#define JEMALLOC_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
/* Data. */
/* Runtime configuration options. */
const char *je_malloc_conf JEMALLOC_ATTR(weak);
bool opt_abort =
#ifdef JEMALLOC_DEBUG
true
#else
false
#endif
;
const char *opt_junk =
#if (defined(JEMALLOC_DEBUG) && defined(JEMALLOC_FILL))
"true"
#else
"false"
#endif
;
bool opt_junk_alloc =
#if (defined(JEMALLOC_DEBUG) && defined(JEMALLOC_FILL))
true
#else
false
#endif
;
bool opt_junk_free =
#if (defined(JEMALLOC_DEBUG) && defined(JEMALLOC_FILL))
true
#else
false
#endif
;
size_t opt_quarantine = ZU(0);
bool opt_redzone = false;
bool opt_utrace = false;
bool opt_xmalloc = false;
bool opt_zero = false;
size_t opt_narenas = 0;
/* Initialized to true if the process is running inside Valgrind. */
bool in_valgrind;
unsigned ncpus;
/* Protects arenas initialization (arenas, narenas_total). */
static malloc_mutex_t arenas_lock;
/*
* Arenas that are used to service external requests. Not all elements of the
* arenas array are necessarily used; arenas are created lazily as needed.
*
* arenas[0..narenas_auto) are used for automatic multiplexing of threads and
* arenas. arenas[narenas_auto..narenas_total) are only used if the application
* takes some action to create them and allocate from them.
*/
static arena_t **arenas;
static unsigned narenas_total;
static arena_t *a0; /* arenas[0]; read-only after initialization. */
static unsigned narenas_auto; /* Read-only after initialization. */
typedef enum {
malloc_init_uninitialized = 3,
malloc_init_a0_initialized = 2,
malloc_init_recursible = 1,
malloc_init_initialized = 0 /* Common case --> jnz. */
} malloc_init_t;
static malloc_init_t malloc_init_state = malloc_init_uninitialized;
JEMALLOC_ALIGNED(CACHELINE)
const size_t index2size_tab[NSIZES] = {
#define SC(index, lg_grp, lg_delta, ndelta, bin, lg_delta_lookup) \
((ZU(1)<<lg_grp) + (ZU(ndelta)<<lg_delta)),
SIZE_CLASSES
#undef SC
};
JEMALLOC_ALIGNED(CACHELINE)
const uint8_t size2index_tab[] = {
#if LG_TINY_MIN == 0
#warning "Dangerous LG_TINY_MIN"
#define S2B_0(i) i,
#elif LG_TINY_MIN == 1
#warning "Dangerous LG_TINY_MIN"
#define S2B_1(i) i,
#elif LG_TINY_MIN == 2
#warning "Dangerous LG_TINY_MIN"
#define S2B_2(i) i,
#elif LG_TINY_MIN == 3
#define S2B_3(i) i,
#elif LG_TINY_MIN == 4
#define S2B_4(i) i,
#elif LG_TINY_MIN == 5
#define S2B_5(i) i,
#elif LG_TINY_MIN == 6
#define S2B_6(i) i,
#elif LG_TINY_MIN == 7
#define S2B_7(i) i,
#elif LG_TINY_MIN == 8
#define S2B_8(i) i,
#elif LG_TINY_MIN == 9
#define S2B_9(i) i,
#elif LG_TINY_MIN == 10
#define S2B_10(i) i,
#elif LG_TINY_MIN == 11
#define S2B_11(i) i,
#else
#error "Unsupported LG_TINY_MIN"
#endif
#if LG_TINY_MIN < 1
#define S2B_1(i) S2B_0(i) S2B_0(i)
#endif
#if LG_TINY_MIN < 2
#define S2B_2(i) S2B_1(i) S2B_1(i)
#endif
#if LG_TINY_MIN < 3
#define S2B_3(i) S2B_2(i) S2B_2(i)
#endif
#if LG_TINY_MIN < 4
#define S2B_4(i) S2B_3(i) S2B_3(i)
#endif
#if LG_TINY_MIN < 5
#define S2B_5(i) S2B_4(i) S2B_4(i)
#endif
#if LG_TINY_MIN < 6
#define S2B_6(i) S2B_5(i) S2B_5(i)
#endif
#if LG_TINY_MIN < 7
#define S2B_7(i) S2B_6(i) S2B_6(i)
#endif
#if LG_TINY_MIN < 8
#define S2B_8(i) S2B_7(i) S2B_7(i)
#endif
#if LG_TINY_MIN < 9
#define S2B_9(i) S2B_8(i) S2B_8(i)
#endif
#if LG_TINY_MIN < 10
#define S2B_10(i) S2B_9(i) S2B_9(i)
#endif
#if LG_TINY_MIN < 11
#define S2B_11(i) S2B_10(i) S2B_10(i)
#endif
#define S2B_no(i)
#define SC(index, lg_grp, lg_delta, ndelta, bin, lg_delta_lookup) \
S2B_##lg_delta_lookup(index)
SIZE_CLASSES
#undef S2B_3
#undef S2B_4
#undef S2B_5
#undef S2B_6
#undef S2B_7
#undef S2B_8
#undef S2B_9
#undef S2B_10
#undef S2B_11
#undef S2B_no
#undef SC
};
#ifdef JEMALLOC_THREADED_INIT
/* Used to let the initializing thread recursively allocate. */
# define NO_INITIALIZER ((unsigned long)0)
# define INITIALIZER pthread_self()
# define IS_INITIALIZER (malloc_initializer == pthread_self())
static pthread_t malloc_initializer = NO_INITIALIZER;
#else
# define NO_INITIALIZER false
# define INITIALIZER true
# define IS_INITIALIZER malloc_initializer
static bool malloc_initializer = NO_INITIALIZER;
#endif
/* Used to avoid initialization races. */
#ifdef _WIN32
static malloc_mutex_t init_lock;
JEMALLOC_ATTR(constructor)
static void WINAPI
_init_init_lock(void)
{
malloc_mutex_init(&init_lock);
}
#ifdef _MSC_VER
# pragma section(".CRT$XCU", read)
JEMALLOC_SECTION(".CRT$XCU") JEMALLOC_ATTR(used)
static const void (WINAPI *init_init_lock)(void) = _init_init_lock;
#endif
#else
static malloc_mutex_t init_lock = MALLOC_MUTEX_INITIALIZER;
#endif
typedef struct {
void *p; /* Input pointer (as in realloc(p, s)). */
size_t s; /* Request size. */
void *r; /* Result pointer. */
} malloc_utrace_t;
#ifdef JEMALLOC_UTRACE
# define UTRACE(a, b, c) do { \
if (unlikely(opt_utrace)) { \
int utrace_serrno = errno; \
malloc_utrace_t ut; \
ut.p = (a); \
ut.s = (b); \
ut.r = (c); \
utrace(&ut, sizeof(ut)); \
errno = utrace_serrno; \
} \
} while (0)
#else
# define UTRACE(a, b, c)
#endif
/******************************************************************************/
/*
* Function prototypes for static functions that are referenced prior to
* definition.
*/
static bool malloc_init_hard_a0(void);
static bool malloc_init_hard(void);
/******************************************************************************/
/*
* Begin miscellaneous support functions.
*/
JEMALLOC_ALWAYS_INLINE_C bool
malloc_initialized(void)
{
return (malloc_init_state == malloc_init_initialized);
}
JEMALLOC_ALWAYS_INLINE_C void
malloc_thread_init(void)
{
/*
* TSD initialization can't be safely done as a side effect of
* deallocation, because it is possible for a thread to do nothing but
* deallocate its TLS data via free(), in which case writing to TLS
* would cause write-after-free memory corruption. The quarantine
* facility *only* gets used as a side effect of deallocation, so make
* a best effort attempt at initializing its TSD by hooking all
* allocation events.
*/
if (config_fill && unlikely(opt_quarantine))
quarantine_alloc_hook();
}
JEMALLOC_ALWAYS_INLINE_C bool
malloc_init_a0(void)
{
if (unlikely(malloc_init_state == malloc_init_uninitialized))
return (malloc_init_hard_a0());
return (false);
}
JEMALLOC_ALWAYS_INLINE_C bool
malloc_init(void)
{
if (unlikely(!malloc_initialized()) && malloc_init_hard())
return (true);
malloc_thread_init();
return (false);
}
/*
* The a0*() functions are used instead of i[mcd]alloc() in situations that
* cannot tolerate TLS variable access.
*/
arena_t *
a0get(void)
{
assert(a0 != NULL);
return (a0);
}
static void *
a0ialloc(size_t size, bool zero, bool is_metadata)
{
if (unlikely(malloc_init_a0()))
return (NULL);
return (iallocztm(NULL, size, zero, false, is_metadata, a0get()));
}
static void
a0idalloc(void *ptr, bool is_metadata)
{
idalloctm(NULL, ptr, false, is_metadata);
}
void *
a0malloc(size_t size)
{
return (a0ialloc(size, false, true));
}
void
a0dalloc(void *ptr)
{
a0idalloc(ptr, true);
}
/*
* FreeBSD's libc uses the bootstrap_*() functions in bootstrap-senstive
* situations that cannot tolerate TLS variable access (TLS allocation and very
* early internal data structure initialization).
