// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_RANDOMSETTER_H
#define EIGEN_RANDOMSETTER_H
namespace Eigen {
/** Represents a std::map
*
* \see RandomSetter
*/
template<typename Scalar> struct StdMapTraits
{
typedef int KeyType;
typedef std::map<KeyType,Scalar> Type;
enum {
IsSorted = 1
};
static void setInvalidKey(Type&, const KeyType&) {}
};
#ifdef EIGEN_UNORDERED_MAP_SUPPORT
/** Represents a std::unordered_map
*
* To use it you need to both define EIGEN_UNORDERED_MAP_SUPPORT and include the unordered_map header file
* yourself making sure that unordered_map is defined in the std namespace.
*
* For instance, with current version of gcc you can either enable C++0x standard (-std=c++0x) or do:
* \code
* #include <tr1/unordered_map>
* #define EIGEN_UNORDERED_MAP_SUPPORT
* namespace std {
* using std::tr1::unordered_map;
* }
* \endcode
*
* \see RandomSetter
*/
template<typename Scalar> struct StdUnorderedMapTraits
{
typedef int KeyType;
typedef std::unordered_map<KeyType,Scalar> Type;
enum {
IsSorted = 0
};
static void setInvalidKey(Type&, const KeyType&) {}
};
#endif // EIGEN_UNORDERED_MAP_SUPPORT
#ifdef _DENSE_HASH_MAP_H_
/** Represents a google::dense_hash_map
*
* \see RandomSetter
*/
template<typename Scalar> struct GoogleDenseHashMapTraits
{
typedef int KeyType;
typedef google::dense_hash_map<KeyType,Scalar> Type;
enum {
IsSorted = 0
};
static void setInvalidKey(Type& map, const KeyType& k)
{ map.set_empty_key(k); }
};
#endif
#ifdef _SPARSE_HASH_MAP_H_
/** Represents a google::sparse_hash_map
*
* \see RandomSetter
*/
template<typename Scalar> struct GoogleSparseHashMapTraits
{
typedef int KeyType;
typedef google::sparse_hash_map<KeyType,Scalar> Type;
enum {
IsSorted = 0
};
static void setInvalidKey(Type&, const KeyType&) {}
};
#endif
/** \class RandomSetter
*
* \brief The RandomSetter is a wrapper object allowing to set/update a sparse matrix with random access
*
* \param SparseMatrixType the type of the sparse matrix we are updating
* \param MapTraits a traits class representing the map implementation used for the temporary sparse storage.
* Its default value depends on the system.
* \param OuterPacketBits defines the number of rows (or columns) manage by a single map object
* as a power of two exponent.
*
* This class temporarily represents a sparse matrix object using a generic map implementation allowing for
* efficient random access. The conversion from the compressed representation to a hash_map object is performed
* in the RandomSetter constructor, while the sparse matrix is updated back at destruction time. This strategy
* suggest the use of nested blocks as in this example:
*
* \code
* SparseMatrix<double> m(rows,cols);
* {
* RandomSetter<SparseMatrix<double> > w(m);
* // don't use m but w instead with read/write random access to the coefficients:
* for(;;)
* w(rand(),rand()) = rand;
* }
* // when w is deleted, the data are copied back to m
* // and m is ready to use.
* \endcode
*
* Since hash_map objects are not fully sorted, representing a full matrix as a single hash_map would
* involve a big and costly sort to update the compressed matrix back. To overcome this issue, a RandomSetter
* use multiple hash_map, each representing 2^OuterPacketBits columns or rows according to the storage order.
* To reach optimal performance, this value should be adjusted according to the average number of nonzeros
* per rows/columns.
*
* The possible values for the template parameter MapTraits are:
* - \b StdMapTraits: corresponds to std::map. (does not perform very well)
* - \b GnuHashMapTraits: corresponds to __gnu_cxx::hash_map (available only with GCC)
* - \b GoogleDenseHashMapTraits: corresponds to google::dense_hash_map (best efficiency, reasonable memory consumption)
* - \b GoogleSparseHashMapTraits: corresponds to google::sparse_hash_map (best memory consumption, relatively good performance)
*
* The default map implementation depends on the availability, and the preferred order is:
* GoogleSparseHashMapTraits, GnuHashMapTraits, and finally StdMapTraits.
*
* For performance and memory consumption reasons it is highly recommended to use one of
* the Google's hash_map implementation. To enable the support for them, you have two options:
* - \#include <google/dense_hash_map> yourself \b before Eigen/Sparse header
* - define EIGEN_GOOGLEHASH_SUPPORT
* In the later case the inclusion of <google/dense_hash_map> is made for you.
*
* \see http://code.google.com/p/google-sparsehash/
*/
template<typename SparseMatrixType,
template <typename T> class MapTraits =
#if defined _DENSE_HASH_MAP_H_
GoogleDenseHashMapTraits
#elif defined _HASH_MAP
GnuHashMapTraits
#else
StdMapTraits
#endif
,int OuterPacketBits = 6>
class RandomSetter
{
typedef typename SparseMatrixType::Scalar Scalar;
typedef typename SparseMatrixType::Index Index;
struct ScalarWrapper
{
ScalarWrapper() : value(0) {}
Scalar value;
};
typedef typename MapTraits<ScalarWrapper>::KeyType KeyType;
typedef typename MapTraits<ScalarWrapper>::Type HashMapType;
static const int OuterPacketMask = (1 << OuterPacketBits) - 1;
enum {
SwapStorage = 1 - MapTraits<ScalarWrapper>::IsSorted,
TargetRowMajor = (SparseMatrixType::Flags & RowMajorBit) ? 1 : 0,
SetterRowMajor = SwapStorage ? 1-TargetRowMajor : TargetRowMajor
};
public:
/** Constructs a random setter object from the sparse matrix \a target
*
* Note that the initial value of \a target are imported. If you want to re-set
* a sparse matrix from scratch, then you must set it to zero first using the
* setZero() function.
