/*
* Copyright 2011 Christoph Bumiller
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __NV50_IR_UTIL_H__
#define __NV50_IR_UTIL_H__
#include <new>
#include <assert.h>
#include <stdio.h>
#include <memory>
#include <map>
#ifndef NDEBUG
# include <typeinfo>
#endif
#include "util/u_inlines.h"
#include "util/u_memory.h"
#define ERROR(args...) debug_printf("ERROR: " args)
#define WARN(args...) debug_printf("WARNING: " args)
#define INFO(args...) debug_printf(args)
#define INFO_DBG(m, f, args...) \
do { \
if (m & NV50_IR_DEBUG_##f) \
debug_printf(args); \
} while(0)
#define FATAL(args...) \
do { \
fprintf(stderr, args); \
abort(); \
} while(0)
#define NV50_IR_FUNC_ALLOC_OBJ_DEF(obj, f, args...) \
new ((f)->getProgram()->mem_##obj.allocate()) obj(f, args)
#define new_Instruction(f, args...) \
NV50_IR_FUNC_ALLOC_OBJ_DEF(Instruction, f, args)
#define new_CmpInstruction(f, args...) \
NV50_IR_FUNC_ALLOC_OBJ_DEF(CmpInstruction, f, args)
#define new_TexInstruction(f, args...) \
NV50_IR_FUNC_ALLOC_OBJ_DEF(TexInstruction, f, args)
#define new_FlowInstruction(f, args...) \
NV50_IR_FUNC_ALLOC_OBJ_DEF(FlowInstruction, f, args)
#define new_LValue(f, args...) \
NV50_IR_FUNC_ALLOC_OBJ_DEF(LValue, f, args)
#define NV50_IR_PROG_ALLOC_OBJ_DEF(obj, p, args...) \
new ((p)->mem_##obj.allocate()) obj(p, args)
#define new_Symbol(p, args...) \
NV50_IR_PROG_ALLOC_OBJ_DEF(Symbol, p, args)
#define new_ImmediateValue(p, args...) \
NV50_IR_PROG_ALLOC_OBJ_DEF(ImmediateValue, p, args)
#define delete_Instruction(p, insn) (p)->releaseInstruction(insn)
#define delete_Value(p, val) (p)->releaseValue(val)
namespace nv50_ir {
class Iterator
{
public:
virtual ~Iterator() { };
virtual void next() = 0;
virtual void *get() const = 0;
virtual bool end() const = 0; // if true, get will return 0
virtual void reset() { assert(0); } // only for graph iterators
};
typedef std::auto_ptr<Iterator> IteratorRef;
class ManipIterator : public Iterator
{
public:
virtual bool insert(void *) = 0; // insert after current position
virtual void erase() = 0;
};
// WARNING: do not use a->prev/next for __item or __list
#define DLLIST_DEL(__item) \
do { \
(__item)->prev->next = (__item)->next; \
(__item)->next->prev = (__item)->prev; \
(__item)->next = (__item); \
(__item)->prev = (__item); \
} while(0)
#define DLLIST_ADDTAIL(__list, __item) \
do { \
(__item)->next = (__list); \
(__item)->prev = (__list)->prev; \
(__list)->prev->next = (__item); \
(__list)->prev = (__item); \
} while(0)
#define DLLIST_ADDHEAD(__list, __item) \
do { \
(__item)->prev = (__list); \
(__item)->next = (__list)->next; \
(__list)->next->prev = (__item); \
(__list)->next = (__item); \
} while(0)
#define DLLIST_MERGE(__listA, __listB, ty) \
do { \
ty prevB = (__listB)->prev; \
(__listA)->prev->next = (__listB); \
(__listB)->prev->next = (__listA); \
(__listB)->prev = (__listA)->prev; \
(__listA)->prev = prevB; \
} while(0)
#define DLLIST_EMPTY(__list) ((__list)->next == (__list))
#define DLLIST_FOR_EACH(list, it) \
for (DLList::Iterator (it) = (list)->iterator(); !(it).end(); (it).next())
class DLList
{
public:
class Item
{
public:
Item(void *priv) : next(this), prev(this), data(priv) { }
public:
Item *next;
Item *prev;
void *data;
};
DLList() : head(0) { }
~DLList() { clear(); }
