/*
* Copyright 2012 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmapProcState_opts_SSSE3.h"
#include "SkColorPriv.h"
#include "SkPaint.h"
#include "SkUtils.h"
/* With the exception of the compilers that don't support it, we always build the
* SSSE3 functions and enable the caller to determine SSSE3 support. However for
* compilers that do not support SSSE3 we provide a stub implementation.
*/
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3
#include <tmmintrin.h> // SSSE3
// adding anonymous namespace seemed to force gcc to inline directly the
// instantiation, instead of creating the functions
// S32_generic_D32_filter_DX_SSSE3<true> and
// S32_generic_D32_filter_DX_SSSE3<false> which were then called by the
// external functions.
namespace {
// In this file, variations for alpha and non alpha versions are implemented
// with a template, as it makes the code more compact and a bit easier to
// maintain, while making the compiler generate the same exact code as with
// two functions that only differ by a few lines.
// Prepare all necessary constants for a round of processing for two pixel
// pairs.
// @param xy is the location where the xy parameters for four pixels should be
// read from. It is identical in concept with argument two of
// S32_{opaque}_D32_filter_DX methods.
// @param mask_3FFF vector of 32 bit constants containing 3FFF,
// suitable to mask the bottom 14 bits of a XY value.
// @param mask_000F vector of 32 bit constants containing 000F,
// suitable to mask the bottom 4 bits of a XY value.
// @param sixteen_8bit vector of 8 bit components containing the value 16.
// @param mask_dist_select vector of 8 bit components containing the shuffling
// parameters to reorder x[0-3] parameters.
// @param all_x_result vector of 8 bit components that will contain the
// (4x(x3), 4x(x2), 4x(x1), 4x(x0)) upon return.
// @param sixteen_minus_x vector of 8 bit components, containing
// (4x(16 - x3), 4x(16 - x2), 4x(16 - x1), 4x(16 - x0))
inline void PrepareConstantsTwoPixelPairs(const uint32_t* xy,
const __m128i& mask_3FFF,
const __m128i& mask_000F,
const __m128i& sixteen_8bit,
const __m128i& mask_dist_select,
__m128i* all_x_result,
__m128i* sixteen_minus_x,
int* x0,
int* x1) {
const __m128i xx = _mm_loadu_si128(reinterpret_cast<const __m128i *>(xy));
// 4 delta X
// (x03, x02, x01, x00)
const __m128i x0_wide = _mm_srli_epi32(xx, 18);
// (x13, x12, x11, x10)
const __m128i x1_wide = _mm_and_si128(xx, mask_3FFF);
_mm_storeu_si128(reinterpret_cast<__m128i *>(x0), x0_wide);
_mm_storeu_si128(reinterpret_cast<__m128i *>(x1), x1_wide);
__m128i all_x = _mm_and_si128(_mm_srli_epi32(xx, 14), mask_000F);
// (4x(x3), 4x(x2), 4x(x1), 4x(x0))
all_x = _mm_shuffle_epi8(all_x, mask_dist_select);
*all_x_result = all_x;
// (4x(16-x3), 4x(16-x2), 4x(16-x1), 4x(16-x0))
*sixteen_minus_x = _mm_sub_epi8(sixteen_8bit, all_x);
}
// Prepare all necessary constants for a round of processing for two pixel
// pairs.
// @param xy is the location where the xy parameters for four pixels should be
// read from. It is identical in concept with argument two of
// S32_{opaque}_D32_filter_DXDY methods.
// @param mask_3FFF vector of 32 bit constants containing 3FFF,
// suitable to mask the bottom 14 bits of a XY value.
// @param mask_000F vector of 32 bit constants containing 000F,
// suitable to mask the bottom 4 bits of a XY value.
// @param sixteen_8bit vector of 8 bit components containing the value 16.
// @param mask_dist_select vector of 8 bit components containing the shuffling
// parameters to reorder x[0-3] parameters.
