// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_MIPS)
#include "codegen.h"
#include "debug.h"
#include "deoptimizer.h"
#include "full-codegen.h"
#include "runtime.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm,
CFunctionId id,
BuiltinExtraArguments extra_args) {
// ----------- S t a t e -------------
// -- a0 : number of arguments excluding receiver
// -- a1 : called function (only guaranteed when
// -- extra_args requires it)
// -- cp : context
// -- sp[0] : last argument
// -- ...
// -- sp[4 * (argc - 1)] : first argument
// -- sp[4 * agrc] : receiver
// -----------------------------------
// Insert extra arguments.
int num_extra_args = 0;
if (extra_args == NEEDS_CALLED_FUNCTION) {
num_extra_args = 1;
__ push(a1);
} else {
ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
}
// JumpToExternalReference expects s0 to contain the number of arguments
// including the receiver and the extra arguments.
__ Addu(s0, a0, num_extra_args + 1);
__ sll(s1, s0, kPointerSizeLog2);
__ Subu(s1, s1, kPointerSize);
__ JumpToExternalReference(ExternalReference(id, masm->isolate()));
}
// Load the built-in InternalArray function from the current context.
static void GenerateLoadInternalArrayFunction(MacroAssembler* masm,
Register result) {
// Load the global context.
__ lw(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ lw(result,
FieldMemOperand(result, GlobalObject::kGlobalContextOffset));
// Load the InternalArray function from the global context.
__ lw(result,
MemOperand(result,
Context::SlotOffset(
Context::INTERNAL_ARRAY_FUNCTION_INDEX)));
}
// Load the built-in Array function from the current context.
static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
// Load the global context.
__ lw(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ lw(result,
FieldMemOperand(result, GlobalObject::kGlobalContextOffset));
// Load the Array function from the global context.
__ lw(result,
MemOperand(result,
Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX)));
}
// Allocate an empty JSArray. The allocated array is put into the result
// register. An elements backing store is allocated with size initial_capacity
// and filled with the hole values.
static void AllocateEmptyJSArray(MacroAssembler* masm,
Register array_function,
Register result,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required) {
const int initial_capacity = JSArray::kPreallocatedArrayElements;
STATIC_ASSERT(initial_capacity >= 0);
__ LoadInitialArrayMap(array_function, scratch2, scratch1);
// Allocate the JSArray object together with space for a fixed array with the
// requested elements.
int size = JSArray::kSize;
if (initial_capacity > 0) {
size += FixedArray::SizeFor(initial_capacity);
}
__ AllocateInNewSpace(size,
result,
scratch2,
scratch3,
gc_required,
TAG_OBJECT);
// Allocated the JSArray. Now initialize the fields except for the elements
// array.
// result: JSObject
// scratch1: initial map
// scratch2: start of next object
__ sw(scratch1, FieldMemOperand(result, JSObject::kMapOffset));
__ LoadRoot(scratch1, Heap::kEmptyFixedArrayRootIndex);
__ sw(scratch1, FieldMemOperand(result, JSArray::kPropertiesOffset));
// Field JSArray::kElementsOffset is initialized later.
__ mov(scratch3, zero_reg);
__ sw(scratch3, FieldMemOperand(result, JSArray::kLengthOffset));
if (initial_capacity == 0) {
__ sw(scratch1, FieldMemOperand(result, JSArray::kElementsOffset));
return;
}
// Calculate the location of the elements array and set elements array member
// of the JSArray.
// result: JSObject
// scratch2: start of next object
__ Addu(scratch1, result, Operand(JSArray::kSize));
__ sw(scratch1, FieldMemOperand(result, JSArray::kElementsOffset));
// Clear the heap tag on the elements array.
__ And(scratch1, scratch1, Operand(~kHeapObjectTagMask));
// Initialize the FixedArray and fill it with holes. FixedArray length is
// stored as a smi.
// result: JSObject
// scratch1: elements array (untagged)
// scratch2: start of next object
__ LoadRoot(scratch3, Heap::kFixedArrayMapRootIndex);
STATIC_ASSERT(0 * kPointerSize == FixedArray::kMapOffset);
__ sw(scratch3, MemOperand(scratch1));
__ Addu(scratch1, scratch1, kPointerSize);
__ li(scratch3, Operand(Smi::FromInt(initial_capacity)));
STATIC_ASSERT(1 * kPointerSize == FixedArray::kLengthOffset);
__ sw(scratch3, MemOperand(scratch1));
__ Addu(scratch1, scratch1, kPointerSize);
// Fill the FixedArray with the hole value. Inline the code if short.
STATIC_ASSERT(2 * kPointerSize == FixedArray::kHeaderSize);
__ LoadRoot(scratch3, Heap::kTheHoleValueRootIndex);
static const int kLoopUnfoldLimit = 4;
if (initial_capacity <= kLoopUnfoldLimit) {
for (int i = 0; i < initial_capacity; i++) {
__ sw(scratch3, MemOperand(scratch1, i * kPointerSize));
}
} else {
Label loop, entry;
__ Addu(scratch2, scratch1, Operand(initial_capacity * kPointerSize));
__ Branch(&entry);
__ bind(&loop);
__ sw(scratch3, MemOperand(scratch1));
__ Addu(scratch1, scratch1, kPointerSize);
__ bind(&entry);
__ Branch(&loop, lt, scratch1, Operand(scratch2));
}
}
// Allocate a JSArray with the number of elements stored in a register. The
// register array_function holds the built-in Array function and the register
// array_size holds the size of the array as a smi. The allocated array is put
// into the result register and beginning and end of the FixedArray elements
// storage is put into registers elements_array_storage and elements_array_end
// (see below for when that is not the case). If the parameter fill_with_holes
// is true the allocated elements backing store is filled with the hole values
// otherwise it is left uninitialized. When the backing store is filled the
// register elements_array_storage is scratched.
static void AllocateJSArray(MacroAssembler* masm,
Register array_function, // Array function.
Register array_size, // As a smi, cannot be 0.
Register result,
Register elements_array_storage,
Register elements_array_end,
Register scratch1,
Register scratch2,
bool fill_with_hole,
Label* gc_required) {
// Load the initial map from the array function.
__ LoadInitialArrayMap(array_function, scratch2, elements_array_storage);
if (FLAG_debug_code) { // Assert that array size is not zero.
__ Assert(
ne, "array size is unexpectedly 0", array_size, Operand(zero_reg));
}
// Allocate the JSArray object together with space for a FixedArray with the
// requested number of elements.
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ li(elements_array_end,
(JSArray::kSize + FixedArray::kHeaderSize) / kPointerSize);
__ sra(scratch1, array_size, kSmiTagSize);
__ Addu(elements_array_end, elements_array_end, scratch1);
__ AllocateInNewSpace(
elements_array_end,
result,
scratch1,
scratch2,
gc_required,
static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
// Allocated the JSArray. Now initialize the fields except for the elements
// array.
// result: JSObject
// elements_array_storage: initial map
// array_size: size of array (smi)
__ sw(elements_array_storage, FieldMemOperand(result, JSObject::kMapOffset));
__ LoadRoot(elements_array_storage, Heap::kEmptyFixedArrayRootIndex);
__ sw(elements_array_storage,
FieldMemOperand(result, JSArray::kPropertiesOffset));
// Field JSArray::kElementsOffset is initialized later.