*/
void *
bootstrap_malloc(size_t size)
{
if (unlikely(size == 0))
size = 1;
return (a0ialloc(size, false, false));
}
void *
bootstrap_calloc(size_t num, size_t size)
{
size_t num_size;
num_size = num * size;
if (unlikely(num_size == 0)) {
assert(num == 0 || size == 0);
num_size = 1;
}
return (a0ialloc(num_size, true, false));
}
void
bootstrap_free(void *ptr)
{
if (unlikely(ptr == NULL))
return;
a0idalloc(ptr, false);
}
/* Create a new arena and insert it into the arenas array at index ind. */
static arena_t *
arena_init_locked(unsigned ind)
{
arena_t *arena;
/* Expand arenas if necessary. */
assert(ind <= narenas_total);
if (ind > MALLOCX_ARENA_MAX)
return (NULL);
if (ind == narenas_total) {
unsigned narenas_new = narenas_total + 1;
arena_t **arenas_new =
(arena_t **)a0malloc(CACHELINE_CEILING(narenas_new *
sizeof(arena_t *)));
if (arenas_new == NULL)
return (NULL);
memcpy(arenas_new, arenas, narenas_total * sizeof(arena_t *));
arenas_new[ind] = NULL;
/*
* Deallocate only if arenas came from a0malloc() (not
* base_alloc()).
*/
if (narenas_total != narenas_auto)
a0dalloc(arenas);
arenas = arenas_new;
narenas_total = narenas_new;
}
/*
* Another thread may have already initialized arenas[ind] if it's an
* auto arena.
*/
arena = arenas[ind];
if (arena != NULL) {
assert(ind < narenas_auto);
return (arena);
}
/* Actually initialize the arena. */
arena = arenas[ind] = arena_new(ind);
return (arena);
}
arena_t *
arena_init(unsigned ind)
{
arena_t *arena;
malloc_mutex_lock(&arenas_lock);
arena = arena_init_locked(ind);
malloc_mutex_unlock(&arenas_lock);
return (arena);
}
unsigned
narenas_total_get(void)
{
unsigned narenas;
malloc_mutex_lock(&arenas_lock);
narenas = narenas_total;
malloc_mutex_unlock(&arenas_lock);
return (narenas);
}
static void
arena_bind_locked(tsd_t *tsd, unsigned ind)
{
arena_t *arena;
arena = arenas[ind];
arena->nthreads++;
if (tsd_nominal(tsd))
tsd_arena_set(tsd, arena);
}
static void
arena_bind(tsd_t *tsd, unsigned ind)
{
malloc_mutex_lock(&arenas_lock);
arena_bind_locked(tsd, ind);
malloc_mutex_unlock(&arenas_lock);
}
void
arena_migrate(tsd_t *tsd, unsigned oldind, unsigned newind)
{
arena_t *oldarena, *newarena;
malloc_mutex_lock(&arenas_lock);
oldarena = arenas[oldind];
newarena = arenas[newind];
oldarena->nthreads--;
newarena->nthreads++;
malloc_mutex_unlock(&arenas_lock);
tsd_arena_set(tsd, newarena);
}
unsigned
arena_nbound(unsigned ind)
{
unsigned nthreads;
malloc_mutex_lock(&arenas_lock);
nthreads = arenas[ind]->nthreads;
malloc_mutex_unlock(&arenas_lock);
return (nthreads);
}
static void
arena_unbind(tsd_t *tsd, unsigned ind)
{
arena_t *arena;
malloc_mutex_lock(&arenas_lock);
arena = arenas[ind];
arena->nthreads--;
malloc_mutex_unlock(&arenas_lock);
tsd_arena_set(tsd, NULL);
}
arena_t *
arena_get_hard(tsd_t *tsd, unsigned ind, bool init_if_missing)
{
arena_t *arena;
arena_t **arenas_cache = tsd_arenas_cache_get(tsd);
unsigned narenas_cache = tsd_narenas_cache_get(tsd);
unsigned narenas_actual = narenas_total_get();
/* Deallocate old cache if it's too small. */
if (arenas_cache != NULL && narenas_cache < narenas_actual) {
a0dalloc(arenas_cache);
arenas_cache = NULL;
narenas_cache = 0;
tsd_arenas_cache_set(tsd, arenas_cache);
tsd_narenas_cache_set(tsd, narenas_cache);
}
/* Allocate cache if it's missing. */
if (arenas_cache == NULL) {
bool *arenas_cache_bypassp = tsd_arenas_cache_bypassp_get(tsd);
assert(ind < narenas_actual || !init_if_missing);
narenas_cache = (ind < narenas_actual) ? narenas_actual : ind+1;
if (!*arenas_cache_bypassp) {
*arenas_cache_bypassp = true;
arenas_cache = (arena_t **)a0malloc(sizeof(arena_t *) *
narenas_cache);
*arenas_cache_bypassp = false;
} else
arenas_cache = NULL;
if (arenas_cache == NULL) {
/*
* This function must always tell the truth, even if
* it's slow, so don't let OOM or recursive allocation
* avoidance (note arenas_cache_bypass check) get in the
* way.
*/
if (ind >= narenas_actual)
return (NULL);
malloc_mutex_lock(&arenas_lock);
arena = arenas[ind];
malloc_mutex_unlock(&arenas_lock);
return (arena);
}
tsd_arenas_cache_set(tsd, arenas_cache);
tsd_narenas_cache_set(tsd, narenas_cache);
}
/*
* Copy to cache. It's possible that the actual number of arenas has
* increased since narenas_total_get() was called above, but that causes
* no correctness issues unless two threads concurrently execute the
* arenas.extend mallctl, which we trust mallctl synchronization to
* prevent.
*/
malloc_mutex_lock(&arenas_lock);
memcpy(arenas_cache, arenas, sizeof(arena_t *) * narenas_actual);
malloc_mutex_unlock(&arenas_lock);
if (narenas_cache > narenas_actual) {
memset(&arenas_cache[narenas_actual], 0, sizeof(arena_t *) *
(narenas_cache - narenas_actual));
}
/* Read the refreshed cache, and init the arena if necessary. */
arena = arenas_cache[ind];
if (init_if_missing && arena == NULL)
arena = arenas_cache[ind] = arena_init(ind);
return (arena);
}
/* Slow path, called only by arena_choose(). */
arena_t *
arena_choose_hard(tsd_t *tsd)
{
arena_t *ret;
if (narenas_auto > 1) {
unsigned i, choose, first_null;
choose = 0;
first_null = narenas_auto;
malloc_mutex_lock(&arenas_lock);
assert(a0get() != NULL);
for (i = 1; i < narenas_auto; i++) {
if (arenas[i] != NULL) {
/*
* Choose the first arena that has the lowest
* number of threads assigned to it.
*/
if (arenas[i]->nthreads <
arenas[choose]->nthreads)
choose = i;
} else if (first_null == narenas_auto) {
/*
* Record the index of the first uninitialized
* arena, in case all extant arenas are in use.
*
* NB: It is possible for there to be
* discontinuities in terms of initialized
* versus uninitialized arenas, due to the
* "thread.arena" mallctl.
*/
first_null = i;
}
}
if (arenas[choose]->nthreads == 0
|| first_null == narenas_auto) {
/*
* Use an unloaded arena, or the least loaded arena if
* all arenas are already initialized.
*/
ret = arenas[choose];
} else {
/* Initialize a new arena. */
choose = first_null;
ret = arena_init_locked(choose);
if (ret == NULL) {
malloc_mutex_unlock(&arenas_lock);
return (NULL);
}
}
arena_bind_locked(tsd, choose);
malloc_mutex_unlock(&arenas_lock);
} else {
ret = a0get();
arena_bind(tsd, 0);
}
return (ret);
}
void
thread_allocated_cleanup(tsd_t *tsd)
{
/* Do nothing. */
}
void
thread_deallocated_cleanup(tsd_t *tsd)
{
/* Do nothing. */
}
void
arena_cleanup(tsd_t *tsd)
{
arena_t *arena;
arena = tsd_arena_get(tsd);
if (arena != NULL)
arena_unbind(tsd, arena->ind);
}
void
arenas_cache_cleanup(tsd_t *tsd)
{
arena_t **arenas_cache;
arenas_cache = tsd_arenas_cache_get(tsd);
if (arenas_cache != NULL) {
/* ANDROID change */
/* Make sure that the arena cache cannot be reused. */
bool *arenas_cache_bypassp = tsd_arenas_cache_bypassp_get(tsd);
*arenas_cache_bypassp = true;
tsd_arenas_cache_set(tsd, NULL);
/* End ANDROID change */
a0dalloc(arenas_cache);
}
}
void
narenas_cache_cleanup(tsd_t *tsd)
{
/* Do nothing. */
}
void
arenas_cache_bypass_cleanup(tsd_t *tsd)
{
/* Do nothing. */
}
static void
stats_print_atexit(void)
{
if (config_tcache && config_stats) {
unsigned narenas, i;
/*
* Merge stats from extant threads. This is racy, since
* individual threads do not lock when recording tcache stats
* events. As a consequence, the final stats may be slightly
* out of date by the time they are reported, if other threads
* continue to allocate.
*/
for (i = 0, narenas = narenas_total_get(); i < narenas; i++) {
arena_t *arena = arenas[i];
if (arena != NULL) {
tcache_t *tcache;
/*
* tcache_stats_merge() locks bins, so if any
* code is introduced that acquires both arena
* and bin locks in the opposite order,
* deadlocks may result.
*/
malloc_mutex_lock(&arena->lock);
ql_foreach(tcache, &arena->tcache_ql, link) {
tcache_stats_merge(tcache, arena);
}
malloc_mutex_unlock(&arena->lock);
}
}
}
je_malloc_stats_print(NULL, NULL, NULL);
}
/*
* End miscellaneous support functions.
*/
/******************************************************************************/
/*
* Begin initialization functions.
