// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include <math.h>
#include <limits.h>
#include <cstdarg>
#include "v8.h"
#if defined(V8_TARGET_ARCH_MIPS)
#include "cpu.h"
#include "disasm.h"
#include "assembler.h"
#include "globals.h" // Need the BitCast.
#include "mips/constants-mips.h"
#include "mips/simulator-mips.h"
// Only build the simulator if not compiling for real MIPS hardware.
#if defined(USE_SIMULATOR)
namespace v8 {
namespace internal {
// Utils functions.
bool HaveSameSign(int32_t a, int32_t b) {
return ((a ^ b) >= 0);
}
uint32_t get_fcsr_condition_bit(uint32_t cc) {
if (cc == 0) {
return 23;
} else {
return 24 + cc;
}
}
// This macro provides a platform independent use of sscanf. The reason for
// SScanF not being implemented in a platform independent was through
// ::v8::internal::OS in the same way as SNPrintF is that the Windows C Run-Time
// Library does not provide vsscanf.
#define SScanF sscanf // NOLINT
// The MipsDebugger class is used by the simulator while debugging simulated
// code.
class MipsDebugger {
public:
explicit MipsDebugger(Simulator* sim) : sim_(sim) { }
~MipsDebugger();
void Stop(Instruction* instr);
void Debug();
// Print all registers with a nice formatting.
void PrintAllRegs();
void PrintAllRegsIncludingFPU();
private:
// We set the breakpoint code to 0xfffff to easily recognize it.
static const Instr kBreakpointInstr = SPECIAL | BREAK | 0xfffff << 6;
static const Instr kNopInstr = 0x0;
Simulator* sim_;
int32_t GetRegisterValue(int regnum);
int32_t GetFPURegisterValueInt(int regnum);
int64_t GetFPURegisterValueLong(int regnum);
float GetFPURegisterValueFloat(int regnum);
double GetFPURegisterValueDouble(int regnum);
bool GetValue(const char* desc, int32_t* value);
// Set or delete a breakpoint. Returns true if successful.
bool SetBreakpoint(Instruction* breakpc);
bool DeleteBreakpoint(Instruction* breakpc);
// Undo and redo all breakpoints. This is needed to bracket disassembly and
// execution to skip past breakpoints when run from the debugger.
void UndoBreakpoints();
void RedoBreakpoints();
};
MipsDebugger::~MipsDebugger() {
}
#ifdef GENERATED_CODE_COVERAGE
static FILE* coverage_log = NULL;
static void InitializeCoverage() {
char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
if (file_name != NULL) {
coverage_log = fopen(file_name, "aw+");
}
}
void MipsDebugger::Stop(Instruction* instr) {
// Get the stop code.
uint32_t code = instr->Bits(25, 6);
// Retrieve the encoded address, which comes just after this stop.
char** msg_address =
reinterpret_cast<char**>(sim_->get_pc() + Instr::kInstrSize);
char* msg = *msg_address;
ASSERT(msg != NULL);
// Update this stop description.
if (!watched_stops[code].desc) {
watched_stops[code].desc = msg;
}
if (strlen(msg) > 0) {
if (coverage_log != NULL) {
fprintf(coverage_log, "%s\n", str);
fflush(coverage_log);
}
// Overwrite the instruction and address with nops.
instr->SetInstructionBits(kNopInstr);
reinterpret_cast<Instr*>(msg_address)->SetInstructionBits(kNopInstr);
}
sim_->set_pc(sim_->get_pc() + 2 * Instruction::kInstructionSize);
}
#else // GENERATED_CODE_COVERAGE
#define UNSUPPORTED() printf("Unsupported instruction.\n");
static void InitializeCoverage() {}
void MipsDebugger::Stop(Instruction* instr) {
// Get the stop code.
uint32_t code = instr->Bits(25, 6);
// Retrieve the encoded address, which comes just after this stop.
char* msg = *reinterpret_cast<char**>(sim_->get_pc() +
Instruction::kInstrSize);
// Update this stop description.
if (!sim_->watched_stops[code].desc) {
sim_->watched_stops[code].desc = msg;
}
PrintF("Simulator hit %s (%u)\n", msg, code);
sim_->set_pc(sim_->get_pc() + 2 * Instruction::kInstrSize);
Debug();
}
#endif // GENERATED_CODE_COVERAGE
int32_t MipsDebugger::GetRegisterValue(int regnum) {
if (regnum == kNumSimuRegisters) {
return sim_->get_pc();
} else {
return sim_->get_register(regnum);
}
}
int32_t MipsDebugger::GetFPURegisterValueInt(int regnum) {
if (regnum == kNumFPURegisters) {
return sim_->get_pc();
} else {
return sim_->get_fpu_register(regnum);
}
}
int64_t MipsDebugger::GetFPURegisterValueLong(int regnum) {
if (regnum == kNumFPURegisters) {
return sim_->get_pc();
} else {
return sim_->get_fpu_register_long(regnum);
}
}
float MipsDebugger::GetFPURegisterValueFloat(int regnum) {
if (regnum == kNumFPURegisters) {
return sim_->get_pc();
} else {
return sim_->get_fpu_register_float(regnum);
}
}
double MipsDebugger::GetFPURegisterValueDouble(int regnum) {
if (regnum == kNumFPURegisters) {
return sim_->get_pc();
} else {
return sim_->get_fpu_register_double(regnum);
}
}
bool MipsDebugger::GetValue(const char* desc, int32_t* value) {
int regnum = Registers::Number(desc);
int fpuregnum = FPURegisters::Number(desc);
if (regnum != kInvalidRegister) {
*value = GetRegisterValue(regnum);
return true;
} else if (fpuregnum != kInvalidFPURegister) {
*value = GetFPURegisterValueInt(fpuregnum);
return true;
} else if (strncmp(desc, "0x", 2) == 0) {
return SScanF(desc, "%x", reinterpret_cast<uint32_t*>(value)) == 1;
} else {
return SScanF(desc, "%i", value) == 1;
}
return false;
}
bool MipsDebugger::SetBreakpoint(Instruction* breakpc) {
// Check if a breakpoint can be set. If not return without any side-effects.
if (sim_->break_pc_ != NULL) {
return false;
}
// Set the breakpoint.
sim_->break_pc_ = breakpc;
sim_->break_instr_ = breakpc->InstructionBits();
// Not setting the breakpoint instruction in the code itself. It will be set
// when the debugger shell continues.
return true;
}
bool MipsDebugger::DeleteBreakpoint(Instruction* breakpc) {
if (sim_->break_pc_ != NULL) {
sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
}
sim_->break_pc_ = NULL;
sim_->break_instr_ = 0;
return true;
}
void MipsDebugger::UndoBreakpoints() {
if (sim_->break_pc_ != NULL) {
sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
}
}
void MipsDebugger::RedoBreakpoints() {
if (sim_->break_pc_ != NULL) {
sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
}
}
void MipsDebugger::PrintAllRegs() {
#define REG_INFO(n) Registers::Name(n), GetRegisterValue(n), GetRegisterValue(n)
PrintF("\n");
// at, v0, a0.
PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
REG_INFO(1), REG_INFO(2), REG_INFO(4));
// v1, a1.
PrintF("%26s\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
"", REG_INFO(3), REG_INFO(5));
// a2.
PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(6));
// a3.
PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(7));
PrintF("\n");
// t0-t7, s0-s7
for (int i = 0; i < 8; i++) {
PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
REG_INFO(8+i), REG_INFO(16+i));
}
PrintF("\n");
// t8, k0, LO.
PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
REG_INFO(24), REG_INFO(26), REG_INFO(32));
// t9, k1, HI.
PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
REG_INFO(25), REG_INFO(27), REG_INFO(33));
// sp, fp, gp.
PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
REG_INFO(29), REG_INFO(30), REG_INFO(28));
// pc.
PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n",
REG_INFO(31), REG_INFO(34));
#undef REG_INFO
#undef FPU_REG_INFO
}
void MipsDebugger::PrintAllRegsIncludingFPU() {
#define FPU_REG_INFO(n) FPURegisters::Name(n), FPURegisters::Name(n+1), \
GetFPURegisterValueInt(n+1), \
GetFPURegisterValueInt(n), \
GetFPURegisterValueDouble(n)
PrintAllRegs();
PrintF("\n\n");
// f0, f1, f2, ... f31.
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(0) );
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(2) );
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(4) );
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(6) );
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(8) );
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(10));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(12));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(14));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(16));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(18));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(20));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(22));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(24));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(26));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(28));
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(30));
#undef REG_INFO
#undef FPU_REG_INFO
}
void MipsDebugger::Debug() {
intptr_t last_pc = -1;
bool done = false;
#define COMMAND_SIZE 63
#define ARG_SIZE 255
#define STR(a) #a
#define XSTR(a) STR(a)
char cmd[COMMAND_SIZE + 1];
char arg1[ARG_SIZE + 1];
char arg2[ARG_SIZE + 1];
char* argv[3] = { cmd, arg1, arg2 };
// Make sure to have a proper terminating character if reaching the limit.
cmd[COMMAND_SIZE] = 0;
arg1[ARG_SIZE] = 0;
arg2[ARG_SIZE] = 0;
// Undo all set breakpoints while running in the debugger shell. This will
// make them invisible to all commands.
UndoBreakpoints();
while (!done && (sim_->get_pc() != Simulator::end_sim_pc)) {
if (last_pc != sim_->get_pc()) {
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// Use a reasonably large buffer.
v8::internal::EmbeddedVector<char, 256> buffer;
dasm.InstructionDecode(buffer,
reinterpret_cast<byte*>(sim_->get_pc()));
PrintF(" 0x%08x %s\n", sim_->get_pc(), buffer.start());
last_pc = sim_->get_pc();
}
char* line = ReadLine("sim> ");
if (line == NULL) {
break;
} else {
char* last_input = sim_->last_debugger_input();
if (strcmp(line, "\n") == 0 && last_input != NULL) {
line = last_input;
} else {
// Ownership is transferred to sim_;
sim_->set_last_debugger_input(line);
}
// Use sscanf to parse the individual parts of the command line. At the
// moment no command expects more than two parameters.
int argc = SScanF(line,
"%" XSTR(COMMAND_SIZE) "s "
"%" XSTR(ARG_SIZE) "s "
"%" XSTR(ARG_SIZE) "s",
cmd, arg1, arg2);
if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
Instruction* instr = reinterpret_cast<Instruction*>(sim_->get_pc());
if (!(instr->IsTrap()) ||
instr->InstructionBits() == rtCallRedirInstr) {
sim_->InstructionDecode(
reinterpret_cast<Instruction*>(sim_->get_pc()));
} else {
// Allow si to jump over generated breakpoints.