// @param all_xy_result vector of 8 bit components that will contain the
// (4x(y1), 4x(y0), 4x(x1), 4x(x0)) upon return.
// @param sixteen_minus_x vector of 8 bit components, containing
// (4x(16-y1), 4x(16-y0), 4x(16-x1), 4x(16-x0)).
inline void PrepareConstantsTwoPixelPairsDXDY(const uint32_t* xy,
const __m128i& mask_3FFF,
const __m128i& mask_000F,
const __m128i& sixteen_8bit,
const __m128i& mask_dist_select,
__m128i* all_xy_result,
__m128i* sixteen_minus_xy,
int* xy0, int* xy1) {
const __m128i xy_wide =
_mm_loadu_si128(reinterpret_cast<const __m128i *>(xy));
// (x10, y10, x00, y00)
__m128i xy0_wide = _mm_srli_epi32(xy_wide, 18);
// (y10, y00, x10, x00)
xy0_wide = _mm_shuffle_epi32(xy0_wide, _MM_SHUFFLE(2, 0, 3, 1));
// (x11, y11, x01, y01)
__m128i xy1_wide = _mm_and_si128(xy_wide, mask_3FFF);
// (y11, y01, x11, x01)
xy1_wide = _mm_shuffle_epi32(xy1_wide, _MM_SHUFFLE(2, 0, 3, 1));
_mm_storeu_si128(reinterpret_cast<__m128i *>(xy0), xy0_wide);
_mm_storeu_si128(reinterpret_cast<__m128i *>(xy1), xy1_wide);
// (x1, y1, x0, y0)
__m128i all_xy = _mm_and_si128(_mm_srli_epi32(xy_wide, 14), mask_000F);
// (y1, y0, x1, x0)
all_xy = _mm_shuffle_epi32(all_xy, _MM_SHUFFLE(2, 0, 3, 1));
// (4x(y1), 4x(y0), 4x(x1), 4x(x0))
all_xy = _mm_shuffle_epi8(all_xy, mask_dist_select);
*all_xy_result = all_xy;
// (4x(16-y1), 4x(16-y0), 4x(16-x1), 4x(16-x0))
*sixteen_minus_xy = _mm_sub_epi8(sixteen_8bit, all_xy);
}
// Helper function used when processing one pixel pair.
// @param pixel0..3 are the four input pixels
// @param scale_x vector of 8 bit components to multiply the pixel[0:3]. This
// will contain (4x(x1, 16-x1), 4x(x0, 16-x0))
// or (4x(x3, 16-x3), 4x(x2, 16-x2))
// @return a vector of 16 bit components containing:
// (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0)
inline __m128i ProcessPixelPairHelper(uint32_t pixel0,
uint32_t pixel1,
uint32_t pixel2,
uint32_t pixel3,
const __m128i& scale_x) {
__m128i a0, a1, a2, a3;
// Load 2 pairs of pixels
a0 = _mm_cvtsi32_si128(pixel0);
a1 = _mm_cvtsi32_si128(pixel1);
// Interleave pixels.
// (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0)
a0 = _mm_unpacklo_epi8(a0, a1);
a2 = _mm_cvtsi32_si128(pixel2);
a3 = _mm_cvtsi32_si128(pixel3);
// (0, 0, 0, 0, 0, 0, 0, 0, Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2)
a2 = _mm_unpacklo_epi8(a2, a3);
// two pairs of pixel pairs, interleaved.
// (Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2,
// Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0)
a0 = _mm_unpacklo_epi64(a0, a2);
// multiply and sum to 16 bit components.
// (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0)
// At that point, we use up a bit less than 12 bits for each 16 bit
// component:
// All components are less than 255. So,
// C0 * (16 - x) + C1 * x <= 255 * (16 - x) + 255 * x = 255 * 16.
return _mm_maddubs_epi16(a0, scale_x);
}
// Scale back the results after multiplications to the [0:255] range, and scale
// by alpha when has_alpha is true.