*/
#ifndef JEMALLOC_HAVE_SECURE_GETENV
static char *
secure_getenv(const char *name)
{
# ifdef JEMALLOC_HAVE_ISSETUGID
if (issetugid() != 0)
return (NULL);
# endif
return (getenv(name));
}
#endif
static unsigned
malloc_ncpus(void)
{
long result;
#ifdef _WIN32
SYSTEM_INFO si;
GetSystemInfo(&si);
result = si.dwNumberOfProcessors;
#else
result = sysconf(_SC_NPROCESSORS_ONLN);
#endif
return ((result == -1) ? 1 : (unsigned)result);
}
static bool
malloc_conf_next(char const **opts_p, char const **k_p, size_t *klen_p,
char const **v_p, size_t *vlen_p)
{
bool accept;
const char *opts = *opts_p;
*k_p = opts;
for (accept = false; !accept;) {
switch (*opts) {
case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
case 'M': case 'N': case 'O': case 'P': case 'Q': case 'R':
case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
case 'Y': case 'Z':
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
case 'm': case 'n': case 'o': case 'p': case 'q': case 'r':
case 's': case 't': case 'u': case 'v': case 'w': case 'x':
case 'y': case 'z':
case '0': case '1': case '2': case '3': case '4': case '5':
case '6': case '7': case '8': case '9':
case '_':
opts++;
break;
case ':':
opts++;
*klen_p = (uintptr_t)opts - 1 - (uintptr_t)*k_p;
*v_p = opts;
accept = true;
break;
case '\0':
if (opts != *opts_p) {
malloc_write("<jemalloc>: Conf string ends "
"with key\n");
}
return (true);
default:
malloc_write("<jemalloc>: Malformed conf string\n");
return (true);
}
}
for (accept = false; !accept;) {
switch (*opts) {
case ',':
opts++;
/*
* Look ahead one character here, because the next time
* this function is called, it will assume that end of
* input has been cleanly reached if no input remains,
* but we have optimistically already consumed the
* comma if one exists.
*/
if (*opts == '\0') {
malloc_write("<jemalloc>: Conf string ends "
"with comma\n");
}
*vlen_p = (uintptr_t)opts - 1 - (uintptr_t)*v_p;
accept = true;
break;
case '\0':
*vlen_p = (uintptr_t)opts - (uintptr_t)*v_p;
accept = true;
break;
default:
opts++;
break;
}
}
*opts_p = opts;
return (false);
}
static void
malloc_conf_error(const char *msg, const char *k, size_t klen, const char *v,
size_t vlen)
{
malloc_printf("<jemalloc>: %s: %.*s:%.*s\n", msg, (int)klen, k,
(int)vlen, v);
}
static void
malloc_conf_init(void)
{
unsigned i;
char buf[PATH_MAX + 1];
const char *opts, *k, *v;
size_t klen, vlen;
/*
* Automatically configure valgrind before processing options. The
* valgrind option remains in jemalloc 3.x for compatibility reasons.
*/
if (config_valgrind) {
in_valgrind = (RUNNING_ON_VALGRIND != 0) ? true : false;
if (config_fill && unlikely(in_valgrind)) {
opt_junk = "false";
opt_junk_alloc = false;
opt_junk_free = false;
assert(!opt_zero);
opt_quarantine = JEMALLOC_VALGRIND_QUARANTINE_DEFAULT;
opt_redzone = true;
}
if (config_tcache && unlikely(in_valgrind))
opt_tcache = false;
}
#if defined(__ANDROID__)
/* Android only supports compiled options. */
for (i = 0; i < 1; i++) {
#else
for (i = 0; i < 3; i++) {
#endif
/* Get runtime configuration. */
switch (i) {
case 0:
if (je_malloc_conf != NULL) {
/*
* Use options that were compiled into the
* program.
*/
opts = je_malloc_conf;
} else {
/* No configuration specified. */
buf[0] = '\0';
opts = buf;
}
break;
case 1: {
int linklen = 0;
#ifndef _WIN32
int saved_errno = errno;
const char *linkname =
# ifdef JEMALLOC_PREFIX
"/etc/"JEMALLOC_PREFIX"malloc.conf"
# else
"/etc/malloc.conf"
# endif
;
/*
* Try to use the contents of the "/etc/malloc.conf"
* symbolic link's name.
*/
linklen = readlink(linkname, buf, sizeof(buf) - 1);
if (linklen == -1) {
/* No configuration specified. */
linklen = 0;
/* Restore errno. */
set_errno(saved_errno);
}
#endif
buf[linklen] = '\0';
opts = buf;
break;
} case 2: {
const char *envname =
#ifdef JEMALLOC_PREFIX
JEMALLOC_CPREFIX"MALLOC_CONF"
#else
"MALLOC_CONF"
#endif
;
if ((opts = secure_getenv(envname)) != NULL) {
/*
* Do nothing; opts is already initialized to
* the value of the MALLOC_CONF environment
* variable.
*/
} else {
/* No configuration specified. */
buf[0] = '\0';
opts = buf;
}
break;
} default:
not_reached();
buf[0] = '\0';
opts = buf;
}
while (*opts != '\0' && !malloc_conf_next(&opts, &k, &klen, &v,
&vlen)) {
#define CONF_MATCH(n) \
(sizeof(n)-1 == klen && strncmp(n, k, klen) == 0)
#define CONF_MATCH_VALUE(n) \
(sizeof(n)-1 == vlen && strncmp(n, v, vlen) == 0)
#define CONF_HANDLE_BOOL(o, n, cont) \
if (CONF_MATCH(n)) { \
if (CONF_MATCH_VALUE("true")) \
o = true; \
else if (CONF_MATCH_VALUE("false")) \
o = false; \
else { \
malloc_conf_error( \
"Invalid conf value", \
k, klen, v, vlen); \
} \
if (cont) \
continue; \
}
#define CONF_HANDLE_SIZE_T(o, n, min, max, clip) \
if (CONF_MATCH(n)) { \
uintmax_t um; \
char *end; \
\
set_errno(0); \
um = malloc_strtoumax(v, &end, 0); \
if (get_errno() != 0 || (uintptr_t)end -\
(uintptr_t)v != vlen) { \
malloc_conf_error( \
"Invalid conf value", \
k, klen, v, vlen); \
} else if (clip) { \
if ((min) != 0 && um < (min)) \
o = (min); \
else if (um > (max)) \
o = (max); \
else \
o = um; \
} else { \
if (((min) != 0 && um < (min)) \
|| um > (max)) { \
malloc_conf_error( \
"Out-of-range " \
"conf value", \
k, klen, v, vlen); \
} else \
o = um; \
} \
continue; \
}
#define CONF_HANDLE_SSIZE_T(o, n, min, max) \
if (CONF_MATCH(n)) { \
long l; \
char *end; \
\
set_errno(0); \
l = strtol(v, &end, 0); \
if (get_errno() != 0 || (uintptr_t)end -\
(uintptr_t)v != vlen) { \
malloc_conf_error( \
"Invalid conf value", \
k, klen, v, vlen); \
} else if (l < (ssize_t)(min) || l > \
(ssize_t)(max)) { \
malloc_conf_error( \
"Out-of-range conf value", \
k, klen, v, vlen); \
} else \
o = l; \
continue; \
}
#define CONF_HANDLE_CHAR_P(o, n, d) \
if (CONF_MATCH(n)) { \
size_t cpylen = (vlen <= \
sizeof(o)-1) ? vlen : \
sizeof(o)-1; \
strncpy(o, v, cpylen); \
o[cpylen] = '\0'; \
continue; \
}
CONF_HANDLE_BOOL(opt_abort, "abort", true)
/*
* Chunks always require at least one header page,
* as many as 2^(LG_SIZE_CLASS_GROUP+1) data pages, and
* possibly an additional page in the presence of
* redzones. In order to simplify options processing,
* use a conservative bound that accommodates all these
* constraints.