PrintF("/!\\ Jumping over generated breakpoint.\n");
sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
}
} else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
// Execute the one instruction we broke at with breakpoints disabled.
sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc()));
// Leave the debugger shell.
done = true;
} else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
if (argc == 2) {
int32_t value;
float fvalue;
if (strcmp(arg1, "all") == 0) {
PrintAllRegs();
} else if (strcmp(arg1, "allf") == 0) {
PrintAllRegsIncludingFPU();
} else {
int regnum = Registers::Number(arg1);
int fpuregnum = FPURegisters::Number(arg1);
if (regnum != kInvalidRegister) {
value = GetRegisterValue(regnum);
PrintF("%s: 0x%08x %d \n", arg1, value, value);
} else if (fpuregnum != kInvalidFPURegister) {
if (fpuregnum % 2 == 1) {
value = GetFPURegisterValueInt(fpuregnum);
fvalue = GetFPURegisterValueFloat(fpuregnum);
PrintF("%s: 0x%08x %11.4e\n", arg1, value, fvalue);
} else {
double dfvalue;
int32_t lvalue1 = GetFPURegisterValueInt(fpuregnum);
int32_t lvalue2 = GetFPURegisterValueInt(fpuregnum + 1);
dfvalue = GetFPURegisterValueDouble(fpuregnum);
PrintF("%3s,%3s: 0x%08x%08x %16.4e\n",
FPURegisters::Name(fpuregnum+1),
FPURegisters::Name(fpuregnum),
lvalue1,
lvalue2,
dfvalue);
}
} else {
PrintF("%s unrecognized\n", arg1);
}
}
} else {
if (argc == 3) {
if (strcmp(arg2, "single") == 0) {
int32_t value;
float fvalue;
int fpuregnum = FPURegisters::Number(arg1);
if (fpuregnum != kInvalidFPURegister) {
value = GetFPURegisterValueInt(fpuregnum);
fvalue = GetFPURegisterValueFloat(fpuregnum);
PrintF("%s: 0x%08x %11.4e\n", arg1, value, fvalue);
} else {
PrintF("%s unrecognized\n", arg1);
}
} else {
PrintF("print <fpu register> single\n");
}
} else {
PrintF("print <register> or print <fpu register> single\n");
}
}
} else if ((strcmp(cmd, "po") == 0)
|| (strcmp(cmd, "printobject") == 0)) {
if (argc == 2) {
int32_t value;
if (GetValue(arg1, &value)) {
Object* obj = reinterpret_cast<Object*>(value);
PrintF("%s: \n", arg1);
#ifdef DEBUG
obj->PrintLn();
#else
obj->ShortPrint();
PrintF("\n");
#endif
} else {
PrintF("%s unrecognized\n", arg1);
}
} else {
PrintF("printobject <value>\n");
}
} else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
int32_t* cur = NULL;
int32_t* end = NULL;
int next_arg = 1;
if (strcmp(cmd, "stack") == 0) {
cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp));
} else { // Command "mem".
int32_t value;
if (!GetValue(arg1, &value)) {
PrintF("%s unrecognized\n", arg1);
continue;
}
cur = reinterpret_cast<int32_t*>(value);
next_arg++;
}
int32_t words;
if (argc == next_arg) {
words = 10;
} else if (argc == next_arg + 1) {
if (!GetValue(argv[next_arg], &words)) {
words = 10;
}
}
end = cur + words;
while (cur < end) {
PrintF(" 0x%08x: 0x%08x %10d",
reinterpret_cast<intptr_t>(cur), *cur, *cur);
HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
int value = *cur;
Heap* current_heap = v8::internal::Isolate::Current()->heap();
if (current_heap->Contains(obj) || ((value & 1) == 0)) {
PrintF(" (");
if ((value & 1) == 0) {
PrintF("smi %d", value / 2);
} else {
obj->ShortPrint();
}
PrintF(")");
}
PrintF("\n");
cur++;
}
} else if ((strcmp(cmd, "disasm") == 0) ||
(strcmp(cmd, "dpc") == 0) ||
(strcmp(cmd, "di") == 0)) {
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// Use a reasonably large buffer.
v8::internal::EmbeddedVector<char, 256> buffer;
byte* cur = NULL;
byte* end = NULL;
if (argc == 1) {
cur = reinterpret_cast<byte*>(sim_->get_pc());
end = cur + (10 * Instruction::kInstrSize);
} else if (argc == 2) {
int regnum = Registers::Number(arg1);
if (regnum != kInvalidRegister || strncmp(arg1, "0x", 2) == 0) {
// The argument is an address or a register name.
int32_t value;
if (GetValue(arg1, &value)) {
cur = reinterpret_cast<byte*>(value);
// Disassemble 10 instructions at <arg1>.
end = cur + (10 * Instruction::kInstrSize);
}
} else {
// The argument is the number of instructions.
int32_t value;
if (GetValue(arg1, &value)) {
cur = reinterpret_cast<byte*>(sim_->get_pc());
// Disassemble <arg1> instructions.
end = cur + (value * Instruction::kInstrSize);
}
}
} else {
int32_t value1;
int32_t value2;
if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
cur = reinterpret_cast<byte*>(value1);
end = cur + (value2 * Instruction::kInstrSize);
}
}
while (cur < end) {
dasm.InstructionDecode(buffer, cur);
PrintF(" 0x%08x %s\n",
reinterpret_cast<intptr_t>(cur), buffer.start());
cur += Instruction::kInstrSize;
}
} else if (strcmp(cmd, "gdb") == 0) {
PrintF("relinquishing control to gdb\n");
v8::internal::OS::DebugBreak();
PrintF("regaining control from gdb\n");
} else if (strcmp(cmd, "break") == 0) {
if (argc == 2) {
int32_t value;
if (GetValue(arg1, &value)) {
if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
PrintF("setting breakpoint failed\n");
}
} else {
PrintF("%s unrecognized\n", arg1);
}
} else {
PrintF("break <address>\n");
}
} else if (strcmp(cmd, "del") == 0) {
if (!DeleteBreakpoint(NULL)) {
PrintF("deleting breakpoint failed\n");
}
} else if (strcmp(cmd, "flags") == 0) {
PrintF("No flags on MIPS !\n");
} else if (strcmp(cmd, "stop") == 0) {
int32_t value;
intptr_t stop_pc = sim_->get_pc() -
2 * Instruction::kInstrSize;
Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
Instruction* msg_address =
reinterpret_cast<Instruction*>(stop_pc +
Instruction::kInstrSize);
if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
// Remove the current stop.
if (sim_->IsStopInstruction(stop_instr)) {
stop_instr->SetInstructionBits(kNopInstr);
msg_address->SetInstructionBits(kNopInstr);
} else {
PrintF("Not at debugger stop.\n");
}
} else if (argc == 3) {
// Print information about all/the specified breakpoint(s).
if (strcmp(arg1, "info") == 0) {
if (strcmp(arg2, "all") == 0) {
PrintF("Stop information:\n");
for (uint32_t i = kMaxWatchpointCode + 1;
i <= kMaxStopCode;
i++) {
sim_->PrintStopInfo(i);
}
} else if (GetValue(arg2, &value)) {
sim_->PrintStopInfo(value);
} else {
PrintF("Unrecognized argument.\n");
}
} else if (strcmp(arg1, "enable") == 0) {
// Enable all/the specified breakpoint(s).
if (strcmp(arg2, "all") == 0) {
for (uint32_t i = kMaxWatchpointCode + 1;
i <= kMaxStopCode;
i++) {
sim_->EnableStop(i);
}
} else if (GetValue(arg2, &value)) {
sim_->EnableStop(value);
} else {
PrintF("Unrecognized argument.\n");
}
} else if (strcmp(arg1, "disable") == 0) {
// Disable all/the specified breakpoint(s).
if (strcmp(arg2, "all") == 0) {
for (uint32_t i = kMaxWatchpointCode + 1;
i <= kMaxStopCode;
i++) {
sim_->DisableStop(i);
}
} else if (GetValue(arg2, &value)) {
sim_->DisableStop(value);
} else {
PrintF("Unrecognized argument.\n");
}
}
} else {
PrintF("Wrong usage. Use help command for more information.\n");
}
} else if ((strcmp(cmd, "stat") == 0) || (strcmp(cmd, "st") == 0)) {
// Print registers and disassemble.
PrintAllRegs();
PrintF("\n");
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// Use a reasonably large buffer.
v8::internal::EmbeddedVector<char, 256> buffer;
byte* cur = NULL;
byte* end = NULL;
if (argc == 1) {
cur = reinterpret_cast<byte*>(sim_->get_pc());
end = cur + (10 * Instruction::kInstrSize);
} else if (argc == 2) {
int32_t value;
if (GetValue(arg1, &value)) {
cur = reinterpret_cast<byte*>(value);
// no length parameter passed, assume 10 instructions
end = cur + (10 * Instruction::kInstrSize);
}
} else {
int32_t value1;
int32_t value2;
if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
cur = reinterpret_cast<byte*>(value1);
end = cur + (value2 * Instruction::kInstrSize);
}
}
while (cur < end) {
dasm.InstructionDecode(buffer, cur);
PrintF(" 0x%08x %s\n",
reinterpret_cast<intptr_t>(cur), buffer.start());
cur += Instruction::kInstrSize;
}
} else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
PrintF("cont\n");
PrintF(" continue execution (alias 'c')\n");
PrintF("stepi\n");
PrintF(" step one instruction (alias 'si')\n");
PrintF("print <register>\n");
PrintF(" print register content (alias 'p')\n");
PrintF(" use register name 'all' to print all registers\n");
PrintF("printobject <register>\n");
PrintF(" print an object from a register (alias 'po')\n");
PrintF("stack [<words>]\n");
PrintF(" dump stack content, default dump 10 words)\n");
PrintF("mem <address> [<words>]\n");
PrintF(" dump memory content, default dump 10 words)\n");
PrintF("flags\n");
PrintF(" print flags\n");
PrintF("disasm [<instructions>]\n");
PrintF("disasm [<address/register>]\n");
PrintF("disasm [[<address/register>] <instructions>]\n");
PrintF(" disassemble code, default is 10 instructions\n");
PrintF(" from pc (alias 'di')\n");
PrintF("gdb\n");
PrintF(" enter gdb\n");
PrintF("break <address>\n");
PrintF(" set a break point on the address\n");
PrintF("del\n");
PrintF(" delete the breakpoint\n");
PrintF("stop feature:\n");
PrintF(" Description:\n");
PrintF(" Stops are debug instructions inserted by\n");
PrintF(" the Assembler::stop() function.\n");
PrintF(" When hitting a stop, the Simulator will\n");
PrintF(" stop and and give control to the Debugger.\n");
PrintF(" All stop codes are watched:\n");
PrintF(" - They can be enabled / disabled: the Simulator\n");
PrintF(" will / won't stop when hitting them.\n");
PrintF(" - The Simulator keeps track of how many times they \n");
PrintF(" are met. (See the info command.) Going over a\n");
PrintF(" disabled stop still increases its counter. \n");
PrintF(" Commands:\n");
PrintF(" stop info all/<code> : print infos about number <code>\n");
PrintF(" or all stop(s).\n");
PrintF(" stop enable/disable all/<code> : enables / disables\n");
PrintF(" all or number <code> stop(s)\n");
PrintF(" stop unstop\n");
PrintF(" ignore the stop instruction at the current location\n");
PrintF(" from now on\n");
} else {
PrintF("Unknown command: %s\n", cmd);
}
}
}
// Add all the breakpoints back to stop execution and enter the debugger
// shell when hit.
