/*-------------------------------------------------------------------------
* drawElements Quality Program OpenGL ES 3.1 Module
* -------------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Texture format tests.
*//*--------------------------------------------------------------------*/
#include "es31fTextureFormatTests.hpp"
#include "gluContextInfo.hpp"
#include "gluPixelTransfer.hpp"
#include "gluStrUtil.hpp"
#include "gluTexture.hpp"
#include "gluTextureUtil.hpp"
#include "glsTextureTestUtil.hpp"
#include "tcuTextureUtil.hpp"
#include "deStringUtil.hpp"
#include "deRandom.hpp"
#include "glwEnums.hpp"
#include "glwFunctions.hpp"
using std::vector;
using std::string;
using tcu::TestLog;
namespace deqp
{
namespace gles31
{
namespace Functional
{
using namespace deqp::gls;
using namespace deqp::gls::TextureTestUtil;
using namespace glu::TextureTestUtil;
using tcu::Sampler;
static tcu::CubeFace getCubeFaceFromNdx (int ndx)
{
switch (ndx)
{
case 0: return tcu::CUBEFACE_POSITIVE_X;
case 1: return tcu::CUBEFACE_NEGATIVE_X;
case 2: return tcu::CUBEFACE_POSITIVE_Y;
case 3: return tcu::CUBEFACE_NEGATIVE_Y;
case 4: return tcu::CUBEFACE_POSITIVE_Z;
case 5: return tcu::CUBEFACE_NEGATIVE_Z;
default:
DE_ASSERT(false);
return tcu::CUBEFACE_LAST;
}
}
// TextureCubeArrayFormatCase
class TextureCubeArrayFormatCase : public tcu::TestCase
{
public:
TextureCubeArrayFormatCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& renderCtxInfo, const char* name, const char* description, deUint32 format, deUint32 dataType, int size, int depth);
TextureCubeArrayFormatCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& renderCtxInfo, const char* name, const char* description, deUint32 internalFormat, int size, int depth);
~TextureCubeArrayFormatCase (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
private:
TextureCubeArrayFormatCase (const TextureCubeArrayFormatCase& other);
TextureCubeArrayFormatCase& operator= (const TextureCubeArrayFormatCase& other);
bool checkSupport (void);
bool testLayerFace (int layerNdx);
glu::RenderContext& m_renderCtx;
const glu::ContextInfo& m_renderCtxInfo;
const deUint32 m_format;
const deUint32 m_dataType;
const int m_size;
const int m_depth;
glu::TextureCubeArray* m_texture;
TextureTestUtil::TextureRenderer m_renderer;
int m_curLayerFace;
};
TextureCubeArrayFormatCase::TextureCubeArrayFormatCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& renderCtxInfo, const char* name, const char* description, deUint32 format, deUint32 dataType, int size, int depth)
: TestCase (testCtx, name, description)
, m_renderCtx (renderCtx)
, m_renderCtxInfo (renderCtxInfo)
, m_format (format)
, m_dataType (dataType)
, m_size (size)
, m_depth (depth)
, m_texture (DE_NULL)
, m_renderer (renderCtx, testCtx.getLog(), glu::GLSL_VERSION_310_ES, glu::PRECISION_HIGHP)
, m_curLayerFace (0)
{
}
TextureCubeArrayFormatCase::TextureCubeArrayFormatCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& renderCtxInfo, const char* name, const char* description, deUint32 internalFormat, int size, int depth)
: TestCase (testCtx, name, description)
, m_renderCtx (renderCtx)
, m_renderCtxInfo (renderCtxInfo)
, m_format (internalFormat)
, m_dataType (GL_NONE)
, m_size (size)
, m_depth (depth)
, m_texture (DE_NULL)
, m_renderer (renderCtx, testCtx.getLog(), glu::GLSL_VERSION_310_ES, glu::PRECISION_HIGHP)
, m_curLayerFace (0)
{
}
TextureCubeArrayFormatCase::~TextureCubeArrayFormatCase (void)
{
deinit();
}
void TextureCubeArrayFormatCase::init (void)
{
if (checkSupport())
{
m_texture = m_dataType != GL_NONE
? new glu::TextureCubeArray(m_renderCtx, m_format, m_dataType, m_size, m_depth) // Implicit internal format.