*/
CONF_HANDLE_SIZE_T(opt_lg_chunk, "lg_chunk", LG_PAGE +
LG_SIZE_CLASS_GROUP + (config_fill ? 2 : 1),
(sizeof(size_t) << 3) - 1, true)
if (strncmp("dss", k, klen) == 0) {
int i;
bool match = false;
for (i = 0; i < dss_prec_limit; i++) {
if (strncmp(dss_prec_names[i], v, vlen)
== 0) {
if (chunk_dss_prec_set(i)) {
malloc_conf_error(
"Error setting dss",
k, klen, v, vlen);
} else {
opt_dss =
dss_prec_names[i];
match = true;
break;
}
}
}
if (!match) {
malloc_conf_error("Invalid conf value",
k, klen, v, vlen);
}
continue;
}
CONF_HANDLE_SIZE_T(opt_narenas, "narenas", 1,
SIZE_T_MAX, false)
CONF_HANDLE_SSIZE_T(opt_lg_dirty_mult, "lg_dirty_mult",
-1, (sizeof(size_t) << 3) - 1)
CONF_HANDLE_BOOL(opt_stats_print, "stats_print", true)
if (config_fill) {
if (CONF_MATCH("junk")) {
if (CONF_MATCH_VALUE("true")) {
opt_junk = "true";
opt_junk_alloc = opt_junk_free =
true;
} else if (CONF_MATCH_VALUE("false")) {
opt_junk = "false";
opt_junk_alloc = opt_junk_free =
false;
} else if (CONF_MATCH_VALUE("alloc")) {
opt_junk = "alloc";
opt_junk_alloc = true;
opt_junk_free = false;
} else if (CONF_MATCH_VALUE("free")) {
opt_junk = "free";
opt_junk_alloc = false;
opt_junk_free = true;
} else {
malloc_conf_error(
"Invalid conf value", k,
klen, v, vlen);
}
continue;
}
CONF_HANDLE_SIZE_T(opt_quarantine, "quarantine",
0, SIZE_T_MAX, false)
CONF_HANDLE_BOOL(opt_redzone, "redzone", true)
CONF_HANDLE_BOOL(opt_zero, "zero", true)
}
if (config_utrace) {
CONF_HANDLE_BOOL(opt_utrace, "utrace", true)
}
if (config_xmalloc) {
CONF_HANDLE_BOOL(opt_xmalloc, "xmalloc", true)
}
if (config_tcache) {
CONF_HANDLE_BOOL(opt_tcache, "tcache",
!config_valgrind || !in_valgrind)
if (CONF_MATCH("tcache")) {
assert(config_valgrind && in_valgrind);
if (opt_tcache) {
opt_tcache = false;
malloc_conf_error(
"tcache cannot be enabled "
"while running inside Valgrind",
k, klen, v, vlen);
}
continue;
}
CONF_HANDLE_SSIZE_T(opt_lg_tcache_max,
"lg_tcache_max", -1,
(sizeof(size_t) << 3) - 1)
}
if (config_prof) {
CONF_HANDLE_BOOL(opt_prof, "prof", true)
CONF_HANDLE_CHAR_P(opt_prof_prefix,
"prof_prefix", "jeprof")
CONF_HANDLE_BOOL(opt_prof_active, "prof_active",
true)
CONF_HANDLE_BOOL(opt_prof_thread_active_init,
"prof_thread_active_init", true)
CONF_HANDLE_SIZE_T(opt_lg_prof_sample,
"lg_prof_sample", 0,
(sizeof(uint64_t) << 3) - 1, true)
CONF_HANDLE_BOOL(opt_prof_accum, "prof_accum",
true)
CONF_HANDLE_SSIZE_T(opt_lg_prof_interval,
"lg_prof_interval", -1,
(sizeof(uint64_t) << 3) - 1)
CONF_HANDLE_BOOL(opt_prof_gdump, "prof_gdump",
true)
CONF_HANDLE_BOOL(opt_prof_final, "prof_final",
true)
CONF_HANDLE_BOOL(opt_prof_leak, "prof_leak",
true)
}
malloc_conf_error("Invalid conf pair", k, klen, v,
vlen);
#undef CONF_MATCH
#undef CONF_HANDLE_BOOL
#undef CONF_HANDLE_SIZE_T
#undef CONF_HANDLE_SSIZE_T
#undef CONF_HANDLE_CHAR_P
}
}
}
/* init_lock must be held. */
static bool
malloc_init_hard_needed(void)
{
if (malloc_initialized() || (IS_INITIALIZER && malloc_init_state ==
malloc_init_recursible)) {
/*
* Another thread initialized the allocator before this one
* acquired init_lock, or this thread is the initializing
* thread, and it is recursively allocating.
*/
return (false);
}
#ifdef JEMALLOC_THREADED_INIT
if (malloc_initializer != NO_INITIALIZER && !IS_INITIALIZER) {
/* Busy-wait until the initializing thread completes. */
do {
malloc_mutex_unlock(&init_lock);
CPU_SPINWAIT;
malloc_mutex_lock(&init_lock);
} while (!malloc_initialized());
return (false);
}
#endif
return (true);
}
/* init_lock must be held. */
static bool
malloc_init_hard_a0_locked(void)
{
malloc_initializer = INITIALIZER;
if (config_prof)
prof_boot0();
malloc_conf_init();
if (opt_stats_print) {
/* Print statistics at exit. */
if (atexit(stats_print_atexit) != 0) {
malloc_write("<jemalloc>: Error in atexit()\n");
if (opt_abort)
abort();
}
}
if (base_boot())
return (true);
if (chunk_boot())
return (true);
if (ctl_boot())
return (true);
if (config_prof)
prof_boot1();
if (arena_boot())
return (true);
if (config_tcache && tcache_boot())
return (true);
if (malloc_mutex_init(&arenas_lock))
return (true);
/*
* Create enough scaffolding to allow recursive allocation in
* malloc_ncpus().
*/
narenas_total = narenas_auto = 1;
arenas = &a0;
memset(arenas, 0, sizeof(arena_t *) * narenas_auto);
/*
* Initialize one arena here. The rest are lazily created in
* arena_choose_hard().
*/
if (arena_init(0) == NULL)
return (true);
malloc_init_state = malloc_init_a0_initialized;
return (false);
}
static bool
malloc_init_hard_a0(void)
{
bool ret;
malloc_mutex_lock(&init_lock);
ret = malloc_init_hard_a0_locked();
malloc_mutex_unlock(&init_lock);
return (ret);
}
/*
* Initialize data structures which may trigger recursive allocation.
*
* init_lock must be held.
*/
static void
malloc_init_hard_recursible(void)
{
malloc_init_state = malloc_init_recursible;
malloc_mutex_unlock(&init_lock);
ncpus = malloc_ncpus();
#if (!defined(JEMALLOC_MUTEX_INIT_CB) && !defined(JEMALLOC_ZONE) \
&& !defined(_WIN32) && !defined(__native_client__))
/* LinuxThreads's pthread_atfork() allocates. */
if (pthread_atfork(jemalloc_prefork, jemalloc_postfork_parent,
jemalloc_postfork_child) != 0) {
malloc_write("<jemalloc>: Error in pthread_atfork()\n");
if (opt_abort)
abort();
}
#endif
malloc_mutex_lock(&init_lock);
}
/* init_lock must be held. */
static bool
malloc_init_hard_finish(void)
{
if (mutex_boot())
return (true);
if (opt_narenas == 0) {
/*
* For SMP systems, create more than one arena per CPU by
* default.
*/
if (ncpus > 1)
opt_narenas = ncpus << 2;
else
opt_narenas = 1;
}
#if defined(ANDROID_MAX_ARENAS)
/* Never create more than MAX_ARENAS arenas regardless of num_cpus.
* Extra arenas use more PSS and are not very useful unless
* lots of threads are allocing/freeing at the same time.
*/
if (opt_narenas > ANDROID_MAX_ARENAS)
opt_narenas = ANDROID_MAX_ARENAS;
#endif
narenas_auto = opt_narenas;
/*
* Make sure that the arenas array can be allocated. In practice, this
* limit is enough to allow the allocator to function, but the ctl
* machinery will fail to allocate memory at far lower limits.
*/
if (narenas_auto > chunksize / sizeof(arena_t *)) {
narenas_auto = chunksize / sizeof(arena_t *);
malloc_printf("<jemalloc>: Reducing narenas to limit (%d)\n",
narenas_auto);
}
narenas_total = narenas_auto;
/* Allocate and initialize arenas. */
arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas_total);
if (arenas == NULL)
return (true);
/*
* Zero the array. In practice, this should always be pre-zeroed,
* since it was just mmap()ed, but let's be sure.
*/
memset(arenas, 0, sizeof(arena_t *) * narenas_total);
/* Copy the pointer to the one arena that was already initialized. */
arenas[0] = a0;
malloc_init_state = malloc_init_initialized;
return (false);
}
static bool
malloc_init_hard(void)
{
malloc_mutex_lock(&init_lock);
if (!malloc_init_hard_needed()) {
malloc_mutex_unlock(&init_lock);
return (false);
}
if (malloc_init_state != malloc_init_a0_initialized &&
malloc_init_hard_a0_locked()) {
malloc_mutex_unlock(&init_lock);
return (true);
}
if (malloc_tsd_boot0()) {
malloc_mutex_unlock(&init_lock);
return (true);
}
if (config_prof && prof_boot2()) {
malloc_mutex_unlock(&init_lock);
return (true);
}
malloc_init_hard_recursible();
if (malloc_init_hard_finish()) {
malloc_mutex_unlock(&init_lock);
return (true);
}
malloc_mutex_unlock(&init_lock);
malloc_tsd_boot1();
return (false);
}
/*
* End initialization functions.
*/
/******************************************************************************/
/*
* Begin malloc(3)-compatible functions.