*/
inline RandomSetter(SparseMatrixType& target)
: mp_target(&target)
{
const Index outerSize = SwapStorage ? target.innerSize() : target.outerSize();
const Index innerSize = SwapStorage ? target.outerSize() : target.innerSize();
m_outerPackets = outerSize >> OuterPacketBits;
if (outerSize&OuterPacketMask)
m_outerPackets += 1;
m_hashmaps = new HashMapType[m_outerPackets];
// compute number of bits needed to store inner indices
Index aux = innerSize - 1;
m_keyBitsOffset = 0;
while (aux)
{
++m_keyBitsOffset;
aux = aux >> 1;
}
KeyType ik = (1<<(OuterPacketBits+m_keyBitsOffset));
for (Index k=0; k<m_outerPackets; ++k)
MapTraits<ScalarWrapper>::setInvalidKey(m_hashmaps[k],ik);
// insert current coeffs
for (Index j=0; j<mp_target->outerSize(); ++j)
for (typename SparseMatrixType::InnerIterator it(*mp_target,j); it; ++it)
(*this)(TargetRowMajor?j:it.index(), TargetRowMajor?it.index():j) = it.value();
}
/** Destructor updating back the sparse matrix target */
~RandomSetter()
{
KeyType keyBitsMask = (1<<m_keyBitsOffset)-1;
if (!SwapStorage) // also means the map is sorted
{
mp_target->setZero();
mp_target->makeCompressed();
mp_target->reserve(nonZeros());
Index prevOuter = -1;
for (Index k=0; k<m_outerPackets; ++k)
{
const Index outerOffset = (1<<OuterPacketBits) * k;
typename HashMapType::iterator end = m_hashmaps[k].end();
for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
{
const Index outer = (it->first >> m_keyBitsOffset) + outerOffset;
const Index inner = it->first & keyBitsMask;
if (prevOuter!=outer)
{
for (Index j=prevOuter+1;j<=outer;++j)
mp_target->startVec(j);
prevOuter = outer;
}
mp_target->insertBackByOuterInner(outer, inner) = it->second.value;
}
}
mp_target->finalize();
}
else
{
VectorXi positions(mp_target->outerSize());
positions.setZero();
// pass 1
for (Index k=0; k<m_outerPackets; ++k)
{
typename HashMapType::iterator end = m_hashmaps[k].end();
for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
{
const Index outer = it->first & keyBitsMask;
++positions[outer];
}
}
// prefix sum
Index count = 0;
for (Index j=0; j<mp_target->outerSize(); ++j)
{
Index tmp = positions[j];
mp_target->outerIndexPtr()[j] = count;
positions[j] = count;
count += tmp;
}
mp_target->makeCompressed();
mp_target->outerIndexPtr()[mp_target->outerSize()] = count;
mp_target->resizeNonZeros(count);
// pass 2
for (Index k=0; k<m_outerPackets; ++k)
{
const Index outerOffset = (1<<OuterPacketBits) * k;
typename HashMapType::iterator end = m_hashmaps[k].end();
for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
{
const Index inner = (it->first >> m_keyBitsOffset) + outerOffset;
const Index outer = it->first & keyBitsMask;
// sorted insertion
// Note that we have to deal with at most 2^OuterPacketBits unsorted coefficients,
// moreover those 2^OuterPacketBits coeffs are likely to be sparse, an so only a
// small fraction of them have to be sorted, whence the following simple procedure:
Index posStart = mp_target->outerIndexPtr()[outer];
Index i = (positions[outer]++) - 1;
while ( (i >= posStart) && (mp_target->innerIndexPtr()[i] > inner) )
{
mp_target->valuePtr()[i+1] = mp_target->valuePtr()[i];
mp_target->innerIndexPtr()[i+1] = mp_target->innerIndexPtr()[i];
--i;
}
mp_target->innerIndexPtr()[i+1] = inner;
mp_target->valuePtr()[i+1] = it->second.value;
}
}
}
delete[] m_hashmaps;
}
/** \returns a reference to the coefficient at given coordinates \a row, \a col */
Scalar& operator() (Index row, Index col)
{
const Index outer = SetterRowMajor ? row : col;
const Index inner = SetterRowMajor ? col : row;
const Index outerMajor = outer >> OuterPacketBits; // index of the packet/map
const Index outerMinor = outer & OuterPacketMask; // index of the inner vector in the packet
const KeyType key = (KeyType(outerMinor)<<m_keyBitsOffset) | inner;
return m_hashmaps[outerMajor][key].value;
}
/** \returns the number of non zero coefficients
*
* \note According to the underlying map/hash_map implementation,
* this function might be quite expensive.
*/
Index nonZeros() const
{
Index nz = 0;
for (Index k=0; k<m_outerPackets; ++k)
nz += static_cast<Index>(m_hashmaps[k].size());
return nz;
}
protected:
HashMapType* m_hashmaps;
SparseMatrixType* mp_target;
Index m_outerPackets;
unsigned char m_keyBitsOffset;
};
} // end namespace Eigen
#endif // EIGEN_RANDOMSETTER_H