__ sw(array_size, FieldMemOperand(result, JSArray::kLengthOffset));
// Calculate the location of the elements array and set elements array member
// of the JSArray.
// result: JSObject
// array_size: size of array (smi)
__ Addu(elements_array_storage, result, Operand(JSArray::kSize));
__ sw(elements_array_storage,
FieldMemOperand(result, JSArray::kElementsOffset));
// Clear the heap tag on the elements array.
__ And(elements_array_storage,
elements_array_storage,
Operand(~kHeapObjectTagMask));
// Initialize the fixed array and fill it with holes. FixedArray length is
// stored as a smi.
// result: JSObject
// elements_array_storage: elements array (untagged)
// array_size: size of array (smi)
__ LoadRoot(scratch1, Heap::kFixedArrayMapRootIndex);
ASSERT_EQ(0 * kPointerSize, FixedArray::kMapOffset);
__ sw(scratch1, MemOperand(elements_array_storage));
__ Addu(elements_array_storage, elements_array_storage, kPointerSize);
// Length of the FixedArray is the number of pre-allocated elements if
// the actual JSArray has length 0 and the size of the JSArray for non-empty
// JSArrays. The length of a FixedArray is stored as a smi.
STATIC_ASSERT(kSmiTag == 0);
ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
__ sw(array_size, MemOperand(elements_array_storage));
__ Addu(elements_array_storage, elements_array_storage, kPointerSize);
// Calculate elements array and elements array end.
// result: JSObject
// elements_array_storage: elements array element storage
// array_size: smi-tagged size of elements array
STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
__ sll(elements_array_end, array_size, kPointerSizeLog2 - kSmiTagSize);
__ Addu(elements_array_end, elements_array_storage, elements_array_end);
// Fill the allocated FixedArray with the hole value if requested.
// result: JSObject
// elements_array_storage: elements array element storage
// elements_array_end: start of next object
if (fill_with_hole) {
Label loop, entry;
__ LoadRoot(scratch1, Heap::kTheHoleValueRootIndex);
__ Branch(&entry);
__ bind(&loop);
__ sw(scratch1, MemOperand(elements_array_storage));
__ Addu(elements_array_storage, elements_array_storage, kPointerSize);
__ bind(&entry);
__ Branch(&loop, lt, elements_array_storage, Operand(elements_array_end));
}
}
// Create a new array for the built-in Array function. This function allocates
// the JSArray object and the FixedArray elements array and initializes these.
// If the Array cannot be constructed in native code the runtime is called. This
// function assumes the following state:
// a0: argc
// a1: constructor (built-in Array function)
// ra: return address
// sp[0]: last argument
// This function is used for both construct and normal calls of Array. The only
// difference between handling a construct call and a normal call is that for a
// construct call the constructor function in a1 needs to be preserved for
// entering the generic code. In both cases argc in a0 needs to be preserved.
// Both registers are preserved by this code so no need to differentiate between
// construct call and normal call.
static void ArrayNativeCode(MacroAssembler* masm,
Label* call_generic_code) {
Counters* counters = masm->isolate()->counters();
Label argc_one_or_more, argc_two_or_more, not_empty_array, empty_array,
has_non_smi_element, finish, cant_transition_map, not_double;
// Check for array construction with zero arguments or one.
__ Branch(&argc_one_or_more, ne, a0, Operand(zero_reg));
// Handle construction of an empty array.
__ bind(&empty_array);
AllocateEmptyJSArray(masm,
a1,
a2,
a3,
t0,
t1,
call_generic_code);
__ IncrementCounter(counters->array_function_native(), 1, a3, t0);
// Set up return value, remove receiver from stack and return.
__ mov(v0, a2);
__ Addu(sp, sp, Operand(kPointerSize));
__ Ret();
// Check for one argument. Bail out if argument is not smi or if it is
// negative.
__ bind(&argc_one_or_more);
__ Branch(&argc_two_or_more, ne, a0, Operand(1));
STATIC_ASSERT(kSmiTag == 0);
__ lw(a2, MemOperand(sp)); // Get the argument from the stack.
__ Branch(¬_empty_array, ne, a2, Operand(zero_reg));
__ Drop(1); // Adjust stack.
__ mov(a0, zero_reg); // Treat this as a call with argc of zero.
__ Branch(&empty_array);
__ bind(¬_empty_array);
__ And(a3, a2, Operand(kIntptrSignBit | kSmiTagMask));
__ Branch(call_generic_code, eq, a3, Operand(zero_reg));
// Handle construction of an empty array of a certain size. Bail out if size
// is too large to actually allocate an elements array.
STATIC_ASSERT(kSmiTag == 0);
__ Branch(call_generic_code, Ugreater_equal, a2,
Operand(JSObject::kInitialMaxFastElementArray << kSmiTagSize));
// a0: argc
// a1: constructor
// a2: array_size (smi)
// sp[0]: argument
AllocateJSArray(masm,
a1,
a2,
a3,
t0,
t1,
t2,
t3,
true,
call_generic_code);
__ IncrementCounter(counters->array_function_native(), 1, a2, t0);
// Set up return value, remove receiver and argument from stack and return.
__ mov(v0, a3);
__ Addu(sp, sp, Operand(2 * kPointerSize));
__ Ret();
// Handle construction of an array from a list of arguments.
__ bind(&argc_two_or_more);
__ sll(a2, a0, kSmiTagSize); // Convert argc to a smi.
// a0: argc
// a1: constructor
// a2: array_size (smi)
// sp[0]: last argument
AllocateJSArray(masm,
a1,
a2,
a3,
t0,
t1,
t2,
t3,
false,
call_generic_code);
__ IncrementCounter(counters->array_function_native(), 1, a2, t2);
// Fill arguments as array elements. Copy from the top of the stack (last
// element) to the array backing store filling it backwards. Note:
// elements_array_end points after the backing store.
// a0: argc
// a3: JSArray
// t0: elements_array storage start (untagged)
// t1: elements_array_end (untagged)
// sp[0]: last argument
Label loop, entry;
__ Branch(USE_DELAY_SLOT, &entry);
__ mov(t3, sp);
__ bind(&loop);
__ lw(a2, MemOperand(t3));
if (FLAG_smi_only_arrays) {
__ JumpIfNotSmi(a2, &has_non_smi_element);
}
__ Addu(t3, t3, kPointerSize);
__ Addu(t1, t1, -kPointerSize);
__ sw(a2, MemOperand(t1));
__ bind(&entry);
__ Branch(&loop, lt, t0, Operand(t1));
__ bind(&finish);
__ mov(sp, t3);
// Remove caller arguments and receiver from the stack, setup return value and
// return.
// a0: argc
// a3: JSArray
// sp[0]: receiver
__ Addu(sp, sp, Operand(kPointerSize));
__ mov(v0, a3);
__ Ret();
__ bind(&has_non_smi_element);
// Double values are handled by the runtime.