*/
static void *
imalloc_prof_sample(tsd_t *tsd, size_t usize, prof_tctx_t *tctx)
{
void *p;
if (tctx == NULL)
return (NULL);
if (usize <= SMALL_MAXCLASS) {
p = imalloc(tsd, LARGE_MINCLASS);
if (p == NULL)
return (NULL);
arena_prof_promoted(p, usize);
} else
p = imalloc(tsd, usize);
return (p);
}
JEMALLOC_ALWAYS_INLINE_C void *
imalloc_prof(tsd_t *tsd, size_t usize)
{
void *p;
prof_tctx_t *tctx;
tctx = prof_alloc_prep(tsd, usize, true);
if (unlikely((uintptr_t)tctx != (uintptr_t)1U))
p = imalloc_prof_sample(tsd, usize, tctx);
else
p = imalloc(tsd, usize);
if (unlikely(p == NULL)) {
prof_alloc_rollback(tsd, tctx, true);
return (NULL);
}
prof_malloc(p, usize, tctx);
return (p);
}
JEMALLOC_ALWAYS_INLINE_C void *
imalloc_body(size_t size, tsd_t **tsd, size_t *usize)
{
if (unlikely(malloc_init()))
return (NULL);
*tsd = tsd_fetch();
if (config_prof && opt_prof) {
*usize = s2u(size);
return (imalloc_prof(*tsd, *usize));
}
if (config_stats || (config_valgrind && unlikely(in_valgrind)))
*usize = s2u(size);
return (imalloc(*tsd, size));
}
void *
je_malloc(size_t size)
{
void *ret;
tsd_t *tsd;
size_t usize JEMALLOC_CC_SILENCE_INIT(0);
if (size == 0)
size = 1;
ret = imalloc_body(size, &tsd, &usize);
if (unlikely(ret == NULL)) {
if (config_xmalloc && unlikely(opt_xmalloc)) {
malloc_write("<jemalloc>: Error in malloc(): "
"out of memory\n");
abort();
}
set_errno(ENOMEM);
}
if (config_stats && likely(ret != NULL)) {
assert(usize == isalloc(ret, config_prof));
*tsd_thread_allocatedp_get(tsd) += usize;
}
UTRACE(0, size, ret);
JEMALLOC_VALGRIND_MALLOC(ret != NULL, ret, usize, false);
return (ret);
}
static void *
imemalign_prof_sample(tsd_t *tsd, size_t alignment, size_t usize,
prof_tctx_t *tctx)
{
void *p;
if (tctx == NULL)
return (NULL);
if (usize <= SMALL_MAXCLASS) {
assert(sa2u(LARGE_MINCLASS, alignment) == LARGE_MINCLASS);
p = imalloc(tsd, LARGE_MINCLASS);
if (p == NULL)
return (NULL);
arena_prof_promoted(p, usize);
} else
p = ipalloc(tsd, usize, alignment, false);
return (p);
}
JEMALLOC_ALWAYS_INLINE_C void *
imemalign_prof(tsd_t *tsd, size_t alignment, size_t usize)
{
void *p;
prof_tctx_t *tctx;
tctx = prof_alloc_prep(tsd, usize, true);
if (unlikely((uintptr_t)tctx != (uintptr_t)1U))
p = imemalign_prof_sample(tsd, alignment, usize, tctx);
else
p = ipalloc(tsd, usize, alignment, false);
if (unlikely(p == NULL)) {
prof_alloc_rollback(tsd, tctx, true);
return (NULL);
}
prof_malloc(p, usize, tctx);
return (p);
}
JEMALLOC_ATTR(nonnull(1))
static int
imemalign(void **memptr, size_t alignment, size_t size, size_t min_alignment)
{
int ret;
tsd_t *tsd;
size_t usize;
void *result;
assert(min_alignment != 0);
if (unlikely(malloc_init())) {
result = NULL;
goto label_oom;
} else {
tsd = tsd_fetch();
if (size == 0)
size = 1;
/* Make sure that alignment is a large enough power of 2. */
if (unlikely(((alignment - 1) & alignment) != 0
|| (alignment < min_alignment))) {
if (config_xmalloc && unlikely(opt_xmalloc)) {
malloc_write("<jemalloc>: Error allocating "
"aligned memory: invalid alignment\n");
abort();
}
result = NULL;
ret = EINVAL;
goto label_return;
}
usize = sa2u(size, alignment);
if (unlikely(usize == 0)) {
result = NULL;
goto label_oom;
}
if (config_prof && opt_prof)
result = imemalign_prof(tsd, alignment, usize);
else
result = ipalloc(tsd, usize, alignment, false);
if (unlikely(result == NULL))
goto label_oom;
}
*memptr = result;
ret = 0;
label_return:
if (config_stats && likely(result != NULL)) {
assert(usize == isalloc(result, config_prof));
*tsd_thread_allocatedp_get(tsd) += usize;
}
UTRACE(0, size, result);
return (ret);
label_oom:
assert(result == NULL);
if (config_xmalloc && unlikely(opt_xmalloc)) {
malloc_write("<jemalloc>: Error allocating aligned memory: "
"out of memory\n");
abort();
}
ret = ENOMEM;
goto label_return;
}
int
je_posix_memalign(void **memptr, size_t alignment, size_t size)
{
int ret = imemalign(memptr, alignment, size, sizeof(void *));
JEMALLOC_VALGRIND_MALLOC(ret == 0, *memptr, isalloc(*memptr,
config_prof), false);
return (ret);
}
void *
je_aligned_alloc(size_t alignment, size_t size)
{
void *ret;
int err;
if (unlikely((err = imemalign(&ret, alignment, size, 1)) != 0)) {
ret = NULL;
set_errno(err);
}
JEMALLOC_VALGRIND_MALLOC(err == 0, ret, isalloc(ret, config_prof),
false);
return (ret);
}
static void *
icalloc_prof_sample(tsd_t *tsd, size_t usize, prof_tctx_t *tctx)
{
void *p;
if (tctx == NULL)
return (NULL);
if (usize <= SMALL_MAXCLASS) {
p = icalloc(tsd, LARGE_MINCLASS);
if (p == NULL)
return (NULL);
arena_prof_promoted(p, usize);
} else
p = icalloc(tsd, usize);
return (p);
}
JEMALLOC_ALWAYS_INLINE_C void *
icalloc_prof(tsd_t *tsd, size_t usize)
{
void *p;
prof_tctx_t *tctx;
tctx = prof_alloc_prep(tsd, usize, true);
if (unlikely((uintptr_t)tctx != (uintptr_t)1U))
p = icalloc_prof_sample(tsd, usize, tctx);
else
p = icalloc(tsd, usize);
if (unlikely(p == NULL)) {
prof_alloc_rollback(tsd, tctx, true);
return (NULL);
}
prof_malloc(p, usize, tctx);
return (p);
}
void *
je_calloc(size_t num, size_t size)
{
void *ret;
tsd_t *tsd;
size_t num_size;
size_t usize JEMALLOC_CC_SILENCE_INIT(0);
if (unlikely(malloc_init())) {
num_size = 0;
ret = NULL;
goto label_return;
}
tsd = tsd_fetch();
num_size = num * size;
if (unlikely(num_size == 0)) {
if (num == 0 || size == 0)
num_size = 1;
else {
ret = NULL;
goto label_return;
}
/*
* Try to avoid division here. We know that it isn't possible to
* overflow during multiplication if neither operand uses any of the
* most significant half of the bits in a size_t.
*/
} else if (unlikely(((num | size) & (SIZE_T_MAX << (sizeof(size_t) <<
2))) && (num_size / size != num))) {
/* size_t overflow. */
ret = NULL;
goto label_return;
}
if (config_prof && opt_prof) {
usize = s2u(num_size);
ret = icalloc_prof(tsd, usize);
} else {
if (config_stats || (config_valgrind && unlikely(in_valgrind)))
usize = s2u(num_size);
ret = icalloc(tsd, num_size);
}
label_return:
if (unlikely(ret == NULL)) {
if (config_xmalloc && unlikely(opt_xmalloc)) {
malloc_write("<jemalloc>: Error in calloc(): out of "
"memory\n");
abort();
}
set_errno(ENOMEM);
}
if (config_stats && likely(ret != NULL)) {
assert(usize == isalloc(ret, config_prof));
*tsd_thread_allocatedp_get(tsd) += usize;
}
UTRACE(0, num_size, ret);
JEMALLOC_VALGRIND_MALLOC(ret != NULL, ret, usize, true);
return (ret);
}
static void *
irealloc_prof_sample(tsd_t *tsd, void *oldptr, size_t old_usize, size_t usize,
prof_tctx_t *tctx)
{
void *p;
if (tctx == NULL)
return (NULL);
if (usize <= SMALL_MAXCLASS) {
p = iralloc(tsd, oldptr, old_usize, LARGE_MINCLASS, 0, false);
if (p == NULL)
return (NULL);
arena_prof_promoted(p, usize);
} else
p = iralloc(tsd, oldptr, old_usize, usize, 0, false);
return (p);
}
JEMALLOC_ALWAYS_INLINE_C void *
irealloc_prof(tsd_t *tsd, void *oldptr, size_t old_usize, size_t usize)
{
void *p;
prof_tctx_t *old_tctx, *tctx;
old_tctx = prof_tctx_get(oldptr);
tctx = prof_alloc_prep(tsd, usize, true);
if (unlikely((uintptr_t)tctx != (uintptr_t)1U))
p = irealloc_prof_sample(tsd, oldptr, old_usize, usize, tctx);
else
p = iralloc(tsd, oldptr, old_usize, usize, 0, false);
if (p == NULL)
return (NULL);
prof_realloc(tsd, p, usize, tctx, true, old_usize, old_tctx);
return (p);
}
JEMALLOC_INLINE_C void
ifree(tsd_t *tsd, void *ptr, tcache_t *tcache)
{
size_t usize;
UNUSED size_t rzsize JEMALLOC_CC_SILENCE_INIT(0);
assert(ptr != NULL);
assert(malloc_initialized() || IS_INITIALIZER);
if (config_prof && opt_prof) {
usize = isalloc(ptr, config_prof);
prof_free(tsd, ptr, usize);
} else if (config_stats || config_valgrind)
usize = isalloc(ptr, config_prof);
if (config_stats)
*tsd_thread_deallocatedp_get(tsd) += usize;
if (config_valgrind && unlikely(in_valgrind))
rzsize = p2rz(ptr);
iqalloc(tsd, ptr, tcache);
JEMALLOC_VALGRIND_FREE(ptr, rzsize);
}
JEMALLOC_INLINE_C void
isfree(tsd_t *tsd, void *ptr, size_t usize, tcache_t *tcache)
{
UNUSED size_t rzsize JEMALLOC_CC_SILENCE_INIT(0);
assert(ptr != NULL);
assert(malloc_initialized() || IS_INITIALIZER);
if (config_prof && opt_prof)
prof_free(tsd, ptr, usize);
if (config_stats)
*tsd_thread_deallocatedp_get(tsd) += usize;
if (config_valgrind && unlikely(in_valgrind))
rzsize = p2rz(ptr);
isqalloc(tsd, ptr, usize, tcache);
JEMALLOC_VALGRIND_FREE(ptr, rzsize);
}
void *
je_realloc(void *ptr, size_t size)
{
void *ret;
tsd_t *tsd JEMALLOC_CC_SILENCE_INIT(NULL);
size_t usize JEMALLOC_CC_SILENCE_INIT(0);
size_t old_usize = 0;
UNUSED size_t old_rzsize JEMALLOC_CC_SILENCE_INIT(0);
if (unlikely(size == 0)) {
if (ptr != NULL) {
/* realloc(ptr, 0) is equivalent to free(ptr). */
UTRACE(ptr, 0, 0);
tsd = tsd_fetch();
ifree(tsd, ptr, tcache_get(tsd, false));
return (NULL);
}
size = 1;
}
if (likely(ptr != NULL)) {
assert(malloc_initialized() || IS_INITIALIZER);
malloc_thread_init();
tsd = tsd_fetch();
old_usize = isalloc(ptr, config_prof);
if (config_valgrind && unlikely(in_valgrind))
old_rzsize = config_prof ? p2rz(ptr) : u2rz(old_usize);
if (config_prof && opt_prof) {
usize = s2u(size);
ret = irealloc_prof(tsd, ptr, old_usize, usize);
} else {
if (config_stats || (config_valgrind &&
unlikely(in_valgrind)))
usize = s2u(size);
ret = iralloc(tsd, ptr, old_usize, size, 0, false);
}
} else {
/* realloc(NULL, size) is equivalent to malloc(size). */
ret = imalloc_body(size, &tsd, &usize);
}
if (unlikely(ret == NULL)) {
if (config_xmalloc && unlikely(opt_xmalloc)) {
malloc_write("<jemalloc>: Error in realloc(): "
"out of memory\n");
abort();
}
set_errno(ENOMEM);
}
if (config_stats && likely(ret != NULL)) {
assert(usize == isalloc(ret, config_prof));
*tsd_thread_allocatedp_get(tsd) += usize;
*tsd_thread_deallocatedp_get(tsd) += old_usize;
}
UTRACE(ptr, size, ret);
JEMALLOC_VALGRIND_REALLOC(true, ret, usize, true, ptr, old_usize,
old_rzsize, true, false);
return (ret);
}
void
je_free(void *ptr)
{
UTRACE(ptr, 0, 0);
if (likely(ptr != NULL)) {
tsd_t *tsd = tsd_fetch();
ifree(tsd, ptr, tcache_get(tsd, false));
}
}
/*
* End malloc(3)-compatible functions.
