// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/pickle.h"
#include <limits.h>
#include <stddef.h>
#include <stdint.h>
#include <memory>
#include <string>
#include "base/macros.h"
#include "base/strings/string16.h"
#include "base/strings/utf_string_conversions.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace base {
namespace {
const bool testbool1 = false;
const bool testbool2 = true;
const int testint = 2093847192;
const long testlong = 1093847192;
const uint16_t testuint16 = 32123;
const uint32_t testuint32 = 1593847192;
const int64_t testint64 = -0x7E8CA9253104BDFCLL;
const uint64_t testuint64 = 0xCE8CA9253104BDF7ULL;
const float testfloat = 3.1415926935f;
const double testdouble = 2.71828182845904523;
const std::string teststring("Hello world"); // note non-aligned string length
const std::wstring testwstring(L"Hello, world");
const string16 teststring16(ASCIIToUTF16("Hello, world"));
const char testrawstring[] = "Hello new world"; // Test raw string writing
// Test raw char16 writing, assumes UTF16 encoding is ANSI for alpha chars.
const char16 testrawstring16[] = {'A', 'l', 'o', 'h', 'a', 0};
const char testdata[] = "AAA\0BBB\0";
const int testdatalen = arraysize(testdata) - 1;
// checks that the results can be read correctly from the Pickle
void VerifyResult(const Pickle& pickle) {
PickleIterator iter(pickle);
bool outbool;
EXPECT_TRUE(iter.ReadBool(&outbool));
EXPECT_FALSE(outbool);
EXPECT_TRUE(iter.ReadBool(&outbool));
EXPECT_TRUE(outbool);
int outint;
EXPECT_TRUE(iter.ReadInt(&outint));
EXPECT_EQ(testint, outint);
long outlong;
EXPECT_TRUE(iter.ReadLong(&outlong));
EXPECT_EQ(testlong, outlong);
uint16_t outuint16;
EXPECT_TRUE(iter.ReadUInt16(&outuint16));
EXPECT_EQ(testuint16, outuint16);
uint32_t outuint32;
EXPECT_TRUE(iter.ReadUInt32(&outuint32));
EXPECT_EQ(testuint32, outuint32);
int64_t outint64;
EXPECT_TRUE(iter.ReadInt64(&outint64));
EXPECT_EQ(testint64, outint64);
uint64_t outuint64;
EXPECT_TRUE(iter.ReadUInt64(&outuint64));
EXPECT_EQ(testuint64, outuint64);
float outfloat;
EXPECT_TRUE(iter.ReadFloat(&outfloat));
EXPECT_EQ(testfloat, outfloat);
double outdouble;
EXPECT_TRUE(iter.ReadDouble(&outdouble));
EXPECT_EQ(testdouble, outdouble);
std::string outstring;
EXPECT_TRUE(iter.ReadString(&outstring));
EXPECT_EQ(teststring, outstring);
string16 outstring16;
EXPECT_TRUE(iter.ReadString16(&outstring16));
EXPECT_EQ(teststring16, outstring16);
StringPiece outstringpiece;
EXPECT_TRUE(iter.ReadStringPiece(&outstringpiece));
EXPECT_EQ(testrawstring, outstringpiece);
StringPiece16 outstringpiece16;
EXPECT_TRUE(iter.ReadStringPiece16(&outstringpiece16));
EXPECT_EQ(testrawstring16, outstringpiece16);
const char* outdata;
int outdatalen;
EXPECT_TRUE(iter.ReadData(&outdata, &outdatalen));
EXPECT_EQ(testdatalen, outdatalen);
EXPECT_EQ(memcmp(testdata, outdata, outdatalen), 0);
// reads past the end should fail
EXPECT_FALSE(iter.ReadInt(&outint));
}
} // namespace
TEST(PickleTest, EncodeDecode) {
Pickle pickle;
EXPECT_TRUE(pickle.WriteBool(testbool1));
EXPECT_TRUE(pickle.WriteBool(testbool2));
EXPECT_TRUE(pickle.WriteInt(testint));
EXPECT_TRUE(pickle.WriteLong(testlong));
EXPECT_TRUE(pickle.WriteUInt16(testuint16));
EXPECT_TRUE(pickle.WriteUInt32(testuint32));
EXPECT_TRUE(pickle.WriteInt64(testint64));
EXPECT_TRUE(pickle.WriteUInt64(testuint64));
EXPECT_TRUE(pickle.WriteFloat(testfloat));
EXPECT_TRUE(pickle.WriteDouble(testdouble));
EXPECT_TRUE(pickle.WriteString(teststring));
EXPECT_TRUE(pickle.WriteString16(teststring16));
EXPECT_TRUE(pickle.WriteString(testrawstring));
EXPECT_TRUE(pickle.WriteString16(testrawstring16));
EXPECT_TRUE(pickle.WriteData(testdata, testdatalen));
VerifyResult(pickle);
// test copy constructor
Pickle pickle2(pickle);
VerifyResult(pickle2);
// test operator=
Pickle pickle3;
pickle3 = pickle;
VerifyResult(pickle3);
}
// Tests that reading/writing a long works correctly when the source process
// is 64-bit. We rely on having both 32- and 64-bit trybots to validate both
// arms of the conditional in this test.