// Depending on whether one set or two sets of multiplications had been applied,
// the results have to be shifted by four places (dividing by 16), or shifted
// by eight places (dividing by 256), since each multiplication is by a quantity
// in the range [0:16].
template<bool has_alpha, int scale>
inline __m128i ScaleFourPixels(__m128i* pixels,
const __m128i& alpha) {
// Divide each 16 bit component by 16 (or 256 depending on scale).
*pixels = _mm_srli_epi16(*pixels, scale);
if (has_alpha) {
// Multiply by alpha.
*pixels = _mm_mullo_epi16(*pixels, alpha);
// Divide each 16 bit component by 256.
*pixels = _mm_srli_epi16(*pixels, 8);
}
return *pixels;
}
// Wrapper to calculate two output pixels from four input pixels. The
// arguments are the same as ProcessPixelPairHelper. Technically, there are
// eight input pixels, but since sub_y == 0, the factors applied to half of the
// pixels is zero (sub_y), and are therefore omitted here to save on some
// processing.
// @param alpha when has_alpha is true, scale all resulting components by this
// value.
// @return a vector of 16 bit components containing:
// ((Aa2 * (16 - x1) + Aa3 * x1) * alpha, ...,
// (Ra0 * (16 - x0) + Ra1 * x0) * alpha) (when has_alpha is true)
// otherwise
// (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0)
// In both cases, the results are renormalized (divided by 16) to match the
// expected formats when storing back the results into memory.
template<bool has_alpha>
inline __m128i ProcessPixelPairZeroSubY(uint32_t pixel0,
uint32_t pixel1,
uint32_t pixel2,
uint32_t pixel3,
const __m128i& scale_x,
const __m128i& alpha) {
__m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3,
scale_x);
return ScaleFourPixels<has_alpha, 4>(&sum, alpha);
}
// Same as ProcessPixelPairZeroSubY, expect processing one output pixel at a
// time instead of two. As in the above function, only two pixels are needed
// to generate a single pixel since sub_y == 0.
// @return same as ProcessPixelPairZeroSubY, except that only the bottom 4
// 16 bit components are set.
template<bool has_alpha>
inline __m128i ProcessOnePixelZeroSubY(uint32_t pixel0,
uint32_t pixel1,
__m128i scale_x,
__m128i alpha) {
__m128i a0 = _mm_cvtsi32_si128(pixel0);
__m128i a1 = _mm_cvtsi32_si128(pixel1);
// Interleave
a0 = _mm_unpacklo_epi8(a0, a1);
// (a0 * (16-x) + a1 * x)
__m128i sum = _mm_maddubs_epi16(a0, scale_x);
return ScaleFourPixels<has_alpha, 4>(&sum, alpha);
}
// Methods when sub_y != 0
// Same as ProcessPixelPairHelper, except that the values are scaled by y.
// @param y vector of 16 bit components containing 'y' values. There are two
// cases in practice, where y will contain the sub_y constant, or will
// contain the 16 - sub_y constant.
// @return vector of 16 bit components containing:
// (y * (Aa2 * (16 - x1) + Aa3 * x1), ... , y * (Ra0 * (16 - x0) + Ra1 * x0))
inline __m128i ProcessPixelPair(uint32_t pixel0,
uint32_t pixel1,
uint32_t pixel2,
uint32_t pixel3,
const __m128i& scale_x,
const __m128i& y) {
__m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3,
scale_x);
// first row times 16-y or y depending on whether 'y' represents one or
// the other.
// Values will be up to 255 * 16 * 16 = 65280.
// (y * (Aa2 * (16 - x1) + Aa3 * x1), ... ,
// y * (Ra0 * (16 - x0) + Ra1 * x0))
sum = _mm_mullo_epi16(sum, y);
return sum;
}
// Process two pixel pairs out of eight input pixels.