: new glu::TextureCubeArray(m_renderCtx, m_format, m_size, m_depth); // Explicit internal format.
tcu::TextureFormatInfo spec = tcu::getTextureFormatInfo(m_texture->getRefTexture().getFormat());
// Fill level 0.
m_texture->getRefTexture().allocLevel(0);
tcu::fillWithComponentGradients(m_texture->getRefTexture().getLevel(0), spec.valueMin, spec.valueMax);
// Initialize state.
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
m_curLayerFace = 0;
}
else
{
m_testCtx.setTestResult(QP_TEST_RESULT_NOT_SUPPORTED, "Cube map arrays not supported");
}
}
void TextureCubeArrayFormatCase::deinit (void)
{
delete m_texture;
m_texture = DE_NULL;
m_renderer.clear();
}
bool TextureCubeArrayFormatCase::checkSupport (void)
{
return m_renderCtxInfo.isExtensionSupported("GL_EXT_texture_cube_map_array");
}
bool TextureCubeArrayFormatCase::testLayerFace (int layerFaceNdx)
{
const glw::Functions& gl = m_renderCtx.getFunctions();
TestLog& log = m_testCtx.getLog();
RandomViewport viewport (m_renderCtx.getRenderTarget(), m_size, m_size, deStringHash(getName()));
tcu::Surface renderedFrame (viewport.width, viewport.height);
tcu::Surface referenceFrame (viewport.width, viewport.height);
tcu::RGBA threshold = m_renderCtx.getRenderTarget().getPixelFormat().getColorThreshold() + tcu::RGBA(1,1,1,1);
vector<float> texCoord;
ReferenceParams renderParams (TEXTURETYPE_CUBE_ARRAY);
tcu::TextureFormatInfo spec = tcu::getTextureFormatInfo(m_texture->getRefTexture().getFormat());
const int layerNdx = layerFaceNdx / 6;
const tcu::CubeFace face = getCubeFaceFromNdx(layerFaceNdx % 6);
renderParams.samplerType = getSamplerType(m_texture->getRefTexture().getFormat());
renderParams.sampler = Sampler(Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::NEAREST, Sampler::NEAREST);
renderParams.sampler.seamlessCubeMap = true;
renderParams.colorScale = spec.lookupScale;
renderParams.colorBias = spec.lookupBias;
// Layer here specifies the cube slice
computeQuadTexCoordCubeArray(texCoord, face, tcu::Vec2(0.0f, 0.0f), tcu::Vec2(1.0f, 1.0f), tcu::Vec2((float)layerNdx));
// Setup base viewport.
gl.clear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_STENCIL_BUFFER_BIT);
gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height);
// Upload texture data to GL.
m_texture->upload();
// Bind to unit 0.
gl.activeTexture(GL_TEXTURE0);
gl.bindTexture(GL_TEXTURE_CUBE_MAP_ARRAY, m_texture->getGLTexture());
// Setup nearest neighbor filtering and clamp-to-edge.
gl.texParameteri(GL_TEXTURE_CUBE_MAP_ARRAY, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
gl.texParameteri(GL_TEXTURE_CUBE_MAP_ARRAY, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
gl.texParameteri(GL_TEXTURE_CUBE_MAP_ARRAY, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
gl.texParameteri(GL_TEXTURE_CUBE_MAP_ARRAY, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
GLU_EXPECT_NO_ERROR(gl.getError(), "Set texturing state");
// Draw.
m_renderer.renderQuad(0, &texCoord[0], renderParams);
glu::readPixels(m_renderCtx, viewport.x, viewport.y, renderedFrame.getAccess());
// Compute reference.
sampleTexture(tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat()), m_texture->getRefTexture(), &texCoord[0], renderParams);
// Compare and log.
return compareImages(log, (string("LayerFace" + de::toString(layerFaceNdx))).c_str(), (string("Layer-face " + de::toString(layerFaceNdx))).c_str(), referenceFrame, renderedFrame, threshold);
}
TextureCubeArrayFormatCase::IterateResult TextureCubeArrayFormatCase::iterate (void)
{
if (m_testCtx.getTestResult() == QP_TEST_RESULT_NOT_SUPPORTED)
return STOP;
// Execute test for all layers.