RedoBreakpoints();
#undef COMMAND_SIZE
#undef ARG_SIZE
#undef STR
#undef XSTR
}
static bool ICacheMatch(void* one, void* two) {
ASSERT((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
ASSERT((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
return one == two;
}
static uint32_t ICacheHash(void* key) {
return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
}
static bool AllOnOnePage(uintptr_t start, int size) {
intptr_t start_page = (start & ~CachePage::kPageMask);
intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
return start_page == end_page;
}
void Simulator::set_last_debugger_input(char* input) {
DeleteArray(last_debugger_input_);
last_debugger_input_ = input;
}
void Simulator::FlushICache(v8::internal::HashMap* i_cache,
void* start_addr,
size_t size) {
intptr_t start = reinterpret_cast<intptr_t>(start_addr);
int intra_line = (start & CachePage::kLineMask);
start -= intra_line;
size += intra_line;
size = ((size - 1) | CachePage::kLineMask) + 1;
int offset = (start & CachePage::kPageMask);
while (!AllOnOnePage(start, size - 1)) {
int bytes_to_flush = CachePage::kPageSize - offset;
FlushOnePage(i_cache, start, bytes_to_flush);
start += bytes_to_flush;
size -= bytes_to_flush;
ASSERT_EQ(0, start & CachePage::kPageMask);
offset = 0;
}
if (size != 0) {
FlushOnePage(i_cache, start, size);
}
}
CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) {
v8::internal::HashMap::Entry* entry = i_cache->Lookup(page,
ICacheHash(page),
true);
if (entry->value == NULL) {
CachePage* new_page = new CachePage();
entry->value = new_page;
}
return reinterpret_cast<CachePage*>(entry->value);
}
// Flush from start up to and not including start + size.
void Simulator::FlushOnePage(v8::internal::HashMap* i_cache,
intptr_t start,
int size) {
ASSERT(size <= CachePage::kPageSize);
ASSERT(AllOnOnePage(start, size - 1));
ASSERT((start & CachePage::kLineMask) == 0);
ASSERT((size & CachePage::kLineMask) == 0);
void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
int offset = (start & CachePage::kPageMask);
CachePage* cache_page = GetCachePage(i_cache, page);
char* valid_bytemap = cache_page->ValidityByte(offset);
memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
}
void Simulator::CheckICache(v8::internal::HashMap* i_cache,
Instruction* instr) {
intptr_t address = reinterpret_cast<intptr_t>(instr);
void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
int offset = (address & CachePage::kPageMask);
CachePage* cache_page = GetCachePage(i_cache, page);
char* cache_valid_byte = cache_page->ValidityByte(offset);
bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
if (cache_hit) {
// Check that the data in memory matches the contents of the I-cache.
CHECK(memcmp(reinterpret_cast<void*>(instr),
cache_page->CachedData(offset),
Instruction::kInstrSize) == 0);
} else {
// Cache miss. Load memory into the cache.
memcpy(cached_line, line, CachePage::kLineLength);
*cache_valid_byte = CachePage::LINE_VALID;
}
}
void Simulator::Initialize(Isolate* isolate) {
if (isolate->simulator_initialized()) return;
isolate->set_simulator_initialized(true);
::v8::internal::ExternalReference::set_redirector(isolate,
&RedirectExternalReference);
}
Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
i_cache_ = isolate_->simulator_i_cache();
if (i_cache_ == NULL) {
i_cache_ = new v8::internal::HashMap(&ICacheMatch);
isolate_->set_simulator_i_cache(i_cache_);
}
Initialize(isolate);
// Set up simulator support first. Some of this information is needed to
// setup the architecture state.
stack_ = reinterpret_cast<char*>(malloc(stack_size_));
pc_modified_ = false;
icount_ = 0;
break_count_ = 0;
break_pc_ = NULL;
break_instr_ = 0;
// Set up architecture state.
// All registers are initialized to zero to start with.
for (int i = 0; i < kNumSimuRegisters; i++) {
registers_[i] = 0;
}
for (int i = 0; i < kNumFPURegisters; i++) {
FPUregisters_[i] = 0;
}
FCSR_ = 0;
// The sp is initialized to point to the bottom (high address) of the
// allocated stack area. To be safe in potential stack underflows we leave
// some buffer below.
registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size_ - 64;
// The ra and pc are initialized to a known bad value that will cause an
// access violation if the simulator ever tries to execute it.
registers_[pc] = bad_ra;
registers_[ra] = bad_ra;
InitializeCoverage();
for (int i = 0; i < kNumExceptions; i++) {
exceptions[i] = 0;
}
last_debugger_input_ = NULL;
}
// When the generated code calls an external reference we need to catch that in
// the simulator. The external reference will be a function compiled for the
// host architecture. We need to call that function instead of trying to
// execute it with the simulator. We do that by redirecting the external
// reference to a swi (software-interrupt) instruction that is handled by
// the simulator. We write the original destination of the jump just at a known
// offset from the swi instruction so the simulator knows what to call.
class Redirection {
public:
Redirection(void* external_function, ExternalReference::Type type)
: external_function_(external_function),
swi_instruction_(rtCallRedirInstr),
type_(type),
next_(NULL) {
Isolate* isolate = Isolate::Current();
next_ = isolate->simulator_redirection();
Simulator::current(isolate)->
FlushICache(isolate->simulator_i_cache(),
reinterpret_cast<void*>(&swi_instruction_),
Instruction::kInstrSize);
isolate->set_simulator_redirection(this);
}
void* address_of_swi_instruction() {
return reinterpret_cast<void*>(&swi_instruction_);
}
void* external_function() { return external_function_; }
ExternalReference::Type type() { return type_; }
static Redirection* Get(void* external_function,
ExternalReference::Type type) {
Isolate* isolate = Isolate::Current();
Redirection* current = isolate->simulator_redirection();
for (; current != NULL; current = current->next_) {
if (current->external_function_ == external_function) return current;
}
return new Redirection(external_function, type);
}
static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
char* addr_of_redirection =
addr_of_swi - OFFSET_OF(Redirection, swi_instruction_);
return reinterpret_cast<Redirection*>(addr_of_redirection);
}
private:
void* external_function_;
uint32_t swi_instruction_;
ExternalReference::Type type_;
Redirection* next_;
};
void* Simulator::RedirectExternalReference(void* external_function,
ExternalReference::Type type) {
Redirection* redirection = Redirection::Get(external_function, type);
return redirection->address_of_swi_instruction();
}
// Get the active Simulator for the current thread.
Simulator* Simulator::current(Isolate* isolate) {
v8::internal::Isolate::PerIsolateThreadData* isolate_data =
isolate->FindOrAllocatePerThreadDataForThisThread();
ASSERT(isolate_data != NULL);
ASSERT(isolate_data != NULL);
Simulator* sim = isolate_data->simulator();
if (sim == NULL) {
// TODO(146): delete the simulator object when a thread/isolate goes away.
sim = new Simulator(isolate);
isolate_data->set_simulator(sim);
}
return sim;
}
// Sets the register in the architecture state. It will also deal with updating
// Simulator internal state for special registers such as PC.
void Simulator::set_register(int reg, int32_t value) {
ASSERT((reg >= 0) && (reg < kNumSimuRegisters));
if (reg == pc) {
pc_modified_ = true;
}
// Zero register always holds 0.
registers_[reg] = (reg == 0) ? 0 : value;
}
void Simulator::set_fpu_register(int fpureg, int32_t value) {
ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters));
FPUregisters_[fpureg] = value;
}
void Simulator::set_fpu_register_float(int fpureg, float value) {
ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters));
*BitCast<float*>(&FPUregisters_[fpureg]) = value;
}
void Simulator::set_fpu_register_double(int fpureg, double value) {
ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0));
*BitCast<double*>(&FPUregisters_[fpureg]) = value;
}
// Get the register from the architecture state. This function does handle
// the special case of accessing the PC register.
int32_t Simulator::get_register(int reg) const {
ASSERT((reg >= 0) && (reg < kNumSimuRegisters));
if (reg == 0)
return 0;
else
return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0);
}
int32_t Simulator::get_fpu_register(int fpureg) const {
ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters));
return FPUregisters_[fpureg];
}
int64_t Simulator::get_fpu_register_long(int fpureg) const {
ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0));
return *BitCast<int64_t*>(
const_cast<int32_t*>(&FPUregisters_[fpureg]));
}
float Simulator::get_fpu_register_float(int fpureg) const {
ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters));
return *BitCast<float*>(
const_cast<int32_t*>(&FPUregisters_[fpureg]));
}
double Simulator::get_fpu_register_double(int fpureg) const {
ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0));
return *BitCast<double*>(const_cast<int32_t*>(&FPUregisters_[fpureg]));
}
// For use in calls that take two double values, constructed either
// from a0-a3 or f12 and f14.
void Simulator::GetFpArgs(double* x, double* y) {
if (!IsMipsSoftFloatABI) {
*x = get_fpu_register_double(12);
*y = get_fpu_register_double(14);
} else {
// We use a char buffer to get around the strict-aliasing rules which
// otherwise allow the compiler to optimize away the copy.