// In other methods, the distinct pixels are passed one by one, but in this
// case, the rows, and index offsets to the pixels into the row are passed
// to generate the 8 pixels.
// @param row0..1 top and bottom row where to find input pixels.
// @param x0..1 offsets into the row for all eight input pixels.
// @param all_y vector of 16 bit components containing the constant sub_y
// @param neg_y vector of 16 bit components containing the constant 16 - sub_y
// @param alpha vector of 16 bit components containing the alpha value to scale
// the results by, when has_alpha is true.
// @return
// (alpha * ((16-y) * (Aa2 * (16-x1) + Aa3 * x1) +
// y * (Aa2' * (16-x1) + Aa3' * x1)),
// ...
// alpha * ((16-y) * (Ra0 * (16-x0) + Ra1 * x0) +
// y * (Ra0' * (16-x0) + Ra1' * x0))
// With the factor alpha removed when has_alpha is false.
// The values are scaled back to 16 bit components, but with only the bottom
// 8 bits being set.
template<bool has_alpha>
inline __m128i ProcessTwoPixelPairs(const uint32_t* row0,
const uint32_t* row1,
const int* x0,
const int* x1,
const __m128i& scale_x,
const __m128i& all_y,
const __m128i& neg_y,
const __m128i& alpha) {
__m128i sum0 = ProcessPixelPair(
row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]],
scale_x, neg_y);
__m128i sum1 = ProcessPixelPair(
row1[x0[0]], row1[x1[0]], row1[x0[1]], row1[x1[1]],
scale_x, all_y);
// 2 samples fully summed.
// ((16-y) * (Aa2 * (16-x1) + Aa3 * x1) +
// y * (Aa2' * (16-x1) + Aa3' * x1),
// ...
// (16-y) * (Ra0 * (16 - x0) + Ra1 * x0)) +
// y * (Ra0' * (16-x0) + Ra1' * x0))
// Each component, again can be at most 256 * 255 = 65280, so no overflow.
sum0 = _mm_add_epi16(sum0, sum1);
return ScaleFourPixels<has_alpha, 8>(&sum0, alpha);
}
// Similar to ProcessTwoPixelPairs except the pixel indexes.
template<bool has_alpha>
inline __m128i ProcessTwoPixelPairsDXDY(const uint32_t* row00,
const uint32_t* row01,
const uint32_t* row10,
const uint32_t* row11,
const int* xy0,
const int* xy1,
const __m128i& scale_x,
const __m128i& all_y,
const __m128i& neg_y,
const __m128i& alpha) {
// first row
__m128i sum0 = ProcessPixelPair(
row00[xy0[0]], row00[xy1[0]], row10[xy0[1]], row10[xy1[1]],
scale_x, neg_y);
// second row
__m128i sum1 = ProcessPixelPair(
row01[xy0[0]], row01[xy1[0]], row11[xy0[1]], row11[xy1[1]],
scale_x, all_y);
// 2 samples fully summed.
// ((16-y1) * (Aa2 * (16-x1) + Aa3 * x1) +
// y0 * (Aa2' * (16-x1) + Aa3' * x1),
// ...
// (16-y0) * (Ra0 * (16 - x0) + Ra1 * x0)) +
// y0 * (Ra0' * (16-x0) + Ra1' * x0))
// Each component, again can be at most 256 * 255 = 65280, so no overflow.
sum0 = _mm_add_epi16(sum0, sum1);
return ScaleFourPixels<has_alpha, 8>(&sum0, alpha);
}
// Same as ProcessPixelPair, except that performing the math one output pixel
// at a time. This means that only the bottom four 16 bit components are set.
inline __m128i ProcessOnePixel(uint32_t pixel0, uint32_t pixel1,
const __m128i& scale_x, const __m128i& y) {
__m128i a0 = _mm_cvtsi32_si128(pixel0);
__m128i a1 = _mm_cvtsi32_si128(pixel1);
// Interleave
// (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0)
a0 = _mm_unpacklo_epi8(a0, a1);
// (a0 * (16-x) + a1 * x)
a0 = _mm_maddubs_epi16(a0, scale_x);
// scale row by y
return _mm_mullo_epi16(a0, y);
}
// Notes about the various tricks that are used in this implementation:
// - specialization for sub_y == 0.