__ CheckMap(
a2, t5, Heap::kHeapNumberMapRootIndex, ¬_double, DONT_DO_SMI_CHECK);
__ bind(&cant_transition_map);
__ UndoAllocationInNewSpace(a3, t0);
__ Branch(call_generic_code);
__ bind(¬_double);
// Transition FAST_SMI_ONLY_ELEMENTS to FAST_ELEMENTS.
// a3: JSArray
__ lw(a2, FieldMemOperand(a3, HeapObject::kMapOffset));
__ LoadTransitionedArrayMapConditional(FAST_SMI_ONLY_ELEMENTS,
FAST_ELEMENTS,
a2,
t5,
&cant_transition_map);
__ sw(a2, FieldMemOperand(a3, HeapObject::kMapOffset));
__ RecordWriteField(a3,
HeapObject::kMapOffset,
a2,
t5,
kRAHasNotBeenSaved,
kDontSaveFPRegs,
EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
Label loop2;
__ bind(&loop2);
__ lw(a2, MemOperand(t3));
__ Addu(t3, t3, kPointerSize);
__ Subu(t1, t1, kPointerSize);
__ sw(a2, MemOperand(t1));
__ Branch(&loop2, lt, t0, Operand(t1));
__ Branch(&finish);
}
void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- ra : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
// Get the InternalArray function.
GenerateLoadInternalArrayFunction(masm, a1);
if (FLAG_debug_code) {
// Initial map for the builtin InternalArray functions should be maps.
__ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
__ And(t0, a2, Operand(kSmiTagMask));
__ Assert(ne, "Unexpected initial map for InternalArray function",
t0, Operand(zero_reg));
__ GetObjectType(a2, a3, t0);
__ Assert(eq, "Unexpected initial map for InternalArray function",
t0, Operand(MAP_TYPE));
}
// Run the native code for the InternalArray function called as a normal
// function.
ArrayNativeCode(masm, &generic_array_code);
// Jump to the generic array code if the specialized code cannot handle the
// construction.
__ bind(&generic_array_code);
Handle<Code> array_code =
masm->isolate()->builtins()->InternalArrayCodeGeneric();
__ Jump(array_code, RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- ra : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Label generic_array_code;
// Get the Array function.
GenerateLoadArrayFunction(masm, a1);
if (FLAG_debug_code) {
// Initial map for the builtin Array functions should be maps.
__ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
__ And(t0, a2, Operand(kSmiTagMask));
__ Assert(ne, "Unexpected initial map for Array function (1)",
t0, Operand(zero_reg));
__ GetObjectType(a2, a3, t0);
__ Assert(eq, "Unexpected initial map for Array function (2)",
t0, Operand(MAP_TYPE));
}
// Run the native code for the Array function called as a normal function.
ArrayNativeCode(masm, &generic_array_code);
// Jump to the generic array code if the specialized code cannot handle
// the construction.
__ bind(&generic_array_code);
Handle<Code> array_code =
masm->isolate()->builtins()->ArrayCodeGeneric();
__ Jump(array_code, RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- a1 : constructor function
// -- ra : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Label generic_constructor;
if (FLAG_debug_code) {
// The array construct code is only set for the builtin and internal
// Array functions which always have a map.
// Initial map for the builtin Array function should be a map.
__ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
__ And(t0, a2, Operand(kSmiTagMask));
__ Assert(ne, "Unexpected initial map for Array function (3)",
t0, Operand(zero_reg));
__ GetObjectType(a2, a3, t0);
__ Assert(eq, "Unexpected initial map for Array function (4)",
t0, Operand(MAP_TYPE));
}
// Run the native code for the Array function called as a constructor.
ArrayNativeCode(masm, &generic_constructor);
// Jump to the generic construct code in case the specialized code cannot
// handle the construction.
__ bind(&generic_constructor);
Handle<Code> generic_construct_stub =
masm->isolate()->builtins()->JSConstructStubGeneric();
__ Jump(generic_construct_stub, RelocInfo::CODE_TARGET);
}
void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- a1 : constructor function
// -- ra : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
// -- sp[argc * 4] : receiver
// -----------------------------------
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->string_ctor_calls(), 1, a2, a3);
Register function = a1;
if (FLAG_debug_code) {
__ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, a2);
__ Assert(eq, "Unexpected String function", function, Operand(a2));
}
// Load the first arguments in a0 and get rid of the rest.
Label no_arguments;
__ Branch(&no_arguments, eq, a0, Operand(zero_reg));
// First args = sp[(argc - 1) * 4].
__ Subu(a0, a0, Operand(1));
__ sll(a0, a0, kPointerSizeLog2);
__ Addu(sp, a0, sp);
__ lw(a0, MemOperand(sp));
// sp now point to args[0], drop args[0] + receiver.
__ Drop(2);
Register argument = a2;
Label not_cached, argument_is_string;
NumberToStringStub::GenerateLookupNumberStringCache(
masm,
a0, // Input.
argument, // Result.
a3, // Scratch.
t0, // Scratch.
t1, // Scratch.
false, // Is it a Smi?
¬_cached);
__ IncrementCounter(counters->string_ctor_cached_number(), 1, a3, t0);
__ bind(&argument_is_string);
// ----------- S t a t e -------------
// -- a2 : argument converted to string
// -- a1 : constructor function
// -- ra : return address
// -----------------------------------
Label gc_required;
__ AllocateInNewSpace(JSValue::kSize,
v0, // Result.
a3, // Scratch.
t0, // Scratch.
&gc_required,
TAG_OBJECT);
// Initialising the String Object.
Register map = a3;
__ LoadGlobalFunctionInitialMap(function, map, t0);
if (FLAG_debug_code) {
__ lbu(t0, FieldMemOperand(map, Map::kInstanceSizeOffset));
__ Assert(eq, "Unexpected string wrapper instance size",
t0, Operand(JSValue::kSize >> kPointerSizeLog2));
__ lbu(t0, FieldMemOperand(map, Map::kUnusedPropertyFieldsOffset));
__ Assert(eq, "Unexpected unused properties of string wrapper",
t0, Operand(zero_reg));
}
__ sw(map, FieldMemOperand(v0, HeapObject::kMapOffset));
__ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex);
__ sw(a3, FieldMemOperand(v0, JSObject::kPropertiesOffset));
__ sw(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
__ sw(argument, FieldMemOperand(v0, JSValue::kValueOffset));
// Ensure the object is fully initialized.
STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
__ Ret();
// The argument was not found in the number to string cache. Check
// if it's a string already before calling the conversion builtin.
Label convert_argument;
__ bind(¬_cached);
__ JumpIfSmi(a0, &convert_argument);
// Is it a String?
__ lw(a2, FieldMemOperand(a0, HeapObject::kMapOffset));
__ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset));
STATIC_ASSERT(kNotStringTag != 0);
__ And(t0, a3, Operand(kIsNotStringMask));
__ Branch(&convert_argument, ne, t0, Operand(zero_reg));
__ mov(argument, a0);
__ IncrementCounter(counters->string_ctor_conversions(), 1, a3, t0);
__ Branch(&argument_is_string);
// Invoke the conversion builtin and put the result into a2.