char buffer[sizeof(*x)];
int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer);
// Registers a0 and a1 -> x.
reg_buffer[0] = get_register(a0);
reg_buffer[1] = get_register(a1);
memcpy(x, buffer, sizeof(buffer));
// Registers a2 and a3 -> y.
reg_buffer[0] = get_register(a2);
reg_buffer[1] = get_register(a3);
memcpy(y, buffer, sizeof(buffer));
}
}
// For use in calls that take one double value, constructed either
// from a0 and a1 or f12.
void Simulator::GetFpArgs(double* x) {
if (!IsMipsSoftFloatABI) {
*x = get_fpu_register_double(12);
} else {
// We use a char buffer to get around the strict-aliasing rules which
// otherwise allow the compiler to optimize away the copy.
char buffer[sizeof(*x)];
int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer);
// Registers a0 and a1 -> x.
reg_buffer[0] = get_register(a0);
reg_buffer[1] = get_register(a1);
memcpy(x, buffer, sizeof(buffer));
}
}
// For use in calls that take one double value constructed either
// from a0 and a1 or f12 and one integer value.
void Simulator::GetFpArgs(double* x, int32_t* y) {
if (!IsMipsSoftFloatABI) {
*x = get_fpu_register_double(12);
*y = get_register(a2);
} else {
// We use a char buffer to get around the strict-aliasing rules which
// otherwise allow the compiler to optimize away the copy.
char buffer[sizeof(*x)];
int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer);
// Registers 0 and 1 -> x.
reg_buffer[0] = get_register(a0);
reg_buffer[1] = get_register(a1);
memcpy(x, buffer, sizeof(buffer));
// Register 2 -> y.
reg_buffer[0] = get_register(a2);
memcpy(y, buffer, sizeof(*y));
}
}
// The return value is either in v0/v1 or f0.
void Simulator::SetFpResult(const double& result) {
if (!IsMipsSoftFloatABI) {
set_fpu_register_double(0, result);
} else {
char buffer[2 * sizeof(registers_[0])];
int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer);
memcpy(buffer, &result, sizeof(buffer));
// Copy result to v0 and v1.
set_register(v0, reg_buffer[0]);
set_register(v1, reg_buffer[1]);
}
}
// Helper functions for setting and testing the FCSR register's bits.
void Simulator::set_fcsr_bit(uint32_t cc, bool value) {
if (value) {
FCSR_ |= (1 << cc);
} else {
FCSR_ &= ~(1 << cc);
}
}
bool Simulator::test_fcsr_bit(uint32_t cc) {
return FCSR_ & (1 << cc);
}
// Sets the rounding error codes in FCSR based on the result of the rounding.
// Returns true if the operation was invalid.
bool Simulator::set_fcsr_round_error(double original, double rounded) {
bool ret = false;
if (!isfinite(original) || !isfinite(rounded)) {
set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
ret = true;
}
if (original != rounded) {
set_fcsr_bit(kFCSRInexactFlagBit, true);
}
if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) {
set_fcsr_bit(kFCSRUnderflowFlagBit, true);
ret = true;
}
if (rounded > INT_MAX || rounded < INT_MIN) {
set_fcsr_bit(kFCSROverflowFlagBit, true);
// The reference is not really clear but it seems this is required:
set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
ret = true;
}
return ret;
}
// Raw access to the PC register.
void Simulator::set_pc(int32_t value) {
pc_modified_ = true;
registers_[pc] = value;
}
bool Simulator::has_bad_pc() const {
return ((registers_[pc] == bad_ra) || (registers_[pc] == end_sim_pc));
}
// Raw access to the PC register without the special adjustment when reading.
int32_t Simulator::get_pc() const {
return registers_[pc];
}
// The MIPS cannot do unaligned reads and writes. On some MIPS platforms an
// interrupt is caused. On others it does a funky rotation thing. For now we
// simply disallow unaligned reads, but at some point we may want to move to
// emulating the rotate behaviour. Note that simulator runs have the runtime
// system running directly on the host system and only generated code is
// executed in the simulator. Since the host is typically IA32 we will not
// get the correct MIPS-like behaviour on unaligned accesses.
int Simulator::ReadW(int32_t addr, Instruction* instr) {
if (addr >=0 && addr < 0x400) {
// This has to be a NULL-dereference, drop into debugger.
PrintF("Memory read from bad address: 0x%08x, pc=0x%08x\n",
addr, reinterpret_cast<intptr_t>(instr));
MipsDebugger dbg(this);
dbg.Debug();
}
if ((addr & kPointerAlignmentMask) == 0) {
intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
return *ptr;
}
PrintF("Unaligned read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
addr,
reinterpret_cast<intptr_t>(instr));
MipsDebugger dbg(this);
dbg.Debug();
return 0;
}
void Simulator::WriteW(int32_t addr, int value, Instruction* instr) {
if (addr >= 0 && addr < 0x400) {
// This has to be a NULL-dereference, drop into debugger.
PrintF("Memory write to bad address: 0x%08x, pc=0x%08x\n",
addr, reinterpret_cast<intptr_t>(instr));
MipsDebugger dbg(this);
dbg.Debug();
}
if ((addr & kPointerAlignmentMask) == 0) {
intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
*ptr = value;
return;
}
PrintF("Unaligned write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
addr,
reinterpret_cast<intptr_t>(instr));
MipsDebugger dbg(this);
dbg.Debug();
}
double Simulator::ReadD(int32_t addr, Instruction* instr) {
if ((addr & kDoubleAlignmentMask) == 0) {
double* ptr = reinterpret_cast<double*>(addr);
return *ptr;
}
PrintF("Unaligned (double) read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
addr,
reinterpret_cast<intptr_t>(instr));
OS::Abort();
return 0;
}
void Simulator::WriteD(int32_t addr, double value, Instruction* instr) {
if ((addr & kDoubleAlignmentMask) == 0) {
double* ptr = reinterpret_cast<double*>(addr);
*ptr = value;
return;
}
PrintF("Unaligned (double) write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
addr,
reinterpret_cast<intptr_t>(instr));
OS::Abort();
}
uint16_t Simulator::ReadHU(int32_t addr, Instruction* instr) {
if ((addr & 1) == 0) {
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
return *ptr;
}
PrintF("Unaligned unsigned halfword read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
addr,
reinterpret_cast<intptr_t>(instr));
OS::Abort();
return 0;
}
int16_t Simulator::ReadH(int32_t addr, Instruction* instr) {
if ((addr & 1) == 0) {
int16_t* ptr = reinterpret_cast<int16_t*>(addr);
return *ptr;
}
PrintF("Unaligned signed halfword read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
addr,
reinterpret_cast<intptr_t>(instr));
OS::Abort();
return 0;
}
void Simulator::WriteH(int32_t addr, uint16_t value, Instruction* instr) {
if ((addr & 1) == 0) {
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
*ptr = value;
return;
}
PrintF("Unaligned unsigned halfword write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
addr,
reinterpret_cast<intptr_t>(instr));
OS::Abort();
}
void Simulator::WriteH(int32_t addr, int16_t value, Instruction* instr) {
if ((addr & 1) == 0) {
int16_t* ptr = reinterpret_cast<int16_t*>(addr);
*ptr = value;
return;
}
PrintF("Unaligned halfword write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
addr,
reinterpret_cast<intptr_t>(instr));
OS::Abort();
}
uint32_t Simulator::ReadBU(int32_t addr) {
uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
return *ptr & 0xff;
}
int32_t Simulator::ReadB(int32_t addr) {
int8_t* ptr = reinterpret_cast<int8_t*>(addr);
return *ptr;
}
void Simulator::WriteB(int32_t addr, uint8_t value) {
uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
*ptr = value;
}
void Simulator::WriteB(int32_t addr, int8_t value) {
int8_t* ptr = reinterpret_cast<int8_t*>(addr);
*ptr = value;
}
// Returns the limit of the stack area to enable checking for stack overflows.
uintptr_t Simulator::StackLimit() const {
// Leave a safety margin of 1024 bytes to prevent overrunning the stack when
// pushing values.
return reinterpret_cast<uintptr_t>(stack_) + 1024;
}
// Unsupported instructions use Format to print an error and stop execution.
void Simulator::Format(Instruction* instr, const char* format) {
PrintF("Simulator found unsupported instruction:\n 0x%08x: %s\n",
reinterpret_cast<intptr_t>(instr), format);
UNIMPLEMENTED_MIPS();
}
// Calls into the V8 runtime are based on this very simple interface.
// Note: To be able to return two values from some calls the code in runtime.cc
// uses the ObjectPair which is essentially two 32-bit values stuffed into a
// 64-bit value. With the code below we assume that all runtime calls return
// 64 bits of result. If they don't, the v1 result register contains a bogus
// value, which is fine because it is caller-saved.
typedef int64_t (*SimulatorRuntimeCall)(int32_t arg0,
int32_t arg1,
int32_t arg2,
int32_t arg3,
int32_t arg4,
int32_t arg5);
typedef double (*SimulatorRuntimeFPCall)(int32_t arg0,
int32_t arg1,
int32_t arg2,
int32_t arg3);
// This signature supports direct call in to API function native callback
// (refer to InvocationCallback in v8.h).
typedef v8::Handle<v8::Value> (*SimulatorRuntimeDirectApiCall)(int32_t arg0);
// This signature supports direct call to accessor getter callback.
typedef v8::Handle<v8::Value> (*SimulatorRuntimeDirectGetterCall)(int32_t arg0,
int32_t arg1);
// Software interrupt instructions are used by the simulator to call into the
// C-based V8 runtime. They are also used for debugging with simulator.
void Simulator::SoftwareInterrupt(Instruction* instr) {
// There are several instructions that could get us here,
// the break_ instruction, or several variants of traps. All
// Are "SPECIAL" class opcode, and are distinuished by function.
int32_t func = instr->FunctionFieldRaw();
uint32_t code = (func == BREAK) ? instr->Bits(25, 6) : -1;
// We first check if we met a call_rt_redirected.
if (instr->InstructionBits() == rtCallRedirInstr) {
Redirection* redirection = Redirection::FromSwiInstruction(instr);
int32_t arg0 = get_register(a0);
int32_t arg1 = get_register(a1);
int32_t arg2 = get_register(a2);
int32_t arg3 = get_register(a3);
int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp));
// Args 4 and 5 are on the stack after the reserved space for args 0..3.
int32_t arg4 = stack_pointer[4];
int32_t arg5 = stack_pointer[5];
bool fp_call =
(redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
(redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
(redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
(redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
if (!IsMipsSoftFloatABI) {
// With the hard floating point calling convention, double
// arguments are passed in FPU registers. Fetch the arguments
// from there and call the builtin using soft floating point
// convention.
switch (redirection->type()) {
case ExternalReference::BUILTIN_FP_FP_CALL:
case ExternalReference::BUILTIN_COMPARE_CALL:
arg0 = get_fpu_register(f12);
arg1 = get_fpu_register(f13);
arg2 = get_fpu_register(f14);
arg3 = get_fpu_register(f15);
break;
case ExternalReference::BUILTIN_FP_CALL:
arg0 = get_fpu_register(f12);
arg1 = get_fpu_register(f13);
break;
case ExternalReference::BUILTIN_FP_INT_CALL:
arg0 = get_fpu_register(f12);
arg1 = get_fpu_register(f13);
arg2 = get_register(a2);
break;
default:
break;
}
}
// This is dodgy but it works because the C entry stubs are never moved.