// Statistically, 1/16th of the samples will have sub_y == 0. When this
// happens, the math goes from:
// (16 - x)*(16 - y)*a00 + x*(16 - y)*a01 + (16 - x)*y*a10 + x*y*a11
// to:
// (16 - x)*a00 + 16*x*a01
// much simpler. The simplification makes for an easy boost in performance.
// - calculating 4 output pixels at a time.
// This allows loading the coefficients x0 and x1 and shuffling them to the
// optimum location only once per loop, instead of twice per loop.
// This also allows us to store the four pixels with a single store.
// - Use of 2 special SSSE3 instructions (comparatively to the SSE2 instruction
// version):
// _mm_shuffle_epi8 : this allows us to spread the coefficients x[0-3] loaded
// in 32 bit values to 8 bit values repeated four times.
// _mm_maddubs_epi16 : this allows us to perform multiplications and additions
// in one swoop of 8bit values storing the results in 16 bit values. This
// instruction is actually crucial for the speed of the implementation since
// as one can see in the SSE2 implementation, all inputs have to be used as
// 16 bits because the results are 16 bits. This basically allows us to process
// twice as many pixel components per iteration.
//
// As a result, this method behaves faster than the traditional SSE2. The actual
// boost varies greatly on the underlying architecture.
template<bool has_alpha>
void S32_generic_D32_filter_DX_SSSE3(const SkBitmapProcState& s,
const uint32_t* xy,
int count, uint32_t* colors) {
SkASSERT(count > 0 && colors != NULL);
SkASSERT(s.fFilterLevel != kNone_SkFilterQuality);
SkASSERT(kN32_SkColorType == s.fBitmap->colorType());
if (has_alpha) {
SkASSERT(s.fAlphaScale < 256);
} else {
SkASSERT(s.fAlphaScale == 256);
}
const uint8_t* src_addr =
static_cast<const uint8_t*>(s.fBitmap->getPixels());
const size_t rb = s.fBitmap->rowBytes();
const uint32_t XY = *xy++;
const unsigned y0 = XY >> 14;
const uint32_t* row0 =
reinterpret_cast<const uint32_t*>(src_addr + (y0 >> 4) * rb);
const uint32_t* row1 =
reinterpret_cast<const uint32_t*>(src_addr + (XY & 0x3FFF) * rb);
const unsigned sub_y = y0 & 0xF;
// vector constants
const __m128i mask_dist_select = _mm_set_epi8(12, 12, 12, 12,
8, 8, 8, 8,
4, 4, 4, 4,
0, 0, 0, 0);
const __m128i mask_3FFF = _mm_set1_epi32(0x3FFF);
const __m128i mask_000F = _mm_set1_epi32(0x000F);
const __m128i sixteen_8bit = _mm_set1_epi8(16);
// (0, 0, 0, 0, 0, 0, 0, 0)
const __m128i zero = _mm_setzero_si128();
__m128i alpha = _mm_setzero_si128();
if (has_alpha) {
// 8x(alpha)
alpha = _mm_set1_epi16(s.fAlphaScale);
}
if (sub_y == 0) {
// Unroll 4x, interleave bytes, use pmaddubsw (all_x is small)
while (count > 3) {
count -= 4;
int x0[4];
int x1[4];
__m128i all_x, sixteen_minus_x;
PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F,
sixteen_8bit, mask_dist_select,
&all_x, &sixteen_minus_x, x0, x1);
xy += 4;
// First pair of pixel pairs.