__ bind(&convert_argument);
__ push(function); // Preserve the function.
__ IncrementCounter(counters->string_ctor_conversions(), 1, a3, t0);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(v0);
__ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION);
}
__ pop(function);
__ mov(argument, v0);
__ Branch(&argument_is_string);
// Load the empty string into a2, remove the receiver from the
// stack, and jump back to the case where the argument is a string.
__ bind(&no_arguments);
__ LoadRoot(argument, Heap::kEmptyStringRootIndex);
__ Drop(1);
__ Branch(&argument_is_string);
// At this point the argument is already a string. Call runtime to
// create a string wrapper.
__ bind(&gc_required);
__ IncrementCounter(counters->string_ctor_gc_required(), 1, a3, t0);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(argument);
__ CallRuntime(Runtime::kNewStringWrapper, 1);
}
__ Ret();
}
static void Generate_JSConstructStubHelper(MacroAssembler* masm,
bool is_api_function,
bool count_constructions) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- a1 : constructor function
// -- ra : return address
// -- sp[...]: constructor arguments
// -----------------------------------
// Should never count constructions for api objects.
ASSERT(!is_api_function || !count_constructions);
Isolate* isolate = masm->isolate();
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- a1 : constructor function
// -- ra : return address
// -- sp[...]: constructor arguments
// -----------------------------------
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
// Preserve the two incoming parameters on the stack.
__ sll(a0, a0, kSmiTagSize); // Tag arguments count.
__ MultiPushReversed(a0.bit() | a1.bit());
// Use t7 to hold undefined, which is used in several places below.
__ LoadRoot(t7, Heap::kUndefinedValueRootIndex);
Label rt_call, allocated;
// Try to allocate the object without transitioning into C code. If any of
// the preconditions is not met, the code bails out to the runtime call.
if (FLAG_inline_new) {
Label undo_allocation;
#ifdef ENABLE_DEBUGGER_SUPPORT
ExternalReference debug_step_in_fp =
ExternalReference::debug_step_in_fp_address(isolate);
__ li(a2, Operand(debug_step_in_fp));
__ lw(a2, MemOperand(a2));
__ Branch(&rt_call, ne, a2, Operand(zero_reg));
#endif
// Load the initial map and verify that it is in fact a map.
// a1: constructor function
__ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
__ JumpIfSmi(a2, &rt_call);
__ GetObjectType(a2, a3, t4);
__ Branch(&rt_call, ne, t4, Operand(MAP_TYPE));
// Check that the constructor is not constructing a JSFunction (see
// comments in Runtime_NewObject in runtime.cc). In which case the
// initial map's instance type would be JS_FUNCTION_TYPE.
// a1: constructor function
// a2: initial map
__ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset));
__ Branch(&rt_call, eq, a3, Operand(JS_FUNCTION_TYPE));
if (count_constructions) {
Label allocate;
// Decrease generous allocation count.
__ lw(a3, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
MemOperand constructor_count =
FieldMemOperand(a3, SharedFunctionInfo::kConstructionCountOffset);
__ lbu(t0, constructor_count);
__ Subu(t0, t0, Operand(1));
__ sb(t0, constructor_count);
__ Branch(&allocate, ne, t0, Operand(zero_reg));
__ Push(a1, a2);
__ push(a1); // Constructor.
// The call will replace the stub, so the countdown is only done once.
__ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
__ pop(a2);
__ pop(a1);
__ bind(&allocate);
}
// Now allocate the JSObject on the heap.
// a1: constructor function
// a2: initial map
__ lbu(a3, FieldMemOperand(a2, Map::kInstanceSizeOffset));
__ AllocateInNewSpace(a3, t4, t5, t6, &rt_call, SIZE_IN_WORDS);
// Allocated the JSObject, now initialize the fields. Map is set to
// initial map and properties and elements are set to empty fixed array.
// a1: constructor function
// a2: initial map
// a3: object size
// t4: JSObject (not tagged)
__ LoadRoot(t6, Heap::kEmptyFixedArrayRootIndex);
__ mov(t5, t4);
__ sw(a2, MemOperand(t5, JSObject::kMapOffset));
__ sw(t6, MemOperand(t5, JSObject::kPropertiesOffset));
__ sw(t6, MemOperand(t5, JSObject::kElementsOffset));
__ Addu(t5, t5, Operand(3*kPointerSize));
ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
ASSERT_EQ(1 * kPointerSize, JSObject::kPropertiesOffset);
ASSERT_EQ(2 * kPointerSize, JSObject::kElementsOffset);
// Fill all the in-object properties with appropriate filler.
// a1: constructor function
// a2: initial map
// a3: object size (in words)
// t4: JSObject (not tagged)
// t5: First in-object property of JSObject (not tagged)
__ sll(t0, a3, kPointerSizeLog2);
__ addu(t6, t4, t0); // End of object.
ASSERT_EQ(3 * kPointerSize, JSObject::kHeaderSize);
__ LoadRoot(t7, Heap::kUndefinedValueRootIndex);
if (count_constructions) {
__ lw(a0, FieldMemOperand(a2, Map::kInstanceSizesOffset));
__ Ext(a0, a0, Map::kPreAllocatedPropertyFieldsByte * kBitsPerByte,
kBitsPerByte);
__ sll(t0, a0, kPointerSizeLog2);
__ addu(a0, t5, t0);
// a0: offset of first field after pre-allocated fields
if (FLAG_debug_code) {
__ Assert(le, "Unexpected number of pre-allocated property fields.",
a0, Operand(t6));
}
__ InitializeFieldsWithFiller(t5, a0, t7);
// To allow for truncation.
__ LoadRoot(t7, Heap::kOnePointerFillerMapRootIndex);
}
__ InitializeFieldsWithFiller(t5, t6, t7);
// Add the object tag to make the JSObject real, so that we can continue
// and jump into the continuation code at any time from now on. Any
// failures need to undo the allocation, so that the heap is in a
// consistent state and verifiable.
__ Addu(t4, t4, Operand(kHeapObjectTag));
// Check if a non-empty properties array is needed. Continue with
// allocated object if not fall through to runtime call if it is.
// a1: constructor function
// t4: JSObject
// t5: start of next object (not tagged)
__ lbu(a3, FieldMemOperand(a2, Map::kUnusedPropertyFieldsOffset));
// The field instance sizes contains both pre-allocated property fields
// and in-object properties.
__ lw(a0, FieldMemOperand(a2, Map::kInstanceSizesOffset));
__ Ext(t6, a0, Map::kPreAllocatedPropertyFieldsByte * kBitsPerByte,
kBitsPerByte);
__ Addu(a3, a3, Operand(t6));
__ Ext(t6, a0, Map::kInObjectPropertiesByte * kBitsPerByte,
kBitsPerByte);
__ subu(a3, a3, t6);
// Done if no extra properties are to be allocated.
__ Branch(&allocated, eq, a3, Operand(zero_reg));
__ Assert(greater_equal, "Property allocation count failed.",
a3, Operand(zero_reg));
// Scale the number of elements by pointer size and add the header for
// FixedArrays to the start of the next object calculation from above.