TEST(PickleTest, LongFrom64Bit) {
Pickle pickle;
// Under the hood long is always written as a 64-bit value, so simulate a
// 64-bit long even on 32-bit architectures by explicitly writing an int64_t.
EXPECT_TRUE(pickle.WriteInt64(testint64));
PickleIterator iter(pickle);
long outlong;
if (sizeof(long) < sizeof(int64_t)) {
// ReadLong() should return false when the original written value can't be
// represented as a long.
#if GTEST_HAS_DEATH_TEST
EXPECT_DEATH(ignore_result(iter.ReadLong(&outlong)), "");
#endif
} else {
EXPECT_TRUE(iter.ReadLong(&outlong));
EXPECT_EQ(testint64, outlong);
}
}
// Tests that we can handle really small buffers.
TEST(PickleTest, SmallBuffer) {
std::unique_ptr<char[]> buffer(new char[1]);
// We should not touch the buffer.
Pickle pickle(buffer.get(), 1);
PickleIterator iter(pickle);
int data;
EXPECT_FALSE(iter.ReadInt(&data));
}
// Tests that we can handle improper headers.
TEST(PickleTest, BigSize) {
int buffer[] = { 0x56035200, 25, 40, 50 };
Pickle pickle(reinterpret_cast<char*>(buffer), sizeof(buffer));
PickleIterator iter(pickle);
int data;
EXPECT_FALSE(iter.ReadInt(&data));
}
TEST(PickleTest, UnalignedSize) {
int buffer[] = { 10, 25, 40, 50 };
Pickle pickle(reinterpret_cast<char*>(buffer), sizeof(buffer));
PickleIterator iter(pickle);
int data;
EXPECT_FALSE(iter.ReadInt(&data));
}
TEST(PickleTest, ZeroLenStr) {
Pickle pickle;
EXPECT_TRUE(pickle.WriteString(std::string()));
PickleIterator iter(pickle);
std::string outstr;
EXPECT_TRUE(iter.ReadString(&outstr));
EXPECT_EQ("", outstr);
}
TEST(PickleTest, ZeroLenStr16) {
Pickle pickle;
EXPECT_TRUE(pickle.WriteString16(string16()));
PickleIterator iter(pickle);
std::string outstr;
EXPECT_TRUE(iter.ReadString(&outstr));
EXPECT_EQ("", outstr);
}
TEST(PickleTest, BadLenStr) {
Pickle pickle;
EXPECT_TRUE(pickle.WriteInt(-2));
PickleIterator iter(pickle);
std::string outstr;
EXPECT_FALSE(iter.ReadString(&outstr));
}
TEST(PickleTest, BadLenStr16) {
Pickle pickle;
EXPECT_TRUE(pickle.WriteInt(-1));
PickleIterator iter(pickle);
string16 outstr;
EXPECT_FALSE(iter.ReadString16(&outstr));
}
TEST(PickleTest, PeekNext) {
struct CustomHeader : base::Pickle::Header {
int cookies[10];
};
Pickle pickle(sizeof(CustomHeader));
EXPECT_TRUE(pickle.WriteString("Goooooooooooogle"));
const char* pickle_data = static_cast<const char*>(pickle.data());
size_t pickle_size;
// Data range doesn't contain header
EXPECT_FALSE(Pickle::PeekNext(
sizeof(CustomHeader),
pickle_data,
pickle_data + sizeof(CustomHeader) - 1,
&pickle_size));
// Data range contains header
EXPECT_TRUE(Pickle::PeekNext(
sizeof(CustomHeader),
pickle_data,
pickle_data + sizeof(CustomHeader),
&pickle_size));
EXPECT_EQ(pickle_size, pickle.size());
// Data range contains header and some other data