bool isOk = testLayerFace(m_curLayerFace);
if (!isOk && m_testCtx.getTestResult() == QP_TEST_RESULT_PASS)
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image comparison failed");
m_curLayerFace += 1;
return m_curLayerFace < m_texture->getRefTexture().getDepth() ? CONTINUE : STOP;
}
// TextureBufferFormatCase
class TextureBufferFormatCase : public TestCase
{
public:
TextureBufferFormatCase (Context& ctx, glu::RenderContext& renderCtx, const char* name, const char* description, deUint32 internalFormat, int width);
~TextureBufferFormatCase (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
private:
TextureBufferFormatCase (const TextureBufferFormatCase& other);
TextureBufferFormatCase& operator= (const TextureBufferFormatCase& other);
glu::RenderContext& m_renderCtx;
deUint32 m_format;
int m_width;
int m_maxTextureBufferSize;
glu::TextureBuffer* m_texture;
TextureRenderer m_renderer;
};
TextureBufferFormatCase::TextureBufferFormatCase (Context& ctx, glu::RenderContext& renderCtx, const char* name, const char* description, deUint32 internalFormat, int width)
: TestCase (ctx, name, description)
, m_renderCtx (renderCtx)
, m_format (internalFormat)
, m_width (width)
, m_maxTextureBufferSize (0)
, m_texture (DE_NULL)
, m_renderer (renderCtx, ctx.getTestContext().getLog(), glu::GLSL_VERSION_310_ES, glu::PRECISION_HIGHP)
{
}
TextureBufferFormatCase::~TextureBufferFormatCase (void)
{
deinit();
}
void TextureBufferFormatCase::init (void)
{
TestLog& log = m_testCtx.getLog();
tcu::TextureFormat fmt = glu::mapGLInternalFormat(m_format);
tcu::TextureFormatInfo spec = tcu::getTextureFormatInfo(fmt);
tcu::Vec4 colorA (spec.valueMin.x(), spec.valueMax.y(), spec.valueMin.z(), spec.valueMax.w());
tcu::Vec4 colorB (spec.valueMax.x(), spec.valueMin.y(), spec.valueMax.z(), spec.valueMin.w());
if (!m_context.getContextInfo().isExtensionSupported("GL_OES_texture_buffer")
&& !m_context.getContextInfo().isExtensionSupported("GL_EXT_texture_buffer"))
{
TCU_THROW(NotSupportedError, "Texture buffers not supported");
}
m_maxTextureBufferSize = m_context.getContextInfo().getInt(GL_MAX_TEXTURE_BUFFER_SIZE);
if (m_maxTextureBufferSize <= 0)
TCU_THROW(NotSupportedError, "GL_MAX_TEXTURE_BUFFER_SIZE > 0 required");
log << TestLog::Message << "Buffer texture, " << glu::getTextureFormatStr(m_format) << ", " << m_width
<< ",\n fill with " << formatGradient(&colorA, &colorB) << " gradient"
<< TestLog::EndMessage;
m_texture = new glu::TextureBuffer(m_renderCtx, m_format, m_width * fmt.getPixelSize());
// Fill level 0.