// See comment in codegen-arm.cc and bug 1242173.
int32_t saved_ra = get_register(ra);
intptr_t external =
reinterpret_cast<intptr_t>(redirection->external_function());
// Based on CpuFeatures::IsSupported(FPU), Mips will use either hardware
// FPU, or gcc soft-float routines. Hardware FPU is simulated in this
// simulator. Soft-float has additional abstraction of ExternalReference,
// to support serialization.
if (fp_call) {
SimulatorRuntimeFPCall target =
reinterpret_cast<SimulatorRuntimeFPCall>(external);
if (::v8::internal::FLAG_trace_sim) {
double dval0, dval1;
int32_t ival;
switch (redirection->type()) {
case ExternalReference::BUILTIN_FP_FP_CALL:
case ExternalReference::BUILTIN_COMPARE_CALL:
GetFpArgs(&dval0, &dval1);
PrintF("Call to host function at %p with args %f, %f",
FUNCTION_ADDR(target), dval0, dval1);
break;
case ExternalReference::BUILTIN_FP_CALL:
GetFpArgs(&dval0);
PrintF("Call to host function at %p with arg %f",
FUNCTION_ADDR(target), dval0);
break;
case ExternalReference::BUILTIN_FP_INT_CALL:
GetFpArgs(&dval0, &ival);
PrintF("Call to host function at %p with args %f, %d",
FUNCTION_ADDR(target), dval0, ival);
break;
default:
UNREACHABLE();
break;
}
}
double result = target(arg0, arg1, arg2, arg3);
if (redirection->type() != ExternalReference::BUILTIN_COMPARE_CALL) {
SetFpResult(result);
} else {
int32_t gpreg_pair[2];
memcpy(&gpreg_pair[0], &result, 2 * sizeof(int32_t));
set_register(v0, gpreg_pair[0]);
set_register(v1, gpreg_pair[1]);
}
} else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
// See DirectCEntryStub::GenerateCall for explanation of register usage.
SimulatorRuntimeDirectApiCall target =
reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
if (::v8::internal::FLAG_trace_sim) {
PrintF("Call to host function at %p args %08x\n",
FUNCTION_ADDR(target), arg1);
}
v8::Handle<v8::Value> result = target(arg1);
*(reinterpret_cast<int*>(arg0)) = (int32_t) *result;
set_register(v0, arg0);
} else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
// See DirectCEntryStub::GenerateCall for explanation of register usage.
SimulatorRuntimeDirectGetterCall target =
reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
if (::v8::internal::FLAG_trace_sim) {
PrintF("Call to host function at %p args %08x %08x\n",
FUNCTION_ADDR(target), arg1, arg2);
}
v8::Handle<v8::Value> result = target(arg1, arg2);
*(reinterpret_cast<int*>(arg0)) = (int32_t) *result;
set_register(v0, arg0);
} else {
SimulatorRuntimeCall target =
reinterpret_cast<SimulatorRuntimeCall>(external);
if (::v8::internal::FLAG_trace_sim) {
PrintF(
"Call to host function at %p "
"args %08x, %08x, %08x, %08x, %08x, %08x\n",
FUNCTION_ADDR(target),
arg0,
arg1,
arg2,
arg3,
arg4,
arg5);
}
int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5);
set_register(v0, static_cast<int32_t>(result));
set_register(v1, static_cast<int32_t>(result >> 32));
}
if (::v8::internal::FLAG_trace_sim) {
PrintF("Returned %08x : %08x\n", get_register(v1), get_register(v0));
}
set_register(ra, saved_ra);
set_pc(get_register(ra));
} else if (func == BREAK && code <= kMaxStopCode) {
if (IsWatchpoint(code)) {
PrintWatchpoint(code);
} else {
IncreaseStopCounter(code);
HandleStop(code, instr);
}
} else {
// All remaining break_ codes, and all traps are handled here.
MipsDebugger dbg(this);
dbg.Debug();
}
}
// Stop helper functions.
bool Simulator::IsWatchpoint(uint32_t code) {
return (code <= kMaxWatchpointCode);
}
void Simulator::PrintWatchpoint(uint32_t code) {
MipsDebugger dbg(this);
++break_count_;
PrintF("\n---- break %d marker: %3d (instr count: %8d) ----------"
"----------------------------------",
code, break_count_, icount_);
dbg.PrintAllRegs(); // Print registers and continue running.
}
void Simulator::HandleStop(uint32_t code, Instruction* instr) {
// Stop if it is enabled, otherwise go on jumping over the stop
// and the message address.
if (IsEnabledStop(code)) {
MipsDebugger dbg(this);
dbg.Stop(instr);
} else {
set_pc(get_pc() + 2 * Instruction::kInstrSize);
}
}
bool Simulator::IsStopInstruction(Instruction* instr) {
int32_t func = instr->FunctionFieldRaw();
uint32_t code = static_cast<uint32_t>(instr->Bits(25, 6));
return (func == BREAK) && code > kMaxWatchpointCode && code <= kMaxStopCode;
}
bool Simulator::IsEnabledStop(uint32_t code) {
ASSERT(code <= kMaxStopCode);
ASSERT(code > kMaxWatchpointCode);
return !(watched_stops[code].count & kStopDisabledBit);
}
void Simulator::EnableStop(uint32_t code) {
if (!IsEnabledStop(code)) {
watched_stops[code].count &= ~kStopDisabledBit;
}
}
void Simulator::DisableStop(uint32_t code) {
if (IsEnabledStop(code)) {
watched_stops[code].count |= kStopDisabledBit;
}
}
void Simulator::IncreaseStopCounter(uint32_t code) {
ASSERT(code <= kMaxStopCode);
if ((watched_stops[code].count & ~(1 << 31)) == 0x7fffffff) {
PrintF("Stop counter for code %i has overflowed.\n"
"Enabling this code and reseting the counter to 0.\n", code);
watched_stops[code].count = 0;
EnableStop(code);
} else {
watched_stops[code].count++;
}
}
// Print a stop status.
void Simulator::PrintStopInfo(uint32_t code) {
if (code <= kMaxWatchpointCode) {
PrintF("That is a watchpoint, not a stop.\n");
return;
} else if (code > kMaxStopCode) {
PrintF("Code too large, only %u stops can be used\n", kMaxStopCode + 1);
return;
}
const char* state = IsEnabledStop(code) ? "Enabled" : "Disabled";
int32_t count = watched_stops[code].count & ~kStopDisabledBit;
// Don't print the state of unused breakpoints.
if (count != 0) {
if (watched_stops[code].desc) {
PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n",
code, code, state, count, watched_stops[code].desc);
} else {
PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n",
code, code, state, count);
}
}
}
void Simulator::SignalExceptions() {
for (int i = 1; i < kNumExceptions; i++) {
if (exceptions[i] != 0) {
V8_Fatal(__FILE__, __LINE__, "Error: Exception %i raised.", i);
}
}
}
// Handle execution based on instruction types.
void Simulator::ConfigureTypeRegister(Instruction* instr,
int32_t& alu_out,
int64_t& i64hilo,
uint64_t& u64hilo,
int32_t& next_pc,
bool& do_interrupt) {
// Every local variable declared here needs to be const.
// This is to make sure that changed values are sent back to
// DecodeTypeRegister correctly.
// Instruction fields.
const Opcode op = instr->OpcodeFieldRaw();
const int32_t rs_reg = instr->RsValue();
const int32_t rs = get_register(rs_reg);
const uint32_t rs_u = static_cast<uint32_t>(rs);
const int32_t rt_reg = instr->RtValue();
const int32_t rt = get_register(rt_reg);
const uint32_t rt_u = static_cast<uint32_t>(rt);
const int32_t rd_reg = instr->RdValue();
const uint32_t sa = instr->SaValue();
const int32_t fs_reg = instr->FsValue();
// ---------- Configuration.
switch (op) {
case COP1: // Coprocessor instructions.
switch (instr->RsFieldRaw()) {
case BC1: // Handled in DecodeTypeImmed, should never come here.
UNREACHABLE();
break;
case CFC1:
// At the moment only FCSR is supported.
ASSERT(fs_reg == kFCSRRegister);
alu_out = FCSR_;
break;
case MFC1:
alu_out = get_fpu_register(fs_reg);
break;
case MFHC1:
UNIMPLEMENTED_MIPS();
break;
case CTC1:
case MTC1:
case MTHC1:
// Do the store in the execution step.
break;
case S:
case D:
case W:
case L:
case PS:
// Do everything in the execution step.
break;
default:
UNIMPLEMENTED_MIPS();
};
break;
case SPECIAL:
switch (instr->FunctionFieldRaw()) {
case JR:
case JALR:
next_pc = get_register(instr->RsValue());
break;
case SLL:
alu_out = rt << sa;
break;
case SRL:
if (rs_reg == 0) {
// Regular logical right shift of a word by a fixed number of
// bits instruction. RS field is always equal to 0.
alu_out = rt_u >> sa;
} else {
// Logical right-rotate of a word by a fixed number of bits. This
// is special case of SRL instruction, added in MIPS32 Release 2.
// RS field is equal to 00001.
alu_out = (rt_u >> sa) | (rt_u << (32 - sa));
}
break;
case SRA:
alu_out = rt >> sa;
break;
case SLLV:
alu_out = rt << rs;
break;
case SRLV:
if (sa == 0) {
// Regular logical right-shift of a word by a variable number of
// bits instruction. SA field is always equal to 0.
alu_out = rt_u >> rs;
} else {
// Logical right-rotate of a word by a variable number of bits.