// (4x(x1, 16-x1), 4x(x0, 16-x0))
__m128i scale_x;
scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x);
__m128i sum0 = ProcessPixelPairZeroSubY<has_alpha>(
row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]],
scale_x, alpha);
// second pair of pixel pairs
// (4x (x3, 16-x3), 4x (16-x2, x2))
scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x);
__m128i sum1 = ProcessPixelPairZeroSubY<has_alpha>(
row0[x0[2]], row0[x1[2]], row0[x0[3]], row0[x1[3]],
scale_x, alpha);
// Pack lower 4 16 bit values of sum into lower 4 bytes.
sum0 = _mm_packus_epi16(sum0, sum1);
// Extract low int and store.
_mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0);
colors += 4;
}
// handle remainder
while (count-- > 0) {
uint32_t xx = *xy++; // x0:14 | 4 | x1:14
unsigned x0 = xx >> 18;
unsigned x1 = xx & 0x3FFF;
// 16x(x)
const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F);
// (16x(16-x))
__m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x);
scale_x = _mm_unpacklo_epi8(scale_x, all_x);
__m128i sum = ProcessOnePixelZeroSubY<has_alpha>(
row0[x0], row0[x1],
scale_x, alpha);
// Pack lower 4 16 bit values of sum into lower 4 bytes.
sum = _mm_packus_epi16(sum, zero);
// Extract low int and store.
*colors++ = _mm_cvtsi128_si32(sum);
}
} else { // more general case, y != 0
// 8x(16)
const __m128i sixteen_16bit = _mm_set1_epi16(16);
// 8x (y)
const __m128i all_y = _mm_set1_epi16(sub_y);
// 8x (16-y)
const __m128i neg_y = _mm_sub_epi16(sixteen_16bit, all_y);
// Unroll 4x, interleave bytes, use pmaddubsw (all_x is small)
while (count > 3) {
count -= 4;
int x0[4];
int x1[4];
__m128i all_x, sixteen_minus_x;
PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F,
sixteen_8bit, mask_dist_select,
&all_x, &sixteen_minus_x, x0, x1);
xy += 4;
// First pair of pixel pairs
// (4x(x1, 16-x1), 4x(x0, 16-x0))
__m128i scale_x;
scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x);
__m128i sum0 = ProcessTwoPixelPairs<has_alpha>(
row0, row1, x0, x1,
scale_x, all_y, neg_y, alpha);
// second pair of pixel pairs
// (4x (x3, 16-x3), 4x (16-x2, x2))
scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x);
__m128i sum1 = ProcessTwoPixelPairs<has_alpha>(
row0, row1, x0 + 2, x1 + 2,
scale_x, all_y, neg_y, alpha);
// Do the final packing of the two results
// Pack lower 4 16 bit values of sum into lower 4 bytes.
sum0 = _mm_packus_epi16(sum0, sum1);
// Extract low int and store.
_mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0);
colors += 4;
}
// Left over.
while (count-- > 0) {
const uint32_t xx = *xy++; // x0:14 | 4 | x1:14
const unsigned x0 = xx >> 18;
const unsigned x1 = xx & 0x3FFF;
// 16x(x)
const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F);
// 16x (16-x)
__m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x);
// (8x (x, 16-x))
scale_x = _mm_unpacklo_epi8(scale_x, all_x);
// first row.
__m128i sum0 = ProcessOnePixel(row0[x0], row0[x1], scale_x, neg_y);
// second row.
__m128i sum1 = ProcessOnePixel(row1[x0], row1[x1], scale_x, all_y);
// Add both rows for full sample
sum0 = _mm_add_epi16(sum0, sum1);
sum0 = ScaleFourPixels<has_alpha, 8>(&sum0, alpha);
// Pack lower 4 16 bit values of sum into lower 4 bytes.
sum0 = _mm_packus_epi16(sum0, zero);
// Extract low int and store.