*/
/******************************************************************************/
/*
* Begin non-standard override functions.
*/
#ifdef JEMALLOC_OVERRIDE_MEMALIGN
void *
je_memalign(size_t alignment, size_t size)
{
void *ret JEMALLOC_CC_SILENCE_INIT(NULL);
if (unlikely(imemalign(&ret, alignment, size, 1) != 0))
ret = NULL;
JEMALLOC_VALGRIND_MALLOC(ret != NULL, ret, size, false);
return (ret);
}
#endif
#ifdef JEMALLOC_OVERRIDE_VALLOC
void *
je_valloc(size_t size)
{
void *ret JEMALLOC_CC_SILENCE_INIT(NULL);
if (unlikely(imemalign(&ret, PAGE, size, 1) != 0))
ret = NULL;
JEMALLOC_VALGRIND_MALLOC(ret != NULL, ret, size, false);
return (ret);
}
#endif
/*
* is_malloc(je_malloc) is some macro magic to detect if jemalloc_defs.h has
* #define je_malloc malloc
*/
#define malloc_is_malloc 1
#define is_malloc_(a) malloc_is_ ## a
#define is_malloc(a) is_malloc_(a)
#if ((is_malloc(je_malloc) == 1) && defined(JEMALLOC_GLIBC_MALLOC_HOOK))
/*
* glibc provides the RTLD_DEEPBIND flag for dlopen which can make it possible
* to inconsistently reference libc's malloc(3)-compatible functions
* (https://bugzilla.mozilla.org/show_bug.cgi?id=493541).
*
* These definitions interpose hooks in glibc. The functions are actually
* passed an extra argument for the caller return address, which will be
* ignored.
*/
JEMALLOC_EXPORT void (*__free_hook)(void *ptr) = je_free;
JEMALLOC_EXPORT void *(*__malloc_hook)(size_t size) = je_malloc;
JEMALLOC_EXPORT void *(*__realloc_hook)(void *ptr, size_t size) = je_realloc;
# ifdef JEMALLOC_GLIBC_MEMALIGN_HOOK
JEMALLOC_EXPORT void *(*__memalign_hook)(size_t alignment, size_t size) =
je_memalign;
# endif
#endif
/*
* End non-standard override functions.
*/
/******************************************************************************/
/*
* Begin non-standard functions.
*/
JEMALLOC_ALWAYS_INLINE_C bool
imallocx_flags_decode_hard(tsd_t *tsd, size_t size, int flags, size_t *usize,
size_t *alignment, bool *zero, tcache_t **tcache, arena_t **arena)
{
if ((flags & MALLOCX_LG_ALIGN_MASK) == 0) {
*alignment = 0;
*usize = s2u(size);
} else {
*alignment = MALLOCX_ALIGN_GET_SPECIFIED(flags);
*usize = sa2u(size, *alignment);
}
*zero = MALLOCX_ZERO_GET(flags);
if ((flags & MALLOCX_TCACHE_MASK) != 0) {
if ((flags & MALLOCX_TCACHE_MASK) == MALLOCX_TCACHE_NONE)
*tcache = NULL;
else
*tcache = tcaches_get(tsd, MALLOCX_TCACHE_GET(flags));
} else
*tcache = tcache_get(tsd, true);
if ((flags & MALLOCX_ARENA_MASK) != 0) {
unsigned arena_ind = MALLOCX_ARENA_GET(flags);
*arena = arena_get(tsd, arena_ind, true, true);
if (unlikely(*arena == NULL))
return (true);
} else
*arena = NULL;
return (false);
}
JEMALLOC_ALWAYS_INLINE_C bool
imallocx_flags_decode(tsd_t *tsd, size_t size, int flags, size_t *usize,
size_t *alignment, bool *zero, tcache_t **tcache, arena_t **arena)
{
if (likely(flags == 0)) {
*usize = s2u(size);
assert(usize != 0);
*alignment = 0;
*zero = false;
*tcache = tcache_get(tsd, true);
*arena = NULL;
return (false);
} else {
return (imallocx_flags_decode_hard(tsd, size, flags, usize,
alignment, zero, tcache, arena));
}
}
JEMALLOC_ALWAYS_INLINE_C void *
imallocx_flags(tsd_t *tsd, size_t usize, size_t alignment, bool zero,
tcache_t *tcache, arena_t *arena)
{
if (alignment != 0)
return (ipalloct(tsd, usize, alignment, zero, tcache, arena));
if (zero)
return (icalloct(tsd, usize, tcache, arena));
return (imalloct(tsd, usize, tcache, arena));
}
JEMALLOC_ALWAYS_INLINE_C void *
imallocx_maybe_flags(tsd_t *tsd, size_t size, int flags, size_t usize,
size_t alignment, bool zero, tcache_t *tcache, arena_t *arena)
{
if (likely(flags == 0))
return (imalloc(tsd, size));
return (imallocx_flags(tsd, usize, alignment, zero, tcache, arena));
}
static void *
imallocx_prof_sample(tsd_t *tsd, size_t size, int flags, size_t usize,
size_t alignment, bool zero, tcache_t *tcache, arena_t *arena)
{
void *p;
if (usize <= SMALL_MAXCLASS) {
assert(((alignment == 0) ? s2u(LARGE_MINCLASS) :
sa2u(LARGE_MINCLASS, alignment)) == LARGE_MINCLASS);
p = imalloct(tsd, LARGE_MINCLASS, tcache, arena);
if (p == NULL)
return (NULL);
arena_prof_promoted(p, usize);
} else {
p = imallocx_maybe_flags(tsd, size, flags, usize, alignment,
zero, tcache, arena);
}
return (p);
}
JEMALLOC_ALWAYS_INLINE_C void *
imallocx_prof(tsd_t *tsd, size_t size, int flags, size_t *usize)
{
void *p;
size_t alignment;
bool zero;
tcache_t *tcache;
arena_t *arena;
prof_tctx_t *tctx;
if (unlikely(imallocx_flags_decode(tsd, size, flags, usize, &alignment,
&zero, &tcache, &arena)))
return (NULL);
tctx = prof_alloc_prep(tsd, *usize, true);
if (likely((uintptr_t)tctx == (uintptr_t)1U)) {
p = imallocx_maybe_flags(tsd, size, flags, *usize, alignment,
zero, tcache, arena);
} else if ((uintptr_t)tctx > (uintptr_t)1U) {
p = imallocx_prof_sample(tsd, size, flags, *usize, alignment,
zero, tcache, arena);
} else
p = NULL;
if (unlikely(p == NULL)) {
prof_alloc_rollback(tsd, tctx, true);
return (NULL);
}
prof_malloc(p, *usize, tctx);
return (p);
}
JEMALLOC_ALWAYS_INLINE_C void *
imallocx_no_prof(tsd_t *tsd, size_t size, int flags, size_t *usize)
{
size_t alignment;
bool zero;
tcache_t *tcache;
arena_t *arena;
if (likely(flags == 0)) {
if (config_stats || (config_valgrind && unlikely(in_valgrind)))
*usize = s2u(size);
return (imalloc(tsd, size));
}
if (unlikely(imallocx_flags_decode_hard(tsd, size, flags, usize,
&alignment, &zero, &tcache, &arena)))
return (NULL);
return (imallocx_flags(tsd, *usize, alignment, zero, tcache, arena));
}
void *
je_mallocx(size_t size, int flags)
{
tsd_t *tsd;
void *p;
size_t usize;
assert(size != 0);
if (unlikely(malloc_init()))