// This is special case od SRLV instruction, added in MIPS32
// Release 2. SA field is equal to 00001.
alu_out = (rt_u >> rs_u) | (rt_u << (32 - rs_u));
}
break;
case SRAV:
alu_out = rt >> rs;
break;
case MFHI:
alu_out = get_register(HI);
break;
case MFLO:
alu_out = get_register(LO);
break;
case MULT:
i64hilo = static_cast<int64_t>(rs) * static_cast<int64_t>(rt);
break;
case MULTU:
u64hilo = static_cast<uint64_t>(rs_u) * static_cast<uint64_t>(rt_u);
break;
case ADD:
if (HaveSameSign(rs, rt)) {
if (rs > 0) {
exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue - rt);
} else if (rs < 0) {
exceptions[kIntegerUnderflow] = rs < (Registers::kMinValue - rt);
}
}
alu_out = rs + rt;
break;
case ADDU:
alu_out = rs + rt;
break;
case SUB:
if (!HaveSameSign(rs, rt)) {
if (rs > 0) {
exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue + rt);
} else if (rs < 0) {
exceptions[kIntegerUnderflow] = rs < (Registers::kMinValue + rt);
}
}
alu_out = rs - rt;
break;
case SUBU:
alu_out = rs - rt;
break;
case AND:
alu_out = rs & rt;
break;
case OR:
alu_out = rs | rt;
break;
case XOR:
alu_out = rs ^ rt;
break;
case NOR:
alu_out = ~(rs | rt);
break;
case SLT:
alu_out = rs < rt ? 1 : 0;
break;
case SLTU:
alu_out = rs_u < rt_u ? 1 : 0;
break;
// Break and trap instructions.
case BREAK:
do_interrupt = true;
break;
case TGE:
do_interrupt = rs >= rt;
break;
case TGEU:
do_interrupt = rs_u >= rt_u;
break;
case TLT:
do_interrupt = rs < rt;
break;
case TLTU:
do_interrupt = rs_u < rt_u;
break;
case TEQ:
do_interrupt = rs == rt;
break;
case TNE:
do_interrupt = rs != rt;
break;
case MOVN:
case MOVZ:
case MOVCI:
// No action taken on decode.
break;
case DIV:
case DIVU:
// div and divu never raise exceptions.
break;
default:
UNREACHABLE();
};
break;
case SPECIAL2:
switch (instr->FunctionFieldRaw()) {
case MUL:
alu_out = rs_u * rt_u; // Only the lower 32 bits are kept.
break;
case CLZ:
alu_out = __builtin_clz(rs_u);
break;
default:
UNREACHABLE();
};
break;
case SPECIAL3:
switch (instr->FunctionFieldRaw()) {
case INS: { // Mips32r2 instruction.
// Interpret rd field as 5-bit msb of insert.
uint16_t msb = rd_reg;
// Interpret sa field as 5-bit lsb of insert.
uint16_t lsb = sa;
uint16_t size = msb - lsb + 1;
uint32_t mask = (1 << size) - 1;
alu_out = (rt_u & ~(mask << lsb)) | ((rs_u & mask) << lsb);
break;
}
case EXT: { // Mips32r2 instruction.
// Interpret rd field as 5-bit msb of extract.
uint16_t msb = rd_reg;
// Interpret sa field as 5-bit lsb of extract.
uint16_t lsb = sa;
uint16_t size = msb + 1;
uint32_t mask = (1 << size) - 1;
alu_out = (rs_u & (mask << lsb)) >> lsb;
break;
}
default:
UNREACHABLE();
};
break;
default:
UNREACHABLE();
};
}
void Simulator::DecodeTypeRegister(Instruction* instr) {
// Instruction fields.
const Opcode op = instr->OpcodeFieldRaw();
const int32_t rs_reg = instr->RsValue();
const int32_t rs = get_register(rs_reg);
const uint32_t rs_u = static_cast<uint32_t>(rs);
const int32_t rt_reg = instr->RtValue();
const int32_t rt = get_register(rt_reg);
const uint32_t rt_u = static_cast<uint32_t>(rt);
const int32_t rd_reg = instr->RdValue();
const int32_t fs_reg = instr->FsValue();
const int32_t ft_reg = instr->FtValue();
const int32_t fd_reg = instr->FdValue();
int64_t i64hilo = 0;
uint64_t u64hilo = 0;
// ALU output.
// It should not be used as is. Instructions using it should always
// initialize it first.
int32_t alu_out = 0x12345678;
// For break and trap instructions.
bool do_interrupt = false;
// For jr and jalr.
// Get current pc.
int32_t current_pc = get_pc();
// Next pc
int32_t next_pc = 0;
// Set up the variables if needed before executing the instruction.
ConfigureTypeRegister(instr,
alu_out,
i64hilo,
u64hilo,
next_pc,
do_interrupt);
// ---------- Raise exceptions triggered.
SignalExceptions();
// ---------- Execution.
switch (op) {
case COP1:
switch (instr->RsFieldRaw()) {
case BC1: // Branch on coprocessor condition.
UNREACHABLE();
break;
case CFC1:
set_register(rt_reg, alu_out);
case MFC1:
set_register(rt_reg, alu_out);
break;
case MFHC1:
UNIMPLEMENTED_MIPS();
break;
case CTC1:
// At the moment only FCSR is supported.
ASSERT(fs_reg == kFCSRRegister);
FCSR_ = registers_[rt_reg];
break;
case MTC1:
FPUregisters_[fs_reg] = registers_[rt_reg];
break;
case MTHC1:
UNIMPLEMENTED_MIPS();
break;
case S:
float f;
switch (instr->FunctionFieldRaw()) {
case CVT_D_S:
f = get_fpu_register_float(fs_reg);
set_fpu_register_double(fd_reg, static_cast<double>(f));
break;
case CVT_W_S:
case CVT_L_S:
case TRUNC_W_S:
case TRUNC_L_S:
case ROUND_W_S:
case ROUND_L_S:
case FLOOR_W_S:
case FLOOR_L_S:
case CEIL_W_S:
case CEIL_L_S:
case CVT_PS_S:
UNIMPLEMENTED_MIPS();
break;
default:
UNREACHABLE();
}
break;
case D:
double ft, fs;
uint32_t cc, fcsr_cc;
int64_t i64;
fs = get_fpu_register_double(fs_reg);
ft = get_fpu_register_double(ft_reg);
cc = instr->FCccValue();
fcsr_cc = get_fcsr_condition_bit(cc);
switch (instr->FunctionFieldRaw()) {
case ADD_D:
set_fpu_register_double(fd_reg, fs + ft);
break;
case SUB_D:
set_fpu_register_double(fd_reg, fs - ft);
break;
case MUL_D:
set_fpu_register_double(fd_reg, fs * ft);
break;
case DIV_D:
set_fpu_register_double(fd_reg, fs / ft);
break;
case ABS_D:
set_fpu_register_double(fd_reg, fs < 0 ? -fs : fs);
break;
case MOV_D:
set_fpu_register_double(fd_reg, fs);
break;
case NEG_D:
set_fpu_register_double(fd_reg, -fs);
break;
case SQRT_D:
set_fpu_register_double(fd_reg, sqrt(fs));
break;
case C_UN_D:
set_fcsr_bit(fcsr_cc, isnan(fs) || isnan(ft));
break;
case C_EQ_D:
set_fcsr_bit(fcsr_cc, (fs == ft));
break;
case C_UEQ_D:
set_fcsr_bit(fcsr_cc, (fs == ft) || (isnan(fs) || isnan(ft)));
break;
case C_OLT_D:
set_fcsr_bit(fcsr_cc, (fs < ft));
break;
case C_ULT_D:
set_fcsr_bit(fcsr_cc, (fs < ft) || (isnan(fs) || isnan(ft)));
break;
case C_OLE_D:
set_fcsr_bit(fcsr_cc, (fs <= ft));
break;
case C_ULE_D:
set_fcsr_bit(fcsr_cc, (fs <= ft) || (isnan(fs) || isnan(ft)));
break;
case CVT_W_D: // Convert double to word.
// Rounding modes are not yet supported.
ASSERT((FCSR_ & 3) == 0);
// In rounding mode 0 it should behave like ROUND.
case ROUND_W_D: // Round double to word.
{
double rounded = fs > 0 ? floor(fs + 0.5) : ceil(fs - 0.5);
int32_t result = static_cast<int32_t>(rounded);
set_fpu_register(fd_reg, result);
if (set_fcsr_round_error(fs, rounded)) {
set_fpu_register(fd_reg, kFPUInvalidResult);
}
}
break;
case TRUNC_W_D: // Truncate double to word (round towards 0).
{
double rounded = trunc(fs);
int32_t result = static_cast<int32_t>(rounded);
set_fpu_register(fd_reg, result);
if (set_fcsr_round_error(fs, rounded)) {
set_fpu_register(fd_reg, kFPUInvalidResult);
}
}
break;
case FLOOR_W_D: // Round double to word towards negative infinity.
{
double rounded = floor(fs);
int32_t result = static_cast<int32_t>(rounded);
set_fpu_register(fd_reg, result);
if (set_fcsr_round_error(fs, rounded)) {
set_fpu_register(fd_reg, kFPUInvalidResult);
}
}
break;
case CEIL_W_D: // Round double to word towards positive infinity.