// a1: constructor
// a3: number of elements in properties array
// t4: JSObject
// t5: start of next object
__ Addu(a0, a3, Operand(FixedArray::kHeaderSize / kPointerSize));
__ AllocateInNewSpace(
a0,
t5,
t6,
a2,
&undo_allocation,
static_cast<AllocationFlags>(RESULT_CONTAINS_TOP | SIZE_IN_WORDS));
// Initialize the FixedArray.
// a1: constructor
// a3: number of elements in properties array (untagged)
// t4: JSObject
// t5: start of next object
__ LoadRoot(t6, Heap::kFixedArrayMapRootIndex);
__ mov(a2, t5);
__ sw(t6, MemOperand(a2, JSObject::kMapOffset));
__ sll(a0, a3, kSmiTagSize);
__ sw(a0, MemOperand(a2, FixedArray::kLengthOffset));
__ Addu(a2, a2, Operand(2 * kPointerSize));
ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
// Initialize the fields to undefined.
// a1: constructor
// a2: First element of FixedArray (not tagged)
// a3: number of elements in properties array
// t4: JSObject
// t5: FixedArray (not tagged)
__ sll(t3, a3, kPointerSizeLog2);
__ addu(t6, a2, t3); // End of object.
ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize);
{ Label loop, entry;
if (count_constructions) {
__ LoadRoot(t7, Heap::kUndefinedValueRootIndex);
} else if (FLAG_debug_code) {
__ LoadRoot(t8, Heap::kUndefinedValueRootIndex);
__ Assert(eq, "Undefined value not loaded.", t7, Operand(t8));
}
__ jmp(&entry);
__ bind(&loop);
__ sw(t7, MemOperand(a2));
__ addiu(a2, a2, kPointerSize);
__ bind(&entry);
__ Branch(&loop, less, a2, Operand(t6));
}
// Store the initialized FixedArray into the properties field of
// the JSObject.
// a1: constructor function
// t4: JSObject
// t5: FixedArray (not tagged)
__ Addu(t5, t5, Operand(kHeapObjectTag)); // Add the heap tag.
__ sw(t5, FieldMemOperand(t4, JSObject::kPropertiesOffset));
// Continue with JSObject being successfully allocated.
// a1: constructor function
// a4: JSObject
__ jmp(&allocated);
// Undo the setting of the new top so that the heap is verifiable. For
// example, the map's unused properties potentially do not match the
// allocated objects unused properties.
// t4: JSObject (previous new top)
__ bind(&undo_allocation);
__ UndoAllocationInNewSpace(t4, t5);
}
__ bind(&rt_call);
// Allocate the new receiver object using the runtime call.
// a1: constructor function
__ push(a1); // Argument for Runtime_NewObject.
__ CallRuntime(Runtime::kNewObject, 1);
__ mov(t4, v0);
// Receiver for constructor call allocated.
// t4: JSObject
__ bind(&allocated);
__ push(t4);
__ push(t4);
// Reload the number of arguments from the stack.
// sp[0]: receiver
// sp[1]: receiver
// sp[2]: constructor function
// sp[3]: number of arguments (smi-tagged)
__ lw(a1, MemOperand(sp, 2 * kPointerSize));
__ lw(a3, MemOperand(sp, 3 * kPointerSize));
// Set up pointer to last argument.
__ Addu(a2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
// Set up number of arguments for function call below.
__ srl(a0, a3, kSmiTagSize);
// Copy arguments and receiver to the expression stack.
// a0: number of arguments
// a1: constructor function
// a2: address of last argument (caller sp)
// a3: number of arguments (smi-tagged)
// sp[0]: receiver
// sp[1]: receiver
// sp[2]: constructor function
// sp[3]: number of arguments (smi-tagged)
Label loop, entry;
__ jmp(&entry);
__ bind(&loop);
__ sll(t0, a3, kPointerSizeLog2 - kSmiTagSize);
__ Addu(t0, a2, Operand(t0));
__ lw(t1, MemOperand(t0));
__ push(t1);
__ bind(&entry);
__ Addu(a3, a3, Operand(-2));
__ Branch(&loop, greater_equal, a3, Operand(zero_reg));
// Call the function.
// a0: number of arguments
// a1: constructor function
if (is_api_function) {
__ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
Handle<Code> code =
masm->isolate()->builtins()->HandleApiCallConstruct();
ParameterCount expected(0);
__ InvokeCode(code, expected, expected,
RelocInfo::CODE_TARGET, CALL_FUNCTION, CALL_AS_METHOD);
} else {
ParameterCount actual(a0);
__ InvokeFunction(a1, actual, CALL_FUNCTION,
NullCallWrapper(), CALL_AS_METHOD);
}
// Store offset of return address for deoptimizer.
if (!is_api_function && !count_constructions) {
masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
}
// Restore context from the frame.
__ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, exit;
// If the result is a smi, it is *not* an object in the ECMA sense.
// v0: result
// sp[0]: receiver (newly allocated object)
// sp[1]: constructor function
// sp[2]: number of arguments (smi-tagged)
__ JumpIfSmi(v0, &use_receiver);
// If the type of the result (stored in its map) is less than
// FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense.
__ GetObjectType(v0, a3, a3);
__ Branch(&exit, greater_equal, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ lw(v0, MemOperand(sp));
// Remove receiver from the stack, remove caller arguments, and
// return.
__ bind(&exit);
// v0: result
// sp[0]: receiver (newly allocated object)
// sp[1]: constructor function
// sp[2]: number of arguments (smi-tagged)
__ lw(a1, MemOperand(sp, 2 * kPointerSize));
// Leave construct frame.
}
__ sll(t0, a1, kPointerSizeLog2 - 1);
__ Addu(sp, sp, t0);
__ Addu(sp, sp, kPointerSize);
__ IncrementCounter(isolate->counters()->constructed_objects(), 1, a1, a2);
__ Ret();
}
void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, true);
}
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, false);
}
void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, true, false);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
// Called from JSEntryStub::GenerateBody
// ----------- S t a t e -------------
// -- a0: code entry
// -- a1: function
// -- a2: receiver_pointer
// -- a3: argc
// -- s0: argv
// -----------------------------------
// Clear the context before we push it when entering the JS frame.
__ mov(cp, zero_reg);
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Set up the context from the function argument.
__ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
// Push the function and the receiver onto the stack.
__ Push(a1, a2);
// Copy arguments to the stack in a loop.
// a3: argc
// s0: argv, i.e. points to first arg
Label loop, entry;
__ sll(t0, a3, kPointerSizeLog2);
__ addu(t2, s0, t0);
__ b(&entry);
__ nop(); // Branch delay slot nop.
// t2 points past last arg.
__ bind(&loop);
__ lw(t0, MemOperand(s0)); // Read next parameter.
__ addiu(s0, s0, kPointerSize);
__ lw(t0, MemOperand(t0)); // Dereference handle.
__ push(t0); // Push parameter.
__ bind(&entry);
__ Branch(&loop, ne, s0, Operand(t2));
// Initialize all JavaScript callee-saved registers, since they will be seen
// by the garbage collector as part of handlers.
__ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
__ mov(s1, t0);
__ mov(s2, t0);
__ mov(s3, t0);
__ mov(s4, t0);
__ mov(s5, t0);
// s6 holds the root address. Do not clobber.
// s7 is cp. Do not init.
// Invoke the code and pass argc as a0.
__ mov(a0, a3);
if (is_construct) {
CallConstructStub stub(NO_CALL_FUNCTION_FLAGS);
__ CallStub(&stub);
} else {
ParameterCount actual(a0);
__ InvokeFunction(a1, actual, CALL_FUNCTION,
NullCallWrapper(), CALL_AS_METHOD);
}
// Leave internal frame.
}
__ Jump(ra);
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
void Builtins::Generate_LazyCompile(MacroAssembler* masm) {
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Preserve the function.
__ push(a1);
// Push call kind information.
__ push(t1);
// Push the function on the stack as the argument to the runtime function.
__ push(a1);
// Call the runtime function.
__ CallRuntime(Runtime::kLazyCompile, 1);
// Calculate the entry point.
__ addiu(t9, v0, Code::kHeaderSize - kHeapObjectTag);
// Restore call kind information.
__ pop(t1);
// Restore saved function.
__ pop(a1);
// Tear down temporary frame.
}
// Do a tail-call of the compiled function.
__ Jump(t9);
}
void Builtins::Generate_LazyRecompile(MacroAssembler* masm) {
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Preserve the function.
__ push(a1);
// Push call kind information.
__ push(t1);
// Push the function on the stack as the argument to the runtime function.
__ push(a1);
__ CallRuntime(Runtime::kLazyRecompile, 1);
// Calculate the entry point.
__ Addu(t9, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
// Restore call kind information.
__ pop(t1);
// Restore saved function.
__ pop(a1);
// Tear down temporary frame.
}
// Do a tail-call of the compiled function.
__ Jump(t9);
}
static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
Deoptimizer::BailoutType type) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass the function and deoptimization type to the runtime system.
__ li(a0, Operand(Smi::FromInt(static_cast<int>(type))));
__ push(a0);
__ CallRuntime(Runtime::kNotifyDeoptimized, 1);
}
// Get the full codegen state from the stack and untag it -> t2.
__ lw(t2, MemOperand(sp, 0 * kPointerSize));
__ SmiUntag(t2);
// Switch on the state.
Label with_tos_register, unknown_state;
__ Branch(&with_tos_register,
ne, t2, Operand(FullCodeGenerator::NO_REGISTERS));
__ Addu(sp, sp, Operand(1 * kPointerSize)); // Remove state.
__ Ret();
__ bind(&with_tos_register);
__ lw(v0, MemOperand(sp, 1 * kPointerSize));
__ Branch(&unknown_state, ne, t2, Operand(FullCodeGenerator::TOS_REG));
__ Addu(sp, sp, Operand(2 * kPointerSize)); // Remove state.
__ Ret();
__ bind(&unknown_state);
__ stop("no cases left");
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
}
void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
}
void Builtins::Generate_NotifyOSR(MacroAssembler* masm) {
// For now, we are relying on the fact that Runtime::NotifyOSR
// doesn't do any garbage collection which allows us to save/restore
// the registers without worrying about which of them contain
// pointers. This seems a bit fragile.
RegList saved_regs =
(kJSCallerSaved | kCalleeSaved | ra.bit() | fp.bit()) & ~sp.bit();
__ MultiPush(saved_regs);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kNotifyOSR, 0);
}
__ MultiPop(saved_regs);
__ Ret();
}
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
CpuFeatures::TryForceFeatureScope scope(VFP3);
if (!CpuFeatures::IsSupported(FPU)) {
__ Abort("Unreachable code: Cannot optimize without FPU support.");
return;
}
// Lookup the function in the JavaScript frame and push it as an
// argument to the on-stack replacement function.
__ lw(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(a0);
__ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
}
// If the result was -1 it means that we couldn't optimize the
// function. Just return and continue in the unoptimized version.
__ Ret(eq, v0, Operand(Smi::FromInt(-1)));
// Untag the AST id and push it on the stack.
__ SmiUntag(v0);
__ push(v0);
// Generate the code for doing the frame-to-frame translation using
// the deoptimizer infrastructure.
Deoptimizer::EntryGenerator generator(masm, Deoptimizer::OSR);
generator.Generate();
}
void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
// 1. Make sure we have at least one argument.
// a0: actual number of arguments
{ Label done;
__ Branch(&done, ne, a0, Operand(zero_reg));
__ LoadRoot(t2, Heap::kUndefinedValueRootIndex);
__ push(t2);
__ Addu(a0, a0, Operand(1));
__ bind(&done);
}
// 2. Get the function to call (passed as receiver) from the stack, check
// if it is a function.
// a0: actual number of arguments
Label slow, non_function;
__ sll(at, a0, kPointerSizeLog2);
__ addu(at, sp, at);
__ lw(a1, MemOperand(at));
__ JumpIfSmi(a1, &non_function);
__ GetObjectType(a1, a2, a2);
__ Branch(&slow, ne, a2, Operand(JS_FUNCTION_TYPE));
// 3a. Patch the first argument if necessary when calling a function.
// a0: actual number of arguments
// a1: function
Label shift_arguments;
__ li(t0, Operand(0, RelocInfo::NONE)); // Indicate regular JS_FUNCTION.
{ Label convert_to_object, use_global_receiver, patch_receiver;
// Change context eagerly in case we need the global receiver.
__ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
// Do not transform the receiver for strict mode functions.
__ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ lw(a3, FieldMemOperand(a2, SharedFunctionInfo::kCompilerHintsOffset));
__ And(t3, a3, Operand(1 << (SharedFunctionInfo::kStrictModeFunction +
kSmiTagSize)));
__ Branch(&shift_arguments, ne, t3, Operand(zero_reg));
// Do not transform the receiver for native (Compilerhints already in a3).
__ And(t3, a3, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize)));
__ Branch(&shift_arguments, ne, t3, Operand(zero_reg));
// Compute the receiver in non-strict mode.
// Load first argument in a2. a2 = -kPointerSize(sp + n_args << 2).
__ sll(at, a0, kPointerSizeLog2);
__ addu(a2, sp, at);
__ lw(a2, MemOperand(a2, -kPointerSize));
// a0: actual number of arguments
// a1: function
// a2: first argument
__ JumpIfSmi(a2, &convert_to_object, t2);
__ LoadRoot(a3, Heap::kUndefinedValueRootIndex);
__ Branch(&use_global_receiver, eq, a2, Operand(a3));
__ LoadRoot(a3, Heap::kNullValueRootIndex);
__ Branch(&use_global_receiver, eq, a2, Operand(a3));
STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
__ GetObjectType(a2, a3, a3);
__ Branch(&shift_arguments, ge, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
__ bind(&convert_to_object);
// Enter an internal frame in order to preserve argument count.
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ sll(a0, a0, kSmiTagSize); // Smi tagged.
__ push(a0);
__ push(a2);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ mov(a2, v0);
__ pop(a0);
__ sra(a0, a0, kSmiTagSize); // Un-tag.
// Leave internal frame.
}
// Restore the function to a1, and the flag to t0.