EXPECT_TRUE(Pickle::PeekNext(
sizeof(CustomHeader),
pickle_data,
pickle_data + sizeof(CustomHeader) + 1,
&pickle_size));
EXPECT_EQ(pickle_size, pickle.size());
// Data range contains full pickle
EXPECT_TRUE(Pickle::PeekNext(
sizeof(CustomHeader),
pickle_data,
pickle_data + pickle.size(),
&pickle_size));
EXPECT_EQ(pickle_size, pickle.size());
}
TEST(PickleTest, PeekNextOverflow) {
struct CustomHeader : base::Pickle::Header {
int cookies[10];
};
CustomHeader header;
// Check if we can wrap around at all
if (sizeof(size_t) > sizeof(header.payload_size))
return;
const char* pickle_data = reinterpret_cast<const char*>(&header);
size_t pickle_size;
// Wrapping around is detected and reported as maximum size_t value
header.payload_size = static_cast<uint32_t>(
1 - static_cast<int32_t>(sizeof(CustomHeader)));
EXPECT_TRUE(Pickle::PeekNext(
sizeof(CustomHeader),
pickle_data,
pickle_data + sizeof(CustomHeader),
&pickle_size));
EXPECT_EQ(pickle_size, std::numeric_limits<size_t>::max());
// Ridiculous pickle sizes are fine (callers are supposed to
// verify them)
header.payload_size =
std::numeric_limits<uint32_t>::max() / 2 - sizeof(CustomHeader);
EXPECT_TRUE(Pickle::PeekNext(
sizeof(CustomHeader),
pickle_data,
pickle_data + sizeof(CustomHeader),
&pickle_size));
EXPECT_EQ(pickle_size, std::numeric_limits<uint32_t>::max() / 2);
}
TEST(PickleTest, FindNext) {
Pickle pickle;
EXPECT_TRUE(pickle.WriteInt(1));
EXPECT_TRUE(pickle.WriteString("Domo"));
const char* start = reinterpret_cast<const char*>(pickle.data());
const char* end = start + pickle.size();
EXPECT_TRUE(end == Pickle::FindNext(pickle.header_size_, start, end));
EXPECT_TRUE(NULL == Pickle::FindNext(pickle.header_size_, start, end - 1));
EXPECT_TRUE(end == Pickle::FindNext(pickle.header_size_, start, end + 1));
}
TEST(PickleTest, FindNextWithIncompleteHeader) {
size_t header_size = sizeof(Pickle::Header);
std::unique_ptr<char[]> buffer(new char[header_size - 1]);
memset(buffer.get(), 0x1, header_size - 1);
const char* start = buffer.get();
const char* end = start + header_size - 1;
EXPECT_TRUE(NULL == Pickle::FindNext(header_size, start, end));
}
#if defined(COMPILER_MSVC)
#pragma warning(push)
#pragma warning(disable: 4146)
#endif
TEST(PickleTest, FindNextOverflow) {
size_t header_size = sizeof(Pickle::Header);
size_t header_size2 = 2 * header_size;
size_t payload_received = 100;
std::unique_ptr<char[]> buffer(new char[header_size2 + payload_received]);
const char* start = buffer.get();
Pickle::Header* header = reinterpret_cast<Pickle::Header*>(buffer.get());
const char* end = start + header_size2 + payload_received;
// It is impossible to construct an overflow test otherwise.
if (sizeof(size_t) > sizeof(header->payload_size) ||
sizeof(uintptr_t) > sizeