state->preFilteredImg0->cols*state->preFilteredImg0->rows < left0->cols*left0->rows )
{
cvReleaseMat( &state->preFilteredImg0 );
cvReleaseMat( &state->preFilteredImg1 );
state->preFilteredImg0 = cvCreateMat( left0->rows, left0->cols, CV_8U );
state->preFilteredImg1 = cvCreateMat( left0->rows, left0->cols, CV_8U );
}
left = cvMat(left0->rows, left0->cols, CV_8U, state->preFilteredImg0->data.ptr);
right = cvMat(right0->rows, right0->cols, CV_8U, state->preFilteredImg1->data.ptr);
mindisp = state->minDisparity;
ndisp = state->numberOfDisparities;
width = left0->cols;
height = left0->rows;
lofs = MAX(ndisp - 1 + mindisp, 0);
rofs = -MIN(ndisp - 1 + mindisp, 0);
width1 = width - rofs - ndisp + 1;
if( lofs >= width || rofs >= width || width1 < 1 )
{
int FILTERED = (short)((state->minDisparity - 1) << DISPARITY_SHIFT);
cvSet( disp, cvScalarAll(FILTERED) );
EXIT;
}
wsz = state->SADWindowSize;
bufSize0 = (ndisp + 2)*sizeof(int) + (height+wsz+2)*ndisp*sizeof(int) +
(height + wsz + 2)*sizeof(int) + (height+wsz+2)*ndisp*(wsz+1)*sizeof(uchar) + 256;
bufSize1 = (width + state->preFilterSize + 2)*sizeof(int) + 256;
bufSize = MAX(bufSize0, bufSize1);
n = MAX(MIN(height/wsz, n), 1);
if( !state->slidingSumBuf || state->slidingSumBuf->cols < bufSize*n )
{
cvReleaseMat( &state->slidingSumBuf );
state->slidingSumBuf = cvCreateMat( 1, bufSize*n, CV_8U );
}
#ifdef _OPENMP
#pragma omp parallel sections num_threads(n)
#endif
{
#ifdef _OPENMP
#pragma omp section
#endif
icvPrefilter( left0, &left, state->preFilterSize,
state->preFilterCap, state->slidingSumBuf->data.ptr );
#ifdef _OPENMP
#pragma omp section
#endif
icvPrefilter( right0, &right, state->preFilterSize,
state->preFilterCap, state->slidingSumBuf->data.ptr + bufSize1*(n>1) );
}
#ifdef _OPENMP
#pragma omp parallel for num_threads(n) schedule(static)
#endif
for( i = 0; i < n; i++ )
{
int thread_id = cvGetThreadNum();
CvMat left_i, right_i, disp_i;
int row0 = i*left.rows/n, row1 = (i+1)*left.rows/n;
cvGetRows( &left, &left_i, row0, row1 );
cvGetRows( &right, &right_i, row0, row1 );
cvGetRows( disp, &disp_i, row0, row1 );
#if CV_SSE2
if( state->preFilterCap <= 31 && state->SADWindowSize <= 21 )
{
icvFindStereoCorrespondenceBM_SSE2( &left_i, &right_i, &disp_i, state,
state->slidingSumBuf->data.ptr + thread_id*bufSize0, row0, left.rows-row1 );
}
else
#endif
{
icvFindStereoCorrespondenceBM( &left_i, &right_i, &disp_i, state,
state->slidingSumBuf->data.ptr + thread_id*bufSize0, row0, left.rows-row1 );
}
}
__END__;
}
/* End of file. */