inline void insertHead(void *data)
{
Item *item = new Item(data);
assert(data);
item->prev = &head;
item->next = head.next;
head.next->prev = item;
head.next = item;
}
inline void insertTail(void *data)
{
Item *item = new Item(data);
assert(data);
DLLIST_ADDTAIL(&head, item);
}
inline void insert(void *data) { insertTail(data); }
void clear();
class Iterator : public ManipIterator
{
public:
Iterator(Item *head, bool r) : rev(r), pos(r ? head->prev : head->next),
term(head) { }
virtual void next() { if (!end()) pos = rev ? pos->prev : pos->next; }
virtual void *get() const { return pos->data; }
virtual bool end() const { return pos == term; }
// caution: if you're at end-2 and erase it, then do next, you're at end
virtual void erase();
virtual bool insert(void *data);
// move item to a another list, no consistency with its iterators though
void moveToList(DLList&);
private:
const bool rev;
Item *pos;
Item *term;
friend class DLList;
};
inline void erase(Iterator& pos)
{
pos.erase();
}
Iterator iterator()
{
return Iterator(&head, false);
}
Iterator revIterator()
{
return Iterator(&head, true);
}
private:
Item head;
};
class Stack
{
public:
class Item {
public:
union {
void *p;
int i;
unsigned int u;
float f;
double d;
} u;
Item() { memset(&u, 0, sizeof(u)); }
};
Stack() : size(0), limit(0), array(0) { }
~Stack() { if (array) FREE(array); }
inline void push(int i) { Item data; data.u.i = i; push(data); }
inline void push(unsigned int u) { Item data; data.u.u = u; push(data); }
inline void push(void *p) { Item data; data.u.p = p; push(data); }
inline void push(float f) { Item data; data.u.f = f; push(data); }
inline void push(Item data)
{
if (size == limit)
resize();
array[size++] = data;
}
inline Item pop()
{
if (!size) {
Item data;
assert(0);
return data;
}
return array[--size];
}
inline unsigned int getSize() { return size; }
inline Item& peek() { assert(size); return array[size - 1]; }
void clear(bool releaseStorage = false)
{
if (releaseStorage && array)
FREE(array);
size = limit = 0;
}
void moveTo(Stack&); // move all items to target (not like push(pop()))
private:
void resize()
{
unsigned int sizeOld, sizeNew;
sizeOld = limit * sizeof(Item);
limit = MAX2(4, limit + limit);
sizeNew = limit * sizeof(Item);
array = (Item *)REALLOC(array, sizeOld, sizeNew);
}
unsigned int size;
unsigned int limit;
Item *array;
};
class DynArray
{
public:
class Item
{
public:
union {
uint32_t u32;
void *p;
};
};
DynArray() : data(NULL), size(0) { }
~DynArray() { if (data) FREE(data); }
inline Item& operator[](unsigned int i)
{
if (i >= size)
resize(i);
return data[i];
}
inline const Item operator[](unsigned int i) const
{
return data[i];
}
void resize(unsigned int index)
{
const unsigned int oldSize = size * sizeof(Item);
if (!size)
size = 8;
while (size <= index)
size <<= 1;
data = (Item *)REALLOC(data, oldSize, size * sizeof(Item));
}
void clear()
{
FREE(data);
data = NULL;
size = 0;
}
private:
Item *data;
unsigned int size;
};
class ArrayList
{
public:
ArrayList() : size(0) { }
void insert(void *item, int& id)
{
id = ids.getSize() ? ids.pop().u.i : size++;
data[id].p = item;
}
void remove(int& id)
{
const unsigned int uid = id;
assert(uid < size && data[id].p);
ids.push(uid);
data[uid].p = NULL;
id = -1;
}