tcu::fillWithComponentGradients(m_texture->getFullRefTexture(), colorA, colorB);
}
void TextureBufferFormatCase::deinit (void)
{
delete m_texture;
m_texture = DE_NULL;
m_renderer.clear();
}
TextureBufferFormatCase::IterateResult TextureBufferFormatCase::iterate (void)
{
TestLog& log = m_testCtx.getLog();
const glw::Functions& gl = m_renderCtx.getFunctions();
RandomViewport viewport (m_renderCtx.getRenderTarget(), m_width, 1, deStringHash(getName()));
tcu::Surface renderedFrame (viewport.width, viewport.height);
tcu::Surface referenceFrame (viewport.width, viewport.height);
tcu::RGBA threshold = m_renderCtx.getRenderTarget().getPixelFormat().getColorThreshold() + tcu::RGBA(1,1,1,1);
vector<float> texCoord;
RenderParams renderParams (TEXTURETYPE_BUFFER);
const tcu::ConstPixelBufferAccess effectiveRefTexture = glu::getTextureBufferEffectiveRefTexture(*m_texture, m_maxTextureBufferSize);
tcu::TextureFormatInfo spec = tcu::getTextureFormatInfo(effectiveRefTexture.getFormat());
renderParams.flags |= RenderParams::LOG_ALL;
renderParams.samplerType = getFetchSamplerType(effectiveRefTexture.getFormat());
renderParams.colorScale = spec.lookupScale;
renderParams.colorBias = spec.lookupBias;
computeQuadTexCoord1D(texCoord, 0.0f, (float)(effectiveRefTexture.getWidth()));
gl.clearColor(0.125f, 0.25f, 0.5f, 1.0f);
gl.clear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_STENCIL_BUFFER_BIT);
// Setup base viewport.
gl.clear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_STENCIL_BUFFER_BIT);
gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height);
// Upload texture data to GL.
m_texture->upload();
// Bind to unit 0.
gl.activeTexture(GL_TEXTURE0);
gl.bindTexture(GL_TEXTURE_BUFFER, m_texture->getGLTexture());
GLU_EXPECT_NO_ERROR(gl.getError(), "Set texturing state");
// Draw.
m_renderer.renderQuad(0, &texCoord[0], renderParams);
glu::readPixels(m_renderCtx, viewport.x, viewport.y, renderedFrame.getAccess());
GLU_EXPECT_NO_ERROR(gl.getError(), "glReadPixels()");
// Compute reference.
fetchTexture(tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat()), effectiveRefTexture, &texCoord[0], spec.lookupScale, spec.lookupBias);
// Compare and log.
bool isOk = compareImages(log, referenceFrame, renderedFrame, threshold);
m_testCtx.setTestResult(isOk ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL,
isOk ? "Pass" : "Image comparison failed");
return STOP;
}
// TextureFormatTests
TextureFormatTests::TextureFormatTests (Context& context)
: TestCaseGroup(context, "format", "Texture Format Tests")
{
}
TextureFormatTests::~TextureFormatTests (void)
{
}
vector<string> toStringVector (const char* const* str, int numStr)
{
vector<string> v;
v.resize(numStr);
for (int i = 0; i < numStr; i++)
v[i] = str[i];
return v;
}
void TextureFormatTests::init (void)
{
tcu::TestCaseGroup* unsizedGroup = DE_NULL;
tcu::TestCaseGroup* sizedGroup = DE_NULL;
tcu::TestCaseGroup* sizedBufferGroup = DE_NULL;
addChild((unsizedGroup = new tcu::TestCaseGroup(m_testCtx, "unsized", "Unsized formats")));
addChild((sizedGroup = new tcu::TestCaseGroup(m_testCtx, "sized", "Sized formats")));
addChild((sizedBufferGroup = new tcu::TestCaseGroup(m_testCtx, "buffer", "Sized formats (Buffer)")));