__ sll(at, a0, kPointerSizeLog2);
__ addu(at, sp, at);
__ lw(a1, MemOperand(at));
__ li(t0, Operand(0, RelocInfo::NONE));
__ Branch(&patch_receiver);
// Use the global receiver object from the called function as the
// receiver.
__ bind(&use_global_receiver);
const int kGlobalIndex =
Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
__ lw(a2, FieldMemOperand(cp, kGlobalIndex));
__ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalContextOffset));
__ lw(a2, FieldMemOperand(a2, kGlobalIndex));
__ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalReceiverOffset));
__ bind(&patch_receiver);
__ sll(at, a0, kPointerSizeLog2);
__ addu(a3, sp, at);
__ sw(a2, MemOperand(a3, -kPointerSize));
__ Branch(&shift_arguments);
}
// 3b. Check for function proxy.
__ bind(&slow);
__ li(t0, Operand(1, RelocInfo::NONE)); // Indicate function proxy.
__ Branch(&shift_arguments, eq, a2, Operand(JS_FUNCTION_PROXY_TYPE));
__ bind(&non_function);
__ li(t0, Operand(2, RelocInfo::NONE)); // Indicate non-function.
// 3c. Patch the first argument when calling a non-function. The
// CALL_NON_FUNCTION builtin expects the non-function callee as
// receiver, so overwrite the first argument which will ultimately
// become the receiver.
// a0: actual number of arguments
// a1: function
// t0: call type (0: JS function, 1: function proxy, 2: non-function)
__ sll(at, a0, kPointerSizeLog2);
__ addu(a2, sp, at);
__ sw(a1, MemOperand(a2, -kPointerSize));
// 4. Shift arguments and return address one slot down on the stack
// (overwriting the original receiver). Adjust argument count to make
// the original first argument the new receiver.
// a0: actual number of arguments
// a1: function
// t0: call type (0: JS function, 1: function proxy, 2: non-function)
__ bind(&shift_arguments);
{ Label loop;
// Calculate the copy start address (destination). Copy end address is sp.
__ sll(at, a0, kPointerSizeLog2);
__ addu(a2, sp, at);
__ bind(&loop);
__ lw(at, MemOperand(a2, -kPointerSize));
__ sw(at, MemOperand(a2));
__ Subu(a2, a2, Operand(kPointerSize));
__ Branch(&loop, ne, a2, Operand(sp));
// Adjust the actual number of arguments and remove the top element
// (which is a copy of the last argument).
__ Subu(a0, a0, Operand(1));
__ Pop();
}
// 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin,
// or a function proxy via CALL_FUNCTION_PROXY.
// a0: actual number of arguments
// a1: function
// t0: call type (0: JS function, 1: function proxy, 2: non-function)
{ Label function, non_proxy;
__ Branch(&function, eq, t0, Operand(zero_reg));
// Expected number of arguments is 0 for CALL_NON_FUNCTION.
__ mov(a2, zero_reg);
__ SetCallKind(t1, CALL_AS_METHOD);
__ Branch(&non_proxy, ne, t0, Operand(1));
__ push(a1); // Re-add proxy object as additional argument.
__ Addu(a0, a0, Operand(1));
__ GetBuiltinEntry(a3, Builtins::CALL_FUNCTION_PROXY);
__ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
__ bind(&non_proxy);
__ GetBuiltinEntry(a3, Builtins::CALL_NON_FUNCTION);
__ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
__ bind(&function);
}
// 5b. Get the code to call from the function and check that the number of
// expected arguments matches what we're providing. If so, jump
// (tail-call) to the code in register edx without checking arguments.
// a0: actual number of arguments
// a1: function
__ lw(a3, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ lw(a2,
FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset));
__ sra(a2, a2, kSmiTagSize);
__ lw(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
__ SetCallKind(t1, CALL_AS_METHOD);
// Check formal and actual parameter counts.
__ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET, ne, a2, Operand(a0));
ParameterCount expected(0);
__ InvokeCode(a3, expected, expected, JUMP_FUNCTION,
NullCallWrapper(), CALL_AS_METHOD);
}
void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
const int kIndexOffset = -5 * kPointerSize;
const int kLimitOffset = -4 * kPointerSize;
const int kArgsOffset = 2 * kPointerSize;
const int kRecvOffset = 3 * kPointerSize;
const int kFunctionOffset = 4 * kPointerSize;
{
FrameScope frame_scope(masm, StackFrame::INTERNAL);
__ lw(a0, MemOperand(fp, kFunctionOffset)); // Get the function.
__ push(a0);
__ lw(a0, MemOperand(fp, kArgsOffset)); // Get the args array.
__ push(a0);
// Returns (in v0) number of arguments to copy to stack as Smi.
__ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
Label okay;
__ LoadRoot(a2, Heap::kRealStackLimitRootIndex);
// Make a2 the space we have left. The stack might already be overflowed
// here which will cause a2 to become negative.
__ subu(a2, sp, a2);
// Check if the arguments will overflow the stack.
__ sll(t3, v0, kPointerSizeLog2 - kSmiTagSize);
__ Branch(&okay, gt, a2, Operand(t3)); // Signed comparison.
// Out of stack space.
__ lw(a1, MemOperand(fp, kFunctionOffset));
__ push(a1);
__ push(v0);
__ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION);
// End of stack check.
// Push current limit and index.
__ bind(&okay);
__ push(v0); // Limit.
__ mov(a1, zero_reg); // Initial index.
__ push(a1);
// Get the receiver.
__ lw(a0, MemOperand(fp, kRecvOffset));
// Check that the function is a JS function (otherwise it must be a proxy).
Label push_receiver;
__ lw(a1, MemOperand(fp, kFunctionOffset));
__ GetObjectType(a1, a2, a2);
__ Branch(&push_receiver, ne, a2, Operand(JS_FUNCTION_TYPE));
// Change context eagerly to get the right global object if necessary.
__ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
// Load the shared function info while the function is still in a1.
__ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
// Compute the receiver.
// Do not transform the receiver for strict mode functions.
Label call_to_object, use_global_receiver;
__ lw(a2, FieldMemOperand(a2, SharedFunctionInfo::kCompilerHintsOffset));
__ And(t3, a2, Operand(1 << (SharedFunctionInfo::kStrictModeFunction +
kSmiTagSize)));
__ Branch(&push_receiver, ne, t3, Operand(zero_reg));
// Do not transform the receiver for native (Compilerhints already in a2).
__ And(t3, a2, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize)));
__ Branch(&push_receiver, ne, t3, Operand(zero_reg));
// Compute the receiver in non-strict mode.
__ JumpIfSmi(a0, &call_to_object);
__ LoadRoot(a1, Heap::kNullValueRootIndex);
__ Branch(&use_global_receiver, eq, a0, Operand(a1));
__ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
__ Branch(&use_global_receiver, eq, a0, Operand(a2));
// Check if the receiver is already a JavaScript object.
// a0: receiver
STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
__ GetObjectType(a0, a1, a1);
__ Branch(&push_receiver, ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE));
// Convert the receiver to a regular object.
// a0: receiver
__ bind(&call_to_object);
__ push(a0);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ mov(a0, v0); // Put object in a0 to match other paths to push_receiver.