*colors++ = _mm_cvtsi128_si32(sum0);
}
}
}
/*
* Similar to S32_generic_D32_filter_DX_SSSE3, we do not need to handle the
* special case suby == 0 as suby is changing in every loop.
*/
template<bool has_alpha>
void S32_generic_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s,
const uint32_t* xy,
int count, uint32_t* colors) {
SkASSERT(count > 0 && colors != NULL);
SkASSERT(s.fFilterLevel != kNone_SkFilterQuality);
SkASSERT(kN32_SkColorType == s.fBitmap->colorType());
if (has_alpha) {
SkASSERT(s.fAlphaScale < 256);
} else {
SkASSERT(s.fAlphaScale == 256);
}
const uint8_t* src_addr =
static_cast<const uint8_t*>(s.fBitmap->getPixels());
const size_t rb = s.fBitmap->rowBytes();
// vector constants
const __m128i mask_dist_select = _mm_set_epi8(12, 12, 12, 12,
8, 8, 8, 8,
4, 4, 4, 4,
0, 0, 0, 0);
const __m128i mask_3FFF = _mm_set1_epi32(0x3FFF);
const __m128i mask_000F = _mm_set1_epi32(0x000F);
const __m128i sixteen_8bit = _mm_set1_epi8(16);
__m128i alpha;
if (has_alpha) {
// 8x(alpha)
alpha = _mm_set1_epi16(s.fAlphaScale);
}
// Unroll 2x, interleave bytes, use pmaddubsw (all_x is small)
while (count >= 2) {
int xy0[4];
int xy1[4];
__m128i all_xy, sixteen_minus_xy;
PrepareConstantsTwoPixelPairsDXDY(xy, mask_3FFF, mask_000F,
sixteen_8bit, mask_dist_select,
&all_xy, &sixteen_minus_xy, xy0, xy1);
// (4x(x1, 16-x1), 4x(x0, 16-x0))
__m128i scale_x = _mm_unpacklo_epi8(sixteen_minus_xy, all_xy);
// (4x(0, y1), 4x(0, y0))
__m128i all_y = _mm_unpackhi_epi8(all_xy, _mm_setzero_si128());
__m128i neg_y = _mm_sub_epi16(_mm_set1_epi16(16), all_y);
const uint32_t* row00 =
reinterpret_cast<const uint32_t*>(src_addr + xy0[2] * rb);
const uint32_t* row01 =
reinterpret_cast<const uint32_t*>(src_addr + xy1[2] * rb);
const uint32_t* row10 =
reinterpret_cast<const uint32_t*>(src_addr + xy0[3] * rb);
const uint32_t* row11 =
reinterpret_cast<const uint32_t*>(src_addr + xy1[3] * rb);
__m128i sum0 = ProcessTwoPixelPairsDXDY<has_alpha>(
row00, row01, row10, row11, xy0, xy1,
scale_x, all_y, neg_y, alpha);
// Pack lower 4 16 bit values of sum into lower 4 bytes.
sum0 = _mm_packus_epi16(sum0, _mm_setzero_si128());
// Extract low int and store.
_mm_storel_epi64(reinterpret_cast<__m128i *>(colors), sum0);
xy += 4;
colors += 2;
count -= 2;
}
// Handle the remainder
while (count-- > 0) {
uint32_t data = *xy++;
unsigned y0 = data >> 14;
unsigned y1 = data & 0x3FFF;
unsigned subY = y0 & 0xF;
y0 >>= 4;
data = *xy++;
unsigned x0 = data >> 14;
unsigned x1 = data & 0x3FFF;
unsigned subX = x0 & 0xF;
x0 >>= 4;
const uint32_t* row0 =
reinterpret_cast<const uint32_t*>(src_addr + y0 * rb);
const uint32_t* row1 =
reinterpret_cast<const uint32_t*>(src_addr + y1 * rb);
// 16x(x)
const __m128i all_x = _mm_set1_epi8(subX);
// 16x (16-x)
__m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x);
// (8x (x, 16-x))
scale_x = _mm_unpacklo_epi8(scale_x, all_x);
// 8x(16)
const __m128i sixteen_16bit = _mm_set1_epi16(16);
// 8x (y)
const __m128i all_y = _mm_set1_epi16(subY);
// 8x (16-y)
const __m128i neg_y = _mm_sub_epi16(sixteen_16bit, all_y);
// first row.