tcu::TestCaseGroup* sizedCubeArrayGroup = DE_NULL;
sizedGroup->addChild((sizedCubeArrayGroup = new tcu::TestCaseGroup(m_testCtx, "cube_array", "Sized formats (2D Array)")));
struct
{
const char* name;
deUint32 format;
deUint32 dataType;
} texFormats[] =
{
{ "alpha", GL_ALPHA, GL_UNSIGNED_BYTE },
{ "luminance", GL_LUMINANCE, GL_UNSIGNED_BYTE },
{ "luminance_alpha", GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE },
{ "rgb_unsigned_short_5_6_5", GL_RGB, GL_UNSIGNED_SHORT_5_6_5 },
{ "rgb_unsigned_byte", GL_RGB, GL_UNSIGNED_BYTE },
{ "rgba_unsigned_short_4_4_4_4", GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4 },
{ "rgba_unsigned_short_5_5_5_1", GL_RGBA, GL_UNSIGNED_SHORT_5_5_5_1 },
{ "rgba_unsigned_byte", GL_RGBA, GL_UNSIGNED_BYTE }
};
for (int formatNdx = 0; formatNdx < DE_LENGTH_OF_ARRAY(texFormats); formatNdx++)
{
deUint32 format = texFormats[formatNdx].format;
deUint32 dataType = texFormats[formatNdx].dataType;
string nameBase = texFormats[formatNdx].name;
string descriptionBase = string(glu::getTextureFormatName(format)) + ", " + glu::getTypeName(dataType);
unsizedGroup->addChild(new TextureCubeArrayFormatCase (m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), (nameBase + "_cube_array_pot").c_str(), (descriptionBase + ", GL_TEXTURE_CUBE_MAP_ARRAY").c_str(), format, dataType, 64, 12));
unsizedGroup->addChild(new TextureCubeArrayFormatCase (m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), (nameBase + "_cube_array_npot").c_str(), (descriptionBase + ", GL_TEXTURE_CUBE_MAP_ARRAY").c_str(), format, dataType, 64, 12));
}
struct
{
const char* name;
deUint32 internalFormat;
} sizedColorFormats[] =
{
{ "rgba32f", GL_RGBA32F, },
{ "rgba32i", GL_RGBA32I, },
{ "rgba32ui", GL_RGBA32UI, },
{ "rgba16f", GL_RGBA16F, },
{ "rgba16i", GL_RGBA16I, },
{ "rgba16ui", GL_RGBA16UI, },
{ "rgba8", GL_RGBA8, },
{ "rgba8i", GL_RGBA8I, },
{ "rgba8ui", GL_RGBA8UI, },
{ "srgb8_alpha8", GL_SRGB8_ALPHA8, },
{ "rgb10_a2", GL_RGB10_A2, },
{ "rgb10_a2ui", GL_RGB10_A2UI, },
{ "rgba4", GL_RGBA4, },
{ "rgb5_a1", GL_RGB5_A1, },
{ "rgba8_snorm", GL_RGBA8_SNORM, },
{ "rgb8", GL_RGB8, },
{ "rgb565", GL_RGB565, },
{ "r11f_g11f_b10f", GL_R11F_G11F_B10F, },
{ "rgb32f", GL_RGB32F, },
{ "rgb32i", GL_RGB32I, },
{ "rgb32ui", GL_RGB32UI, },
{ "rgb16f", GL_RGB16F, },
{ "rgb16i", GL_RGB16I, },
{ "rgb16ui", GL_RGB16UI, },
{ "rgb8_snorm", GL_RGB8_SNORM, },
{ "rgb8i", GL_RGB8I, },
{ "rgb8ui", GL_RGB8UI, },
{ "srgb8", GL_SRGB8, },
{ "rgb9_e5", GL_RGB9_E5, },
{ "rg32f", GL_RG32F, },
{ "rg32i", GL_RG32I, },
{ "rg32ui", GL_RG32UI, },
{ "rg16f", GL_RG16F, },
{ "rg16i", GL_RG16I, },
{ "rg16ui", GL_RG16UI, },
{ "rg8", GL_RG8, },
{ "rg8i", GL_RG8I, },
{ "rg8ui", GL_RG8UI, },
{ "rg8_snorm", GL_RG8_SNORM, },
{ "r32f", GL_R32F, },
{ "r32i", GL_R32I, },
{ "r32ui", GL_R32UI, },
{ "r16f", GL_R16F, },
{ "r16i", GL_R16I, },
{ "r16ui", GL_R16UI, },
{ "r8", GL_R8, },
{ "r8i", GL_R8I, },
{ "r8ui", GL_R8UI, },
{ "r8_snorm", GL_R8_SNORM, }
};
struct
{
const char* name;
deUint32 internalFormat;
} sizedDepthStencilFormats[] =
{
// Depth and stencil formats
{ "depth_component32f", GL_DEPTH_COMPONENT32F },