goto label_oom;
tsd = tsd_fetch();
if (config_prof && opt_prof)
p = imallocx_prof(tsd, size, flags, &usize);
else
p = imallocx_no_prof(tsd, size, flags, &usize);
if (unlikely(p == NULL))
goto label_oom;
if (config_stats) {
assert(usize == isalloc(p, config_prof));
*tsd_thread_allocatedp_get(tsd) += usize;
}
UTRACE(0, size, p);
JEMALLOC_VALGRIND_MALLOC(true, p, usize, MALLOCX_ZERO_GET(flags));
return (p);
label_oom:
if (config_xmalloc && unlikely(opt_xmalloc)) {
malloc_write("<jemalloc>: Error in mallocx(): out of memory\n");
abort();
}
UTRACE(0, size, 0);
return (NULL);
}
static void *
irallocx_prof_sample(tsd_t *tsd, void *oldptr, size_t old_usize, size_t size,
size_t alignment, size_t usize, bool zero, tcache_t *tcache, arena_t *arena,
prof_tctx_t *tctx)
{
void *p;
if (tctx == NULL)
return (NULL);
if (usize <= SMALL_MAXCLASS) {
p = iralloct(tsd, oldptr, old_usize, LARGE_MINCLASS, alignment,
zero, tcache, arena);
if (p == NULL)
return (NULL);
arena_prof_promoted(p, usize);
} else {
p = iralloct(tsd, oldptr, old_usize, size, alignment, zero,
tcache, arena);
}
return (p);
}
JEMALLOC_ALWAYS_INLINE_C void *
irallocx_prof(tsd_t *tsd, void *oldptr, size_t old_usize, size_t size,
size_t alignment, size_t *usize, bool zero, tcache_t *tcache,
arena_t *arena)
{
void *p;
prof_tctx_t *old_tctx, *tctx;
old_tctx = prof_tctx_get(oldptr);
tctx = prof_alloc_prep(tsd, *usize, false);
if (unlikely((uintptr_t)tctx != (uintptr_t)1U)) {
p = irallocx_prof_sample(tsd, oldptr, old_usize, size,
alignment, *usize, zero, tcache, arena, tctx);
} else {
p = iralloct(tsd, oldptr, old_usize, size, alignment, zero,
tcache, arena);
}
if (unlikely(p == NULL)) {
prof_alloc_rollback(tsd, tctx, false);
return (NULL);
}
if (p == oldptr && alignment != 0) {
/*
* The allocation did not move, so it is possible that the size
* class is smaller than would guarantee the requested
* alignment, and that the alignment constraint was
* serendipitously satisfied. Additionally, old_usize may not
* be the same as the current usize because of in-place large
* reallocation. Therefore, query the actual value of usize.
*/
*usize = isalloc(p, config_prof);
}
prof_realloc(tsd, p, *usize, tctx, false, old_usize, old_tctx);
return (p);
}
void *
je_rallocx(void *ptr, size_t size, int flags)
{
void *p;
tsd_t *tsd;
size_t usize;
size_t old_usize;
UNUSED size_t old_rzsize JEMALLOC_CC_SILENCE_INIT(0);
size_t alignment = MALLOCX_ALIGN_GET(flags);
bool zero = flags & MALLOCX_ZERO;
arena_t *arena;
tcache_t *tcache;
assert(ptr != NULL);
assert(size != 0);
assert(malloc_initialized() || IS_INITIALIZER);
malloc_thread_init();
tsd = tsd_fetch();
if (unlikely((flags & MALLOCX_ARENA_MASK) != 0)) {
unsigned arena_ind = MALLOCX_ARENA_GET(flags);
arena = arena_get(tsd, arena_ind, true, true);
if (unlikely(arena == NULL))
goto label_oom;
} else
arena = NULL;
if (unlikely((flags & MALLOCX_TCACHE_MASK) != 0)) {
if ((flags & MALLOCX_TCACHE_MASK) == MALLOCX_TCACHE_NONE)
tcache = NULL;
else
tcache = tcaches_get(tsd, MALLOCX_TCACHE_GET(flags));
} else
tcache = tcache_get(tsd, true);
old_usize = isalloc(ptr, config_prof);
if (config_valgrind && unlikely(in_valgrind))
old_rzsize = u2rz(old_usize);
if (config_prof && opt_prof) {
usize = (alignment == 0) ? s2u(size) : sa2u(size, alignment);
assert(usize != 0);
p = irallocx_prof(tsd, ptr, old_usize, size, alignment, &usize,
zero, tcache, arena);
if (unlikely(p == NULL))
goto label_oom;
} else {
p = iralloct(tsd, ptr, old_usize, size, alignment, zero,
tcache, arena);
if (unlikely(p == NULL))
goto label_oom;
if (config_stats || (config_valgrind && unlikely(in_valgrind)))
usize = isalloc(p, config_prof);
}
if (config_stats) {
*tsd_thread_allocatedp_get(tsd) += usize;
*tsd_thread_deallocatedp_get(tsd) += old_usize;
}
UTRACE(ptr, size, p);
JEMALLOC_VALGRIND_REALLOC(true, p, usize, false, ptr, old_usize,
old_rzsize, false, zero);
return (p);
label_oom:
if (config_xmalloc && unlikely(opt_xmalloc)) {
malloc_write("<jemalloc>: Error in rallocx(): out of memory\n");
abort();
}
UTRACE(ptr, size, 0);
return (NULL);
}
JEMALLOC_ALWAYS_INLINE_C size_t
ixallocx_helper(void *ptr, size_t old_usize, size_t size, size_t extra,
size_t alignment, bool zero)
{
size_t usize;
if (ixalloc(ptr, old_usize, size, extra, alignment, zero))
return (old_usize);
usize = isalloc(ptr, config_prof);
return (usize);
}
static size_t
ixallocx_prof_sample(void *ptr, size_t old_usize, size_t size, size_t extra,
size_t alignment, size_t max_usize, bool zero, prof_tctx_t *tctx)
{
size_t usize;
if (tctx == NULL)
return (old_usize);
/* Use minimum usize to determine whether promotion may happen. */
if (((alignment == 0) ? s2u(size) : sa2u(size, alignment)) <=
SMALL_MAXCLASS) {
if (ixalloc(ptr, old_usize, SMALL_MAXCLASS+1,
(SMALL_MAXCLASS+1 >= size+extra) ? 0 : size+extra -
(SMALL_MAXCLASS+1), alignment, zero))
return (old_usize);
usize = isalloc(ptr, config_prof);
if (max_usize < LARGE_MINCLASS)
arena_prof_promoted(ptr, usize);
} else {
usize = ixallocx_helper(ptr, old_usize, size, extra, alignment,
zero);
}
return (usize);
}
JEMALLOC_ALWAYS_INLINE_C size_t
ixallocx_prof(tsd_t *tsd, void *ptr, size_t old_usize, size_t size,
size_t extra, size_t alignment, bool zero)
{
size_t max_usize, usize;
prof_tctx_t *old_tctx, *tctx;
old_tctx = prof_tctx_get(ptr);
/*
* usize isn't knowable before ixalloc() returns when extra is non-zero.
* Therefore, compute its maximum possible value and use that in
* prof_alloc_prep() to decide whether to capture a backtrace.
* prof_realloc() will use the actual usize to decide whether to sample.
