// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/component_updater/component_unpacker.h"
#include <stdint.h>
#include <string>
#include <vector>
#include "base/bind.h"
#include "base/files/file_path.h"
#include "base/files/file_util.h"
#include "base/files/scoped_file.h"
#include "base/json/json_file_value_serializer.h"
#include "base/location.h"
#include "base/logging.h"
#include "base/numerics/safe_conversions.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/stringprintf.h"
#include "base/values.h"
#include "components/component_updater/component_patcher.h"
#include "components/component_updater/component_patcher_operation.h"
#include "components/component_updater/component_updater_service.h"
#include "components/crx_file/constants.h"
#include "components/crx_file/crx_file.h"
#include "crypto/secure_hash.h"
#include "crypto/signature_verifier.h"
#include "third_party/zlib/google/zip.h"
using crypto::SecureHash;
namespace component_updater {
namespace {
// This class makes sure that the CRX digital signature is valid
// and well formed.
class CRXValidator {
public:
explicit CRXValidator(FILE* crx_file) : valid_(false), is_delta_(false) {
crx_file::CrxFile::Header header;
size_t len = fread(&header, 1, sizeof(header), crx_file);
if (len < sizeof(header))
return;
crx_file::CrxFile::Error error;
scoped_ptr<crx_file::CrxFile> crx(
crx_file::CrxFile::Parse(header, &error));
if (!crx.get())
return;
is_delta_ = crx_file::CrxFile::HeaderIsDelta(header);
std::vector<uint8_t> key(header.key_size);
len = fread(&key[0], sizeof(uint8_t), header.key_size, crx_file);
if (len < header.key_size)
return;
std::vector<uint8_t> signature(header.signature_size);
len =
fread(&signature[0], sizeof(uint8_t), header.signature_size, crx_file);
if (len < header.signature_size)
return;
crypto::SignatureVerifier verifier;
if (!verifier.VerifyInit(crx_file::kSignatureAlgorithm,
base::checked_cast<int>(
sizeof(crx_file::kSignatureAlgorithm)),
&signature[0],
base::checked_cast<int>(signature.size()),
&key[0],
base::checked_cast<int>(key.size()))) {
// Signature verification initialization failed. This is most likely
// caused by a public key in the wrong format (should encode algorithm).
return;
}
const size_t kBufSize = 8 * 1024;
scoped_ptr<uint8_t[]> buf(new uint8_t[kBufSize]);
while ((len = fread(buf.get(), 1, kBufSize, crx_file)) > 0)
verifier.VerifyUpdate(buf.get(), base::checked_cast<int>(len));
if (!verifier.VerifyFinal())
return;
public_key_.swap(key);
valid_ = true;
}
bool valid() const { return valid_; }
bool is_delta() const { return is_delta_; }
const std::vector<uint8_t>& public_key() const { return public_key_; }
private:
bool valid_;
bool is_delta_;
std::vector<uint8_t> public_key_;
};
} // namespace
ComponentUnpacker::ComponentUnpacker(
const std::vector<uint8_t>& pk_hash,
const base::FilePath& path,
const std::string& fingerprint,
ComponentInstaller* installer,
scoped_refptr<OutOfProcessPatcher> out_of_process_patcher,
scoped_refptr<base::SequencedTaskRunner> task_runner)
: pk_hash_(pk_hash),
path_(path),
is_delta_(false),
fingerprint_(fingerprint),
installer_(installer),
out_of_process_patcher_(out_of_process_patcher),
error_(kNone),
extended_error_(0),
task_runner_(task_runner) {
}
// TODO(cpu): add a specific attribute check to a component json that the
// extension unpacker will reject, so that a component cannot be installed
// as an extension.
scoped_ptr<base::DictionaryValue> ReadManifest(
const base::FilePath& unpack_path) {
base::FilePath manifest =
unpack_path.Append(FILE_PATH_LITERAL("manifest.json"));
if (!base::PathExists(manifest))
return scoped_ptr<base::DictionaryValue>();
JSONFileValueSerializer serializer(manifest);
std::string error;
scoped_ptr<base::Value> root(serializer.Deserialize(NULL, &error));
if (!root.get())
return scoped_ptr<base::DictionaryValue>();
if (!root->IsType(base::Value::TYPE_DICTIONARY))
return scoped_ptr<base::DictionaryValue>();
return scoped_ptr<base::DictionaryValue>(
static_cast<base::DictionaryValue*>(root.release())).Pass();
}
bool ComponentUnpacker::UnpackInternal() {
return Verify() && Unzip() && BeginPatching();
}
void ComponentUnpacker::Unpack(const Callback& callback) {
callback_ = callback;
if (!UnpackInternal())
Finish();
}
bool ComponentUnpacker::Verify() {
VLOG(1) << "Verifying component: " << path_.value();
if (pk_hash_.empty() || path_.empty()) {
error_ = kInvalidParams;
return false;
}
// First, validate the CRX header and signature. As of today
// this is SHA1 with RSA 1024.