{
double rounded = ceil(fs);
int32_t result = static_cast<int32_t>(rounded);
set_fpu_register(fd_reg, result);
if (set_fcsr_round_error(fs, rounded)) {
set_fpu_register(fd_reg, kFPUInvalidResult);
}
}
break;
case CVT_S_D: // Convert double to float (single).
set_fpu_register_float(fd_reg, static_cast<float>(fs));
break;
case CVT_L_D: { // Mips32r2: Truncate double to 64-bit long-word.
double rounded = trunc(fs);
i64 = static_cast<int64_t>(rounded);
set_fpu_register(fd_reg, i64 & 0xffffffff);
set_fpu_register(fd_reg + 1, i64 >> 32);
break;
}
case TRUNC_L_D: { // Mips32r2 instruction.
double rounded = trunc(fs);
i64 = static_cast<int64_t>(rounded);
set_fpu_register(fd_reg, i64 & 0xffffffff);
set_fpu_register(fd_reg + 1, i64 >> 32);
break;
}
case ROUND_L_D: { // Mips32r2 instruction.
double rounded = fs > 0 ? floor(fs + 0.5) : ceil(fs - 0.5);
i64 = static_cast<int64_t>(rounded);
set_fpu_register(fd_reg, i64 & 0xffffffff);
set_fpu_register(fd_reg + 1, i64 >> 32);
break;
}
case FLOOR_L_D: // Mips32r2 instruction.
i64 = static_cast<int64_t>(floor(fs));
set_fpu_register(fd_reg, i64 & 0xffffffff);
set_fpu_register(fd_reg + 1, i64 >> 32);
break;
case CEIL_L_D: // Mips32r2 instruction.
i64 = static_cast<int64_t>(ceil(fs));
set_fpu_register(fd_reg, i64 & 0xffffffff);
set_fpu_register(fd_reg + 1, i64 >> 32);
break;
case C_F_D:
UNIMPLEMENTED_MIPS();
break;
default:
UNREACHABLE();
}
break;
case W:
switch (instr->FunctionFieldRaw()) {
case CVT_S_W: // Convert word to float (single).
alu_out = get_fpu_register(fs_reg);
set_fpu_register_float(fd_reg, static_cast<float>(alu_out));
break;
case CVT_D_W: // Convert word to double.
alu_out = get_fpu_register(fs_reg);
set_fpu_register_double(fd_reg, static_cast<double>(alu_out));
break;
default:
UNREACHABLE();
};
break;
case L:
switch (instr->FunctionFieldRaw()) {
case CVT_D_L: // Mips32r2 instruction.
// Watch the signs here, we want 2 32-bit vals
// to make a sign-64.
i64 = (uint32_t) get_fpu_register(fs_reg);
i64 |= ((int64_t) get_fpu_register(fs_reg + 1) << 32);
set_fpu_register_double(fd_reg, static_cast<double>(i64));
break;
case CVT_S_L:
UNIMPLEMENTED_MIPS();
break;
default:
UNREACHABLE();
}
break;
case PS:
break;
default:
UNREACHABLE();
};
break;
case SPECIAL:
switch (instr->FunctionFieldRaw()) {
case JR: {
Instruction* branch_delay_instr = reinterpret_cast<Instruction*>(
current_pc+Instruction::kInstrSize);
BranchDelayInstructionDecode(branch_delay_instr);
set_pc(next_pc);
pc_modified_ = true;
break;
}
case JALR: {
Instruction* branch_delay_instr = reinterpret_cast<Instruction*>(
current_pc+Instruction::kInstrSize);
BranchDelayInstructionDecode(branch_delay_instr);
set_register(31, current_pc + 2 * Instruction::kInstrSize);
set_pc(next_pc);
pc_modified_ = true;
break;
}
// Instructions using HI and LO registers.
case MULT:
set_register(LO, static_cast<int32_t>(i64hilo & 0xffffffff));
set_register(HI, static_cast<int32_t>(i64hilo >> 32));
break;
case MULTU:
set_register(LO, static_cast<int32_t>(u64hilo & 0xffffffff));
set_register(HI, static_cast<int32_t>(u64hilo >> 32));
break;
case DIV:
// Divide by zero was not checked in the configuration step - div and
// divu do not raise exceptions. On division by 0, the result will
// be UNPREDICTABLE.
if (rt != 0) {
set_register(LO, rs / rt);
set_register(HI, rs % rt);
}
break;
case DIVU:
if (rt_u != 0) {
set_register(LO, rs_u / rt_u);
set_register(HI, rs_u % rt_u);
}
break;
// Break and trap instructions.
case BREAK:
case TGE:
case TGEU:
case TLT:
case TLTU:
case TEQ:
case TNE:
if (do_interrupt) {
SoftwareInterrupt(instr);
}
break;
// Conditional moves.
case MOVN:
if (rt) set_register(rd_reg, rs);
break;
case MOVCI: {
uint32_t cc = instr->FBccValue();
uint32_t fcsr_cc = get_fcsr_condition_bit(cc);
if (instr->Bit(16)) { // Read Tf bit.
if (test_fcsr_bit(fcsr_cc)) set_register(rd_reg, rs);
} else {
if (!test_fcsr_bit(fcsr_cc)) set_register(rd_reg, rs);
}
break;
}
case MOVZ:
if (!rt) set_register(rd_reg, rs);
break;
default: // For other special opcodes we do the default operation.
set_register(rd_reg, alu_out);
};
break;
case SPECIAL2:
switch (instr->FunctionFieldRaw()) {
case MUL:
set_register(rd_reg, alu_out);
// HI and LO are UNPREDICTABLE after the operation.
set_register(LO, Unpredictable);
set_register(HI, Unpredictable);
break;
default: // For other special2 opcodes we do the default operation.
set_register(rd_reg, alu_out);
}
break;
case SPECIAL3:
switch (instr->FunctionFieldRaw()) {
case INS:
// Ins instr leaves result in Rt, rather than Rd.
set_register(rt_reg, alu_out);
break;
case EXT:
// Ext instr leaves result in Rt, rather than Rd.
set_register(rt_reg, alu_out);
break;
default:
UNREACHABLE();
};
break;
// Unimplemented opcodes raised an error in the configuration step before,
// so we can use the default here to set the destination register in common
// cases.
default:
set_register(rd_reg, alu_out);
};
}
// Type 2: instructions using a 16 bytes immediate. (e.g. addi, beq).
void Simulator::DecodeTypeImmediate(Instruction* instr) {
// Instruction fields.
Opcode op = instr->OpcodeFieldRaw();
int32_t rs = get_register(instr->RsValue());
uint32_t rs_u = static_cast<uint32_t>(rs);
int32_t rt_reg = instr->RtValue(); // Destination register.
int32_t rt = get_register(rt_reg);
int16_t imm16 = instr->Imm16Value();
int32_t ft_reg = instr->FtValue(); // Destination register.
// Zero extended immediate.
uint32_t oe_imm16 = 0xffff & imm16;
// Sign extended immediate.
int32_t se_imm16 = imm16;
// Get current pc.
int32_t current_pc = get_pc();
// Next pc.
int32_t next_pc = bad_ra;
// Used for conditional branch instructions.
bool do_branch = false;
bool execute_branch_delay_instruction = false;
// Used for arithmetic instructions.
int32_t alu_out = 0;
// Floating point.
double fp_out = 0.0;
uint32_t cc, cc_value, fcsr_cc;
// Used for memory instructions.
int32_t addr = 0x0;
// Value to be written in memory.
uint32_t mem_value = 0x0;
// ---------- Configuration (and execution for REGIMM).
switch (op) {
// ------------- COP1. Coprocessor instructions.
case COP1:
switch (instr->RsFieldRaw()) {
case BC1: // Branch on coprocessor condition.
cc = instr->FBccValue();
fcsr_cc = get_fcsr_condition_bit(cc);
cc_value = test_fcsr_bit(fcsr_cc);
do_branch = (instr->FBtrueValue()) ? cc_value : !cc_value;
execute_branch_delay_instruction = true;
// Set next_pc.
if (do_branch) {
next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
} else {
next_pc = current_pc + kBranchReturnOffset;
}
break;
default:
UNREACHABLE();
};
break;
// ------------- REGIMM class.
case REGIMM:
switch (instr->RtFieldRaw()) {
case BLTZ:
do_branch = (rs < 0);
break;
case BLTZAL:
do_branch = rs < 0;
break;
case BGEZ:
do_branch = rs >= 0;
break;
case BGEZAL:
do_branch = rs >= 0;
break;
default:
UNREACHABLE();
};
switch (instr->RtFieldRaw()) {
case BLTZ:
case BLTZAL:
case BGEZ:
case BGEZAL:
// Branch instructions common part.
execute_branch_delay_instruction = true;
// Set next_pc.
if (do_branch) {
next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
if (instr->IsLinkingInstruction()) {
set_register(31, current_pc + kBranchReturnOffset);
}
} else {
next_pc = current_pc + kBranchReturnOffset;
}
default:
break;
};
break; // case REGIMM.
// ------------- Branch instructions.
// When comparing to zero, the encoding of rt field is always 0, so we don't
// need to replace rt with zero.
case BEQ:
do_branch = (rs == rt);
break;
case BNE:
do_branch = rs != rt;
break;
case BLEZ:
do_branch = rs <= 0;
break;
case BGTZ:
do_branch = rs > 0;
break;
// ------------- Arithmetic instructions.
case ADDI:
if (HaveSameSign(rs, se_imm16)) {
if (rs > 0) {
exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue - se_imm16);
} else if (rs < 0) {
exceptions[kIntegerUnderflow] =
rs < (Registers::kMinValue - se_imm16);
}
}
alu_out = rs + se_imm16;
break;
case ADDIU:
alu_out = rs + se_imm16;
break;
case SLTI:
alu_out = (rs < se_imm16) ? 1 : 0;
break;
case SLTIU:
alu_out = (rs_u < static_cast<uint32_t>(se_imm16)) ? 1 : 0;
break;
case ANDI:
alu_out = rs & oe_imm16;
break;
case ORI:
alu_out = rs | oe_imm16;
break;
case XORI:
alu_out = rs ^ oe_imm16;
break;
case LUI:
alu_out = (oe_imm16 << 16);
break;
// ------------- Memory instructions.
case LB:
addr = rs + se_imm16;
alu_out = ReadB(addr);
break;
case LH:
addr = rs + se_imm16;
alu_out = ReadH(addr, instr);
break;
case LWL: {
// al_offset is offset of the effective address within an aligned word.
uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
uint8_t byte_shift = kPointerAlignmentMask - al_offset;
uint32_t mask = (1 << byte_shift * 8) - 1;
addr = rs + se_imm16 - al_offset;
alu_out = ReadW(addr, instr);
alu_out <<= byte_shift * 8;
alu_out |= rt & mask;
break;
}
case LW:
addr = rs + se_imm16;
alu_out = ReadW(addr, instr);
break;
case LBU:
addr = rs + se_imm16;
alu_out = ReadBU(addr);
break;
case LHU:
addr = rs + se_imm16;
alu_out = ReadHU(addr, instr);
break;
case LWR: {
// al_offset is offset of the effective address within an aligned word.
uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
uint8_t byte_shift = kPointerAlignmentMask - al_offset;
uint32_t mask = al_offset ? (~0 << (byte_shift + 1) * 8) : 0;
addr = rs + se_imm16 - al_offset;
alu_out = ReadW(addr, instr);
alu_out = static_cast<uint32_t> (alu_out) >> al_offset * 8;
alu_out |= rt & mask;
break;
}
case SB:
addr = rs + se_imm16;
break;
case SH:
addr = rs + se_imm16;
break;
case SWL: {
uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
uint8_t byte_shift = kPointerAlignmentMask - al_offset;
uint32_t mask = byte_shift ? (~0 << (al_offset + 1) * 8) : 0;
addr = rs + se_imm16 - al_offset;
mem_value = ReadW(addr, instr) & mask;
mem_value |= static_cast<uint32_t>(rt) >> byte_shift * 8;
break;
}
case SW:
addr = rs + se_imm16;
break;
case SWR: {
uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
uint32_t mask = (1 << al_offset * 8) - 1;
addr = rs + se_imm16 - al_offset;
mem_value = ReadW(addr, instr);
mem_value = (rt << al_offset * 8) | (mem_value & mask);
break;
}
case LWC1:
addr = rs + se_imm16;
alu_out = ReadW(addr, instr);
break;
case LDC1:
addr = rs + se_imm16;
fp_out = ReadD(addr, instr);
break;
case SWC1:
case SDC1:
addr = rs + se_imm16;
break;
default:
UNREACHABLE();
};
// ---------- Raise exceptions triggered.