*/
max_usize = (alignment == 0) ? s2u(size+extra) : sa2u(size+extra,
alignment);
tctx = prof_alloc_prep(tsd, max_usize, false);
if (unlikely((uintptr_t)tctx != (uintptr_t)1U)) {
usize = ixallocx_prof_sample(ptr, old_usize, size, extra,
alignment, zero, max_usize, tctx);
} else {
usize = ixallocx_helper(ptr, old_usize, size, extra, alignment,
zero);
}
if (unlikely(usize == old_usize)) {
prof_alloc_rollback(tsd, tctx, false);
return (usize);
}
prof_realloc(tsd, ptr, usize, tctx, false, old_usize, old_tctx);
return (usize);
}
size_t
je_xallocx(void *ptr, size_t size, size_t extra, int flags)
{
tsd_t *tsd;
size_t usize, old_usize;
UNUSED size_t old_rzsize JEMALLOC_CC_SILENCE_INIT(0);
size_t alignment = MALLOCX_ALIGN_GET(flags);
bool zero = flags & MALLOCX_ZERO;
assert(ptr != NULL);
assert(size != 0);
assert(SIZE_T_MAX - size >= extra);
assert(malloc_initialized() || IS_INITIALIZER);
malloc_thread_init();
tsd = tsd_fetch();
old_usize = isalloc(ptr, config_prof);
if (config_valgrind && unlikely(in_valgrind))
old_rzsize = u2rz(old_usize);
if (config_prof && opt_prof) {
usize = ixallocx_prof(tsd, ptr, old_usize, size, extra,
alignment, zero);
} else {
usize = ixallocx_helper(ptr, old_usize, size, extra, alignment,
zero);
}
if (unlikely(usize == old_usize))
goto label_not_resized;
if (config_stats) {
*tsd_thread_allocatedp_get(tsd) += usize;
*tsd_thread_deallocatedp_get(tsd) += old_usize;
}
JEMALLOC_VALGRIND_REALLOC(false, ptr, usize, false, ptr, old_usize,
old_rzsize, false, zero);
label_not_resized:
UTRACE(ptr, size, ptr);
return (usize);
}
size_t
je_sallocx(const void *ptr, int flags)
{
size_t usize;
assert(malloc_initialized() || IS_INITIALIZER);
malloc_thread_init();
if (config_ivsalloc)
usize = ivsalloc(ptr, config_prof);
else
usize = isalloc(ptr, config_prof);
return (usize);
}
void
je_dallocx(void *ptr, int flags)
{
tsd_t *tsd;
tcache_t *tcache;
assert(ptr != NULL);
assert(malloc_initialized() || IS_INITIALIZER);
tsd = tsd_fetch();
if (unlikely((flags & MALLOCX_TCACHE_MASK) != 0)) {
if ((flags & MALLOCX_TCACHE_MASK) == MALLOCX_TCACHE_NONE)
tcache = NULL;
else
tcache = tcaches_get(tsd, MALLOCX_TCACHE_GET(flags));
} else
tcache = tcache_get(tsd, false);
UTRACE(ptr, 0, 0);
ifree(tsd_fetch(), ptr, tcache);
}
JEMALLOC_ALWAYS_INLINE_C size_t
inallocx(size_t size, int flags)
{
size_t usize;
if (likely((flags & MALLOCX_LG_ALIGN_MASK) == 0))
usize = s2u(size);
else
usize = sa2u(size, MALLOCX_ALIGN_GET_SPECIFIED(flags));
assert(usize != 0);
return (usize);
}
void
je_sdallocx(void *ptr, size_t size, int flags)
{
tsd_t *tsd;
tcache_t *tcache;
size_t usize;
assert(ptr != NULL);
assert(malloc_initialized() || IS_INITIALIZER);
usize = inallocx(size, flags);
assert(usize == isalloc(ptr, config_prof));
tsd = tsd_fetch();
if (unlikely((flags & MALLOCX_TCACHE_MASK) != 0)) {
if ((flags & MALLOCX_TCACHE_MASK) == MALLOCX_TCACHE_NONE)
tcache = NULL;
else
tcache = tcaches_get(tsd, MALLOCX_TCACHE_GET(flags));
} else
tcache = tcache_get(tsd, false);
UTRACE(ptr, 0, 0);
isfree(tsd, ptr, usize, tcache);
}
size_t
je_nallocx(size_t size, int flags)
{
assert(size != 0);
if (unlikely(malloc_init()))
return (0);
return (inallocx(size, flags));
}
int
je_mallctl(const char *name, void *oldp, size_t *oldlenp, void *newp,
size_t newlen)
{
if (unlikely(malloc_init()))
return (EAGAIN);
return (ctl_byname(name, oldp, oldlenp, newp, newlen));
}
int
je_mallctlnametomib(const char *name, size_t *mibp, size_t *miblenp)
{
if (unlikely(malloc_init()))
return (EAGAIN);
return (ctl_nametomib(name, mibp, miblenp));
}
int
je_mallctlbymib(const size_t *mib, size_t miblen, void *oldp, size_t *oldlenp,
void *newp, size_t newlen)
{
if (unlikely(malloc_init()))
return (EAGAIN);
return (ctl_bymib(mib, miblen, oldp, oldlenp, newp, newlen));
}
void
je_malloc_stats_print(void (*write_cb)(void *, const char *), void *cbopaque,
const char *opts)
{
stats_print(write_cb, cbopaque, opts);
}
size_t
je_malloc_usable_size(JEMALLOC_USABLE_SIZE_CONST void *ptr)
{
size_t ret;
assert(malloc_initialized() || IS_INITIALIZER);
malloc_thread_init();
if (config_ivsalloc)
ret = ivsalloc(ptr, config_prof);
else
ret = (ptr == NULL) ? 0 : isalloc(ptr, config_prof);
return (ret);
}
/*
* End non-standard functions.
*/
/******************************************************************************/
/*
* The following functions are used by threading libraries for protection of
* malloc during fork().
*/
/*
* If an application creates a thread before doing any allocation in the main
* thread, then calls fork(2) in the main thread followed by memory allocation
* in the child process, a race can occur that results in deadlock within the
* child: the main thread may have forked while the created thread had
* partially initialized the allocator. Ordinarily jemalloc prevents
* fork/malloc races via the following functions it registers during
* initialization using pthread_atfork(), but of course that does no good if
* the allocator isn't fully initialized at fork time. The following library
* constructor is a partial solution to this problem. It may still be possible
* to trigger the deadlock described above, but doing so would involve forking
* via a library constructor that runs before jemalloc's runs.
*/
JEMALLOC_ATTR(constructor)
static void
jemalloc_constructor(void)
{
malloc_init();
}
#ifndef JEMALLOC_MUTEX_INIT_CB
void
jemalloc_prefork(void)
#else
JEMALLOC_EXPORT void
_malloc_prefork(void)
#endif
{
unsigned i;
#ifdef JEMALLOC_MUTEX_INIT_CB
if (!malloc_initialized())
return;
#endif
assert(malloc_initialized());
/* Acquire all mutexes in a safe order. */
ctl_prefork();
prof_prefork();
malloc_mutex_prefork(&arenas_lock);
for (i = 0; i < narenas_total; i++) {
if (arenas[i] != NULL)
arena_prefork(arenas[i]);
}
chunk_prefork();
base_prefork();
}
#ifndef JEMALLOC_MUTEX_INIT_CB
void
jemalloc_postfork_parent(void)
#else
JEMALLOC_EXPORT void
_malloc_postfork(void)
#endif
{
unsigned i;
#ifdef JEMALLOC_MUTEX_INIT_CB
if (!malloc_initialized())
return;
#endif
assert(malloc_initialized());
/* Release all mutexes, now that fork() has completed. */
base_postfork_parent();
chunk_postfork_parent();
for (i = 0; i < narenas_total; i++) {
if (arenas[i] != NULL)
arena_postfork_parent(arenas[i]);
}
malloc_mutex_postfork_parent(&arenas_lock);
prof_postfork_parent();
ctl_postfork_parent();
}
void
jemalloc_postfork_child(void)
{
unsigned i;
assert(malloc_initialized());
/* Release all mutexes, now that fork() has completed. */
base_postfork_child();
chunk_postfork_child();
for (i = 0; i < narenas_total; i++) {
if (arenas[i] != NULL)
arena_postfork_child(arenas[i]);
}
malloc_mutex_postfork_child(&arenas_lock);
prof_postfork_child();
ctl_postfork_child();
}
/******************************************************************************/
/* ANDROID change */
/* This is an implementation that uses the same arena access pattern found
* in the arena_stats_merge function from src/arena.c.
*/
struct mallinfo je_mallinfo() {
struct mallinfo mi;
memset(&mi, 0, sizeof(mi));
malloc_mutex_lock(&arenas_lock);
for (unsigned i = 0; i < narenas_auto; i++) {
if (arenas[i] != NULL) {
malloc_mutex_lock(&arenas[i]->lock);
mi.hblkhd += arenas[i]->stats.mapped;
mi.uordblks += arenas[i]->stats.allocated_large;
mi.uordblks += arenas[i]->stats.allocated_huge;
malloc_mutex_unlock(&arenas[i]->lock);
for (unsigned j = 0; j < NBINS; j++) {
arena_bin_t* bin = &arenas[i]->bins[j];
malloc_mutex_lock(&bin->lock);
mi.uordblks += arena_bin_info[j].reg_size * bin->stats.curregs;
malloc_mutex_unlock(&bin->lock);
}
}
}
malloc_mutex_unlock(&arenas_lock);
mi.fordblks = mi.hblkhd - mi.uordblks;
mi.usmblks = mi.hblkhd;
return mi;
}
size_t __mallinfo_narenas() {
return narenas_auto;
}
size_t __mallinfo_nbins() {
return NBINS;
}
struct mallinfo __mallinfo_arena_info(size_t aidx) {
struct mallinfo mi;
memset(&mi, 0, sizeof(mi));
malloc_mutex_lock(&arenas_lock);
if (aidx < narenas_auto) {
if (arenas[aidx] != NULL) {
malloc_mutex_lock(&arenas[aidx]->lock);
mi.hblkhd = arenas[aidx]->stats.mapped;
mi.ordblks = arenas[aidx]->stats.allocated_large;
mi.uordblks = arenas[aidx]->stats.allocated_huge;
malloc_mutex_unlock(&arenas[aidx]->lock);
for (unsigned j = 0; j < NBINS; j++) {
arena_bin_t* bin = &arenas[aidx]->bins[j];
malloc_mutex_lock(&bin->lock);
mi.fsmblks += arena_bin_info[j].reg_size * bin->stats.curregs;
malloc_mutex_unlock(&bin->lock);
}
}
}
malloc_mutex_unlock(&arenas_lock);
return mi;
}
struct mallinfo __mallinfo_bin_info(size_t aidx, size_t bidx) {
struct mallinfo mi;
memset(&mi, 0, sizeof(mi));
malloc_mutex_lock(&arenas_lock);
if (aidx < narenas_auto && bidx < NBINS) {
if (arenas[aidx] != NULL) {
arena_bin_t* bin = &arenas[aidx]->bins[bidx];
malloc_mutex_lock(&bin->lock);
mi.ordblks = arena_bin_info[bidx].reg_size * bin->stats.curregs;
mi.uordblks = bin->stats.nmalloc;
mi.fordblks = bin->stats.ndalloc;
malloc_mutex_unlock(&bin->lock);
}
}
malloc_mutex_unlock(&arenas_lock);
return mi;
}
/* End ANDROID change */