base::ScopedFILE file(base::OpenFile(path_, "rb"));
if (!file.get()) {
error_ = kInvalidFile;
return false;
}
CRXValidator validator(file.get());
file.reset();
if (!validator.valid()) {
error_ = kInvalidFile;
return false;
}
is_delta_ = validator.is_delta();
// File is valid and the digital signature matches. Now make sure
// the public key hash matches the expected hash. If they do we fully
// trust this CRX.
uint8_t hash[32] = {};
scoped_ptr<SecureHash> sha256(SecureHash::Create(SecureHash::SHA256));
sha256->Update(&(validator.public_key()[0]), validator.public_key().size());
sha256->Finish(hash, arraysize(hash));
if (!std::equal(pk_hash_.begin(), pk_hash_.end(), hash)) {
VLOG(1) << "Hash mismatch: " << path_.value();
error_ = kInvalidId;
return false;
}
VLOG(1) << "Verification successful: " << path_.value();
return true;
}
bool ComponentUnpacker::Unzip() {
base::FilePath& destination = is_delta_ ? unpack_diff_path_ : unpack_path_;
VLOG(1) << "Unpacking in: " << destination.value();
if (!base::CreateNewTempDirectory(base::FilePath::StringType(),
&destination)) {
VLOG(1) << "Unable to create temporary directory for unpacking.";
error_ = kUnzipPathError;
return false;
}
if (!zip::Unzip(path_, destination)) {
VLOG(1) << "Unzipping failed.";
error_ = kUnzipFailed;
return false;
}
VLOG(1) << "Unpacked successfully";
return true;
}
bool ComponentUnpacker::BeginPatching() {
if (is_delta_) { // Package is a diff package.
// Use a different temp directory for the patch output files.
if (!base::CreateNewTempDirectory(base::FilePath::StringType(),
&unpack_path_)) {
error_ = kUnzipPathError;
return false;
}
patcher_ = new ComponentPatcher(unpack_diff_path_,
unpack_path_,
installer_,
out_of_process_patcher_,
task_runner_);
task_runner_->PostTask(
FROM_HERE,
base::Bind(&ComponentPatcher::Start,
patcher_,
base::Bind(&ComponentUnpacker::EndPatching,
scoped_refptr<ComponentUnpacker>(this))));
} else {
task_runner_->PostTask(FROM_HERE,
base::Bind(&ComponentUnpacker::EndPatching,
scoped_refptr<ComponentUnpacker>(this),
kNone,
0));
}
return true;
}
void ComponentUnpacker::EndPatching(Error error, int extended_error) {
error_ = error;
extended_error_ = extended_error;
patcher_ = NULL;
if (error_ != kNone) {
Finish();
return;
}
// Optimization: clean up patch files early, in case disk space is too low to
// install otherwise.
if (!unpack_diff_path_.empty()) {
base::DeleteFile(unpack_diff_path_, true);
unpack_diff_path_.clear();
}
Install();
Finish();
}
void ComponentUnpacker::Install() {
// Write the fingerprint to disk.
if (static_cast<int>(fingerprint_.size()) !=
base::WriteFile(
unpack_path_.Append(FILE_PATH_LITERAL("manifest.fingerprint")),
fingerprint_.c_str(),
base::checked_cast<int>(fingerprint_.size()))) {
error_ = kFingerprintWriteFailed;
return;
}
scoped_ptr<base::DictionaryValue> manifest(ReadManifest(unpack_path_));
if (!manifest.get()) {
error_ = kBadManifest;
return;
}
DCHECK(error_ == kNone);
if (!installer_->Install(*manifest, unpack_path_)) {
error_ = kInstallerError;
return;
}
}
void ComponentUnpacker::Finish() {
if (!unpack_diff_path_.empty())
base::DeleteFile(unpack_diff_path_, true);
if (!unpack_path_.empty())
base::DeleteFile(unpack_path_, true);
callback_.Run(error_, extended_error_);
}
ComponentUnpacker::~ComponentUnpacker() {
}
} // namespace component_updater