SignalExceptions();
// ---------- Execution.
switch (op) {
// ------------- Branch instructions.
case BEQ:
case BNE:
case BLEZ:
case BGTZ:
// Branch instructions common part.
execute_branch_delay_instruction = true;
// Set next_pc.
if (do_branch) {
next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
if (instr->IsLinkingInstruction()) {
set_register(31, current_pc + 2* Instruction::kInstrSize);
}
} else {
next_pc = current_pc + 2 * Instruction::kInstrSize;
}
break;
// ------------- Arithmetic instructions.
case ADDI:
case ADDIU:
case SLTI:
case SLTIU:
case ANDI:
case ORI:
case XORI:
case LUI:
set_register(rt_reg, alu_out);
break;
// ------------- Memory instructions.
case LB:
case LH:
case LWL:
case LW:
case LBU:
case LHU:
case LWR:
set_register(rt_reg, alu_out);
break;
case SB:
WriteB(addr, static_cast<int8_t>(rt));
break;
case SH:
WriteH(addr, static_cast<uint16_t>(rt), instr);
break;
case SWL:
WriteW(addr, mem_value, instr);
break;
case SW:
WriteW(addr, rt, instr);
break;
case SWR:
WriteW(addr, mem_value, instr);
break;
case LWC1:
set_fpu_register(ft_reg, alu_out);
break;
case LDC1:
set_fpu_register_double(ft_reg, fp_out);
break;
case SWC1:
addr = rs + se_imm16;
WriteW(addr, get_fpu_register(ft_reg), instr);
break;
case SDC1:
addr = rs + se_imm16;
WriteD(addr, get_fpu_register_double(ft_reg), instr);
break;
default:
break;
};
if (execute_branch_delay_instruction) {
// Execute branch delay slot
// We don't check for end_sim_pc. First it should not be met as the current
// pc is valid. Secondly a jump should always execute its branch delay slot.
Instruction* branch_delay_instr =
reinterpret_cast<Instruction*>(current_pc+Instruction::kInstrSize);
BranchDelayInstructionDecode(branch_delay_instr);
}
// If needed update pc after the branch delay execution.
if (next_pc != bad_ra) {
set_pc(next_pc);
}
}
// Type 3: instructions using a 26 bytes immediate. (e.g. j, jal).
void Simulator::DecodeTypeJump(Instruction* instr) {
// Get current pc.
int32_t current_pc = get_pc();
// Get unchanged bits of pc.
int32_t pc_high_bits = current_pc & 0xf0000000;
// Next pc.
int32_t next_pc = pc_high_bits | (instr->Imm26Value() << 2);
// Execute branch delay slot.
// We don't check for end_sim_pc. First it should not be met as the current pc
// is valid. Secondly a jump should always execute its branch delay slot.
Instruction* branch_delay_instr =
reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize);
BranchDelayInstructionDecode(branch_delay_instr);
// Update pc and ra if necessary.
// Do this after the branch delay execution.
if (instr->IsLinkingInstruction()) {
set_register(31, current_pc + 2 * Instruction::kInstrSize);
}
set_pc(next_pc);
pc_modified_ = true;
}
// Executes the current instruction.
void Simulator::InstructionDecode(Instruction* instr) {
if (v8::internal::FLAG_check_icache) {
CheckICache(isolate_->simulator_i_cache(), instr);
}
pc_modified_ = false;
if (::v8::internal::FLAG_trace_sim) {
disasm::NameConverter converter;
disasm::Disassembler dasm(converter);
// Use a reasonably large buffer.
v8::internal::EmbeddedVector<char, 256> buffer;
dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
PrintF(" 0x%08x %s\n", reinterpret_cast<intptr_t>(instr),
buffer.start());
}
switch (instr->InstructionType()) {
case Instruction::kRegisterType:
DecodeTypeRegister(instr);
break;
case Instruction::kImmediateType:
DecodeTypeImmediate(instr);
break;
case Instruction::kJumpType:
DecodeTypeJump(instr);
break;
default:
UNSUPPORTED();
}
if (!pc_modified_) {
set_register(pc, reinterpret_cast<int32_t>(instr) +
Instruction::kInstrSize);
}
}
void Simulator::Execute() {
// Get the PC to simulate. Cannot use the accessor here as we need the
// raw PC value and not the one used as input to arithmetic instructions.
int program_counter = get_pc();
if (::v8::internal::FLAG_stop_sim_at == 0) {
// Fast version of the dispatch loop without checking whether the simulator
// should be stopping at a particular executed instruction.
while (program_counter != end_sim_pc) {
Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
icount_++;
InstructionDecode(instr);
program_counter = get_pc();
}
} else {
// FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
// we reach the particular instuction count.
while (program_counter != end_sim_pc) {
Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
icount_++;
if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
MipsDebugger dbg(this);
dbg.Debug();
} else {
InstructionDecode(instr);
}
program_counter = get_pc();
}
}
}
int32_t Simulator::Call(byte* entry, int argument_count, ...) {
va_list parameters;
va_start(parameters, argument_count);
// Set up arguments.
// First four arguments passed in registers.
ASSERT(argument_count >= 4);
set_register(a0, va_arg(parameters, int32_t));
set_register(a1, va_arg(parameters, int32_t));
set_register(a2, va_arg(parameters, int32_t));
set_register(a3, va_arg(parameters, int32_t));
// Remaining arguments passed on stack.
int original_stack = get_register(sp);
// Compute position of stack on entry to generated code.
int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t)
- kCArgsSlotsSize);
if (OS::ActivationFrameAlignment() != 0) {
entry_stack &= -OS::ActivationFrameAlignment();
}
// Store remaining arguments on stack, from low to high memory.
intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack);
for (int i = 4; i < argument_count; i++) {
stack_argument[i - 4 + kCArgSlotCount] = va_arg(parameters, int32_t);
}
va_end(parameters);
set_register(sp, entry_stack);
// Prepare to execute the code at entry.
set_register(pc, reinterpret_cast<int32_t>(entry));
// Put down marker for end of simulation. The simulator will stop simulation
// when the PC reaches this value. By saving the "end simulation" value into
// the LR the simulation stops when returning to this call point.
set_register(ra, end_sim_pc);
// Remember the values of callee-saved registers.
// The code below assumes that r9 is not used as sb (static base) in
// simulator code and therefore is regarded as a callee-saved register.
int32_t s0_val = get_register(s0);
int32_t s1_val = get_register(s1);
int32_t s2_val = get_register(s2);
int32_t s3_val = get_register(s3);
int32_t s4_val = get_register(s4);
int32_t s5_val = get_register(s5);
int32_t s6_val = get_register(s6);
int32_t s7_val = get_register(s7);
int32_t gp_val = get_register(gp);
int32_t sp_val = get_register(sp);
int32_t fp_val = get_register(fp);
// Set up the callee-saved registers with a known value. To be able to check
// that they are preserved properly across JS execution.
int32_t callee_saved_value = icount_;
set_register(s0, callee_saved_value);
set_register(s1, callee_saved_value);
set_register(s2, callee_saved_value);
set_register(s3, callee_saved_value);
set_register(s4, callee_saved_value);
set_register(s5, callee_saved_value);
set_register(s6, callee_saved_value);
set_register(s7, callee_saved_value);
set_register(gp, callee_saved_value);
set_register(fp, callee_saved_value);
// Start the simulation.
Execute();
// Check that the callee-saved registers have been preserved.
CHECK_EQ(callee_saved_value, get_register(s0));
CHECK_EQ(callee_saved_value, get_register(s1));
CHECK_EQ(callee_saved_value, get_register(s2));
CHECK_EQ(callee_saved_value, get_register(s3));
CHECK_EQ(callee_saved_value, get_register(s4));
CHECK_EQ(callee_saved_value, get_register(s5));
CHECK_EQ(callee_saved_value, get_register(s6));
CHECK_EQ(callee_saved_value, get_register(s7));
CHECK_EQ(callee_saved_value, get_register(gp));
CHECK_EQ(callee_saved_value, get_register(fp));
// Restore callee-saved registers with the original value.
set_register(s0, s0_val);
set_register(s1, s1_val);
set_register(s2, s2_val);
set_register(s3, s3_val);
set_register(s4, s4_val);
set_register(s5, s5_val);
set_register(s6, s6_val);
set_register(s7, s7_val);
set_register(gp, gp_val);
set_register(sp, sp_val);
set_register(fp, fp_val);
// Pop stack passed arguments.
CHECK_EQ(entry_stack, get_register(sp));
set_register(sp, original_stack);
int32_t result = get_register(v0);
return result;
}
uintptr_t Simulator::PushAddress(uintptr_t address) {
int new_sp = get_register(sp) - sizeof(uintptr_t);
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
*stack_slot = address;
set_register(sp, new_sp);
return new_sp;
}
uintptr_t Simulator::PopAddress() {
int current_sp = get_register(sp);
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
uintptr_t address = *stack_slot;
set_register(sp, current_sp + sizeof(uintptr_t));
return address;
}
#undef UNSUPPORTED
} } // namespace v8::internal
#endif // USE_SIMULATOR
#endif // V8_TARGET_ARCH_MIPS