inline int getSize() const { return size; }
inline void *get(unsigned int id) { assert(id < size); return data[id].p; }
class Iterator : public nv50_ir::Iterator
{
public:
Iterator(const ArrayList *array) : pos(0), data(array->data)
{
size = array->getSize();
if (size)
nextValid();
}
void nextValid() { while ((pos < size) && !data[pos].p) ++pos; }
void next() { if (pos < size) { ++pos; nextValid(); } }
void *get() const { assert(pos < size); return data[pos].p; }
bool end() const { return pos >= size; }
private:
unsigned int pos;
unsigned int size;
const DynArray& data;
friend class ArrayList;
};
Iterator iterator() const { return Iterator(this); }
void clear()
{
data.clear();
ids.clear(true);
size = 0;
}
private:
DynArray data;
Stack ids;
unsigned int size;
};
class Interval
{
public:
Interval() : head(0), tail(0) { }
Interval(const Interval&);
~Interval();
bool extend(int, int);
void insert(const Interval&);
void unify(Interval&); // clears source interval
void clear();
inline int begin() const { return head ? head->bgn : -1; }
inline int end() const { checkTail(); return tail ? tail->end : -1; }
inline bool isEmpty() const { return !head; }
bool overlaps(const Interval&) const;
bool contains(int pos) const;
inline int extent() const { return end() - begin(); }
int length() const;
void print() const;
inline void checkTail() const;
private:
class Range
{
public:
Range(int a, int b) : next(0), bgn(a), end(b) { }
Range *next;
int bgn;
int end;
void coalesce(Range **ptail)
{
Range *rnn;
while (next && end >= next->bgn) {
assert(bgn <= next->bgn);
rnn = next->next;
end = MAX2(end, next->end);
delete next;
next = rnn;
}
if (!next)
*ptail = this;
}
};
Range *head;
Range *tail;
};
class BitSet
{
public:
BitSet() : marker(false), data(0), size(0) { }
BitSet(unsigned int nBits, bool zero) : marker(false), data(0), size(0)
{
allocate(nBits, zero);
}
~BitSet()
{
if (data)
FREE(data);
}
bool allocate(unsigned int nBits, bool zero);
bool resize(unsigned int nBits); // keep old data, zero additional bits
inline unsigned int getSize() const { return size; }
void fill(uint32_t val);
void setOr(BitSet *, BitSet *); // second BitSet may be NULL
inline void set(unsigned int i)
{
assert(i < size);
data[i / 32] |= 1 << (i % 32);
}
// NOTE: range may not cross 32 bit boundary (implies n <= 32)
inline void setRange(unsigned int i, unsigned int n)
{
assert((i + n) <= size && (((i % 32) + n) <= 32));
data[i / 32] |= ((1 << n) - 1) << (i % 32);
}
inline void setMask(unsigned int i, uint32_t m)
{
assert(i < size);
data[i / 32] |= m;
}
inline void clr(unsigned int i)
{
assert(i < size);
data[i / 32] &= ~(1 << (i % 32));
}
// NOTE: range may not cross 32 bit boundary (implies n <= 32)
inline void clrRange(unsigned int i, unsigned int n)
{
assert((i + n) <= size && (((i % 32) + n) <= 32));
data[i / 32] &= ~(((1 << n) - 1) << (i % 32));
}
inline bool test(unsigned int i) const
{
assert(i < size);
return data[i / 32] & (1 << (i % 32));
}
// NOTE: range may not cross 32 bit boundary (implies n <= 32)
inline bool testRange(unsigned int i, unsigned int n)
{
assert((i + n) <= size && (((i % 32) + n) <= 32));
return data[i / 32] & (((1 << n) - 1) << (i % 32));
}
// Find a range of size (<= 32) clear bits aligned to roundup_pow2(size).