__m128i sum0 = ProcessOnePixel(row0[x0], row0[x1], scale_x, neg_y);
// second row.
__m128i sum1 = ProcessOnePixel(row1[x0], row1[x1], scale_x, all_y);
// Add both rows for full sample
sum0 = _mm_add_epi16(sum0, sum1);
sum0 = ScaleFourPixels<has_alpha, 8>(&sum0, alpha);
// Pack lower 4 16 bit values of sum into lower 4 bytes.
sum0 = _mm_packus_epi16(sum0, _mm_setzero_si128());
// Extract low int and store.
*colors++ = _mm_cvtsi128_si32(sum0);
}
}
} // namespace
void S32_opaque_D32_filter_DX_SSSE3(const SkBitmapProcState& s,
const uint32_t* xy,
int count, uint32_t* colors) {
S32_generic_D32_filter_DX_SSSE3<false>(s, xy, count, colors);
}
void S32_alpha_D32_filter_DX_SSSE3(const SkBitmapProcState& s,
const uint32_t* xy,
int count, uint32_t* colors) {
S32_generic_D32_filter_DX_SSSE3<true>(s, xy, count, colors);
}
void S32_opaque_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s,
const uint32_t* xy,
int count, uint32_t* colors) {
S32_generic_D32_filter_DXDY_SSSE3<false>(s, xy, count, colors);
}
void S32_alpha_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s,
const uint32_t* xy,
int count, uint32_t* colors) {
S32_generic_D32_filter_DXDY_SSSE3<true>(s, xy, count, colors);
}
void S32_D16_filter_DX_SSSE3(const SkBitmapProcState& s,
const uint32_t* xy,
int count, uint16_t* colors) {
SkASSERT(254 >= count);
SkAutoSTMalloc<254, uint32_t> colors32(count);
S32_generic_D32_filter_DX_SSSE3<false>(s, xy, count, colors32);
for(int i = 0; i < count; i++) {
*colors++ = SkPixel32ToPixel16(colors32[i]);
}
}
void S32_D16_filter_DXDY_SSSE3(const SkBitmapProcState& s,
const uint32_t* xy,
int count, uint16_t* colors) {
SkASSERT(64 >= count);
SkAutoSTMalloc<64, uint32_t> colors32(count);
S32_generic_D32_filter_DXDY_SSSE3<false>(s, xy, count, colors32);
for(int i = 0; i < count; i++) {
*colors++ = SkPixel32ToPixel16(colors32[i]);
}
}
#else // SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3
void S32_opaque_D32_filter_DX_SSSE3(const SkBitmapProcState& s,
const uint32_t* xy,
int count, uint32_t* colors) {
sk_throw();
}
void S32_alpha_D32_filter_DX_SSSE3(const SkBitmapProcState& s,
const uint32_t* xy,
int count, uint32_t* colors) {
sk_throw();
}
void S32_opaque_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s,
const uint32_t* xy,
int count, uint32_t* colors) {
sk_throw();
}
void S32_alpha_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s,
const uint32_t* xy,
int count, uint32_t* colors) {
sk_throw();
}
void S32_D16_filter_DX_SSSE3(const SkBitmapProcState& s,
const uint32_t* xy,
int count, uint16_t* colors) {
sk_throw();
}
void S32_D16_filter_DXDY_SSSE3(const SkBitmapProcState& s,
const uint32_t* xy,
int count, uint16_t* colors) {
sk_throw();
}
#endif