{ "depth_component24", GL_DEPTH_COMPONENT24 },
{ "depth_component16", GL_DEPTH_COMPONENT16 },
{ "depth32f_stencil8", GL_DEPTH32F_STENCIL8 },
{ "depth24_stencil8", GL_DEPTH24_STENCIL8 }
};
for (int formatNdx = 0; formatNdx < DE_LENGTH_OF_ARRAY(sizedColorFormats); formatNdx++)
{
deUint32 internalFormat = sizedColorFormats[formatNdx].internalFormat;
string nameBase = sizedColorFormats[formatNdx].name;
string descriptionBase = glu::getTextureFormatName(internalFormat);
sizedCubeArrayGroup->addChild(new TextureCubeArrayFormatCase (m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), (nameBase + "_pot").c_str(), (descriptionBase + ", GL_TEXTURE_CUBE_MAP_ARRAY").c_str(), internalFormat, 64, 12));
sizedCubeArrayGroup->addChild(new TextureCubeArrayFormatCase (m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), (nameBase + "_npot").c_str(), (descriptionBase + ", GL_TEXTURE_CUBE_MAP_ARRAY").c_str(), internalFormat, 64, 12));
}
for (int formatNdx = 0; formatNdx < DE_LENGTH_OF_ARRAY(sizedDepthStencilFormats); formatNdx++)
{
deUint32 internalFormat = sizedDepthStencilFormats[formatNdx].internalFormat;
string nameBase = sizedDepthStencilFormats[formatNdx].name;
string descriptionBase = glu::getTextureFormatName(internalFormat);
sizedCubeArrayGroup->addChild(new TextureCubeArrayFormatCase (m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), (nameBase + "_pot").c_str(), (descriptionBase + ", GL_TEXTURE_CUBE_MAP_ARRAY").c_str(), internalFormat, 64, 12));
sizedCubeArrayGroup->addChild(new TextureCubeArrayFormatCase (m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), (nameBase + "_npot").c_str(), (descriptionBase + ", GL_TEXTURE_CUBE_MAP_ARRAY").c_str(), internalFormat, 64, 12));
}
// \todo Check
struct
{
const char* name;
deUint32 internalFormat;
} bufferColorFormats[] =
{
{ "r8", GL_R8, },
{ "r16f", GL_R16F, },
{ "r32f", GL_R32F, },
{ "r8i", GL_R8I, },
{ "r16i", GL_R16I, },
{ "r32i", GL_R32I, },
{ "r8ui", GL_R8UI, },
{ "r16ui", GL_R16UI, },
{ "r32ui", GL_R32UI, },
{ "rg8", GL_RG8, },
{ "rg16f", GL_RG16F, },
{ "rg32f", GL_RG32F, },
{ "rg8i", GL_RG8I, },
{ "rg16i", GL_RG16I, },
{ "rg32i", GL_RG32I, },
{ "rg8ui", GL_RG8UI, },
{ "rg16ui", GL_RG16UI, },
{ "rg32ui", GL_RG32UI, },
{ "rgba8", GL_RGBA8, },
{ "rgba16f", GL_RGBA16F, },
{ "rgba32f", GL_RGBA32F, },
{ "rgba8i", GL_RGBA8I, },
{ "rgba16i", GL_RGBA16I, },
{ "rgba32i", GL_RGBA32I, },
{ "rgba8ui", GL_RGBA8UI, },
{ "rgba16ui", GL_RGBA16UI, },
{ "rgba32ui", GL_RGBA32UI, }
};
for (int formatNdx = 0; formatNdx < DE_LENGTH_OF_ARRAY(bufferColorFormats); formatNdx++)
{
deUint32 internalFormat = bufferColorFormats[formatNdx].internalFormat;
string nameBase = bufferColorFormats[formatNdx].name;
string descriptionBase = glu::getTextureFormatName(internalFormat);
sizedBufferGroup->addChild (new TextureBufferFormatCase (m_context, m_context.getRenderContext(), (nameBase + "_pot").c_str(), (descriptionBase + ", GL_TEXTURE_BUFFER").c_str(), internalFormat, 64));
sizedBufferGroup->addChild (new TextureBufferFormatCase (m_context, m_context.getRenderContext(), (nameBase + "_npot").c_str(), (descriptionBase + ", GL_TEXTURE_BUFFER").c_str(), internalFormat, 112));
}
}
} // Functional
} // gles31
} // deqp