int findFreeRange(unsigned int size) const;
BitSet& operator|=(const BitSet&);
BitSet& operator=(const BitSet& set)
{
assert(data && set.data);
assert(size == set.size);
memcpy(data, set.data, (set.size + 7) / 8);
return *this;
}
void andNot(const BitSet&);
// bits = (bits | setMask) & ~clrMask
inline void periodicMask32(uint32_t setMask, uint32_t clrMask)
{
for (unsigned int i = 0; i < (size + 31) / 32; ++i)
data[i] = (data[i] | setMask) & ~clrMask;
}
unsigned int popCount() const;
void print() const;
public:
bool marker; // for user
private:
uint32_t *data;
unsigned int size;
};
void Interval::checkTail() const
{
#if NV50_DEBUG & NV50_DEBUG_PROG_RA
Range *r = head;
while (r->next)
r = r->next;
assert(tail == r);
#endif
}
class MemoryPool
{
private:
inline bool enlargeAllocationsArray(const unsigned int id, unsigned int nr)
{
const unsigned int size = sizeof(uint8_t *) * id;
const unsigned int incr = sizeof(uint8_t *) * nr;
uint8_t **alloc = (uint8_t **)REALLOC(allocArray, size, size + incr);
if (!alloc)
return false;
allocArray = alloc;
return true;
}
inline bool enlargeCapacity()
{
const unsigned int id = count >> objStepLog2;
uint8_t *const mem = (uint8_t *)MALLOC(objSize << objStepLog2);
if (!mem)
return false;
if (!(id % 32)) {
if (!enlargeAllocationsArray(id, 32)) {
FREE(mem);
return false;
}
}
allocArray[id] = mem;
return true;
}
public:
MemoryPool(unsigned int size, unsigned int incr) : objSize(size),
objStepLog2(incr)
{
allocArray = NULL;
released = NULL;
count = 0;
}
~MemoryPool()
{
unsigned int allocCount = (count + (1 << objStepLog2) - 1) >> objStepLog2;
for (unsigned int i = 0; i < allocCount && allocArray[i]; ++i)
FREE(allocArray[i]);
if (allocArray)
FREE(allocArray);
}
void *allocate()
{
void *ret;
const unsigned int mask = (1 << objStepLog2) - 1;
if (released) {
ret = released;
released = *(void **)released;
return ret;
}
if (!(count & mask))
if (!enlargeCapacity())
return NULL;
ret = allocArray[count >> objStepLog2] + (count & mask) * objSize;
++count;
return ret;
}
void release(void *ptr)
{
*(void **)ptr = released;
released = ptr;
}
private:
uint8_t **allocArray; // array (list) of MALLOC allocations
void *released; // list of released objects
unsigned int count; // highest allocated object
const unsigned int objSize;
const unsigned int objStepLog2;
};
/**
* Composite object cloning policy.
*
* Encapsulates how sub-objects are to be handled (if at all) when a
* composite object is being cloned.
*/
template<typename C>
class ClonePolicy
{
protected:
C *c;
public:
ClonePolicy(C *c) : c(c) {}
C *context() { return c; }
template<typename T> T *get(T *obj)
{
void *clone = lookup(obj);
if (!clone)
clone = obj->clone(*this);
return reinterpret_cast<T *>(clone);
}
template<typename T> void set(const T *obj, T *clone)
{
insert(obj, clone);
}
protected:
virtual void *lookup(void *obj) = 0;
virtual void insert(const void *obj, void *clone) = 0;
};
/**
* Shallow non-recursive cloning policy.
*
* Objects cloned with the "shallow" policy don't clone their
* children recursively, instead, the new copy shares its children
* with the original object.
*/
template<typename C>
class ShallowClonePolicy : public ClonePolicy<C>
{
public:
ShallowClonePolicy(C *c) : ClonePolicy<C>(c) {}
protected:
virtual void *lookup(void *obj)
{
return obj;
}
virtual void insert(const void *obj, void *clone)
{
}
};
template<typename C, typename T>
inline T *cloneShallow(C *c, T *obj)
{
ShallowClonePolicy<C> pol(c);
return obj->clone(pol);
}
/**
* Recursive cloning policy.
*
* Objects cloned with the "deep" policy clone their children
* recursively, keeping track of what has already been cloned to
* avoid making several new copies of the same object.
*/
template<typename C>
class DeepClonePolicy : public ClonePolicy<C>
{
public:
DeepClonePolicy(C *c) : ClonePolicy<C>(c) {}
private:
std::map<const void *, void *> map;
protected:
virtual void *lookup(void *obj)
{
return map[obj];
}
virtual void insert(const void *obj, void *clone)
{
map[obj] = clone;
}
};
template<typename S, typename T>
struct bimap
{
std::map<S, T> forth;
std::map<T, S> back;
public:
bimap() : l(back), r(forth) { }
bimap(const bimap<S, T> &m)
: forth(m.forth), back(m.back), l(back), r(forth) { }
void insert(const S &s, const T &t)
{
forth.insert(std::make_pair(s, t));
back.insert(std::make_pair(t, s));
}
typedef typename std::map<T, S>::const_iterator l_iterator;
const std::map<T, S> &l;
typedef typename std::map<S, T>::const_iterator r_iterator;
const std::map<S, T> &r;
};
} // namespace nv50_ir
#endif // __NV50_IR_UTIL_H__