__ Branch(&push_receiver);
// Use the current global receiver object as the receiver.
__ bind(&use_global_receiver);
const int kGlobalOffset =
Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
__ lw(a0, FieldMemOperand(cp, kGlobalOffset));
__ lw(a0, FieldMemOperand(a0, GlobalObject::kGlobalContextOffset));
__ lw(a0, FieldMemOperand(a0, kGlobalOffset));
__ lw(a0, FieldMemOperand(a0, GlobalObject::kGlobalReceiverOffset));
// Push the receiver.
// a0: receiver
__ bind(&push_receiver);
__ push(a0);
// Copy all arguments from the array to the stack.
Label entry, loop;
__ lw(a0, MemOperand(fp, kIndexOffset));
__ Branch(&entry);
// Load the current argument from the arguments array and push it to the
// stack.
// a0: current argument index
__ bind(&loop);
__ lw(a1, MemOperand(fp, kArgsOffset));
__ push(a1);
__ push(a0);
// Call the runtime to access the property in the arguments array.
__ CallRuntime(Runtime::kGetProperty, 2);
__ push(v0);
// Use inline caching to access the arguments.
__ lw(a0, MemOperand(fp, kIndexOffset));
__ Addu(a0, a0, Operand(1 << kSmiTagSize));
__ sw(a0, MemOperand(fp, kIndexOffset));
// Test if the copy loop has finished copying all the elements from the
// arguments object.
__ bind(&entry);
__ lw(a1, MemOperand(fp, kLimitOffset));
__ Branch(&loop, ne, a0, Operand(a1));
// Invoke the function.
Label call_proxy;
ParameterCount actual(a0);
__ sra(a0, a0, kSmiTagSize);
__ lw(a1, MemOperand(fp, kFunctionOffset));
__ GetObjectType(a1, a2, a2);
__ Branch(&call_proxy, ne, a2, Operand(JS_FUNCTION_TYPE));
__ InvokeFunction(a1, actual, CALL_FUNCTION,
NullCallWrapper(), CALL_AS_METHOD);
frame_scope.GenerateLeaveFrame();
__ Ret(USE_DELAY_SLOT);
__ Addu(sp, sp, Operand(3 * kPointerSize)); // In delay slot.
// Invoke the function proxy.
__ bind(&call_proxy);
__ push(a1); // Add function proxy as last argument.
__ Addu(a0, a0, Operand(1));
__ li(a2, Operand(0, RelocInfo::NONE));
__ SetCallKind(t1, CALL_AS_METHOD);
__ GetBuiltinEntry(a3, Builtins::CALL_FUNCTION_PROXY);
__ Call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
// Tear down the internal frame and remove function, receiver and args.
}
__ Ret(USE_DELAY_SLOT);
__ Addu(sp, sp, Operand(3 * kPointerSize)); // In delay slot.
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ sll(a0, a0, kSmiTagSize);
__ li(t0, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ MultiPush(a0.bit() | a1.bit() | t0.bit() | fp.bit() | ra.bit());
__ Addu(fp, sp, Operand(3 * kPointerSize));
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- v0 : result being passed through
// -----------------------------------
// Get the number of arguments passed (as a smi), tear down the frame and
// then tear down the parameters.
__ lw(a1, MemOperand(fp, -3 * kPointerSize));
__ mov(sp, fp);
__ MultiPop(fp.bit() | ra.bit());
__ sll(t0, a1, kPointerSizeLog2 - kSmiTagSize);
__ Addu(sp, sp, t0);
// Adjust for the receiver.
__ Addu(sp, sp, Operand(kPointerSize));
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
// State setup as expected by MacroAssembler::InvokePrologue.
// ----------- S t a t e -------------
// -- a0: actual arguments count
// -- a1: function (passed through to callee)
// -- a2: expected arguments count
// -- a3: callee code entry
// -- t1: call kind information
// -----------------------------------
Label invoke, dont_adapt_arguments;
Label enough, too_few;
__ Branch(&dont_adapt_arguments, eq,
a2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
// We use Uless as the number of argument should always be greater than 0.
__ Branch(&too_few, Uless, a0, Operand(a2));
{ // Enough parameters: actual >= expected.
// a0: actual number of arguments as a smi
// a1: function
// a2: expected number of arguments
// a3: code entry to call
__ bind(&enough);
EnterArgumentsAdaptorFrame(masm);
// Calculate copy start address into a0 and copy end address into a2.
__ sll(a0, a0, kPointerSizeLog2 - kSmiTagSize);
__ Addu(a0, fp, a0);
// Adjust for return address and receiver.
__ Addu(a0, a0, Operand(2 * kPointerSize));
// Compute copy end address.
__ sll(a2, a2, kPointerSizeLog2);
__ subu(a2, a0, a2);
// Copy the arguments (including the receiver) to the new stack frame.
// a0: copy start address
// a1: function
// a2: copy end address
// a3: code entry to call
Label copy;
__ bind(©);
__ lw(t0, MemOperand(a0));
__ push(t0);
__ Branch(USE_DELAY_SLOT, ©, ne, a0, Operand(a2));
__ addiu(a0, a0, -kPointerSize); // In delay slot.
__ jmp(&invoke);
}
{ // Too few parameters: Actual < expected.
__ bind(&too_few);
EnterArgumentsAdaptorFrame(masm);
// Calculate copy start address into a0 and copy end address is fp.
// a0: actual number of arguments as a smi
// a1: function
// a2: expected number of arguments
// a3: code entry to call
__ sll(a0, a0, kPointerSizeLog2 - kSmiTagSize);
__ Addu(a0, fp, a0);
// Adjust for return address and receiver.
__ Addu(a0, a0, Operand(2 * kPointerSize));
// Compute copy end address. Also adjust for return address.
__ Addu(t3, fp, kPointerSize);
// Copy the arguments (including the receiver) to the new stack frame.
// a0: copy start address
// a1: function
// a2: expected number of arguments
// a3: code entry to call
// t3: copy end address
Label copy;
__ bind(©);
__ lw(t0, MemOperand(a0)); // Adjusted above for return addr and receiver.
__ Subu(sp, sp, kPointerSize);
__ Subu(a0, a0, kPointerSize);
__ Branch(USE_DELAY_SLOT, ©, ne, a0, Operand(t3));
__ sw(t0, MemOperand(sp)); // In the delay slot.
// Fill the remaining expected arguments with undefined.
// a1: function
// a2: expected number of arguments
// a3: code entry to call
__ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
__ sll(t2, a2, kPointerSizeLog2);
__ Subu(a2, fp, Operand(t2));
__ Addu(a2, a2, Operand(-4 * kPointerSize)); // Adjust for frame.
Label fill;
__ bind(&fill);
__ Subu(sp, sp, kPointerSize);
__ Branch(USE_DELAY_SLOT, &fill, ne, sp, Operand(a2));
__ sw(t0, MemOperand(sp));
}
// Call the entry point.
__ bind(&invoke);
__ Call(a3);
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
// Exit frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ Ret();
// -------------------------------------------
// Don't adapt arguments.
// -------------------------------------------
__ bind(&dont_adapt_arguments);
__ Jump(a3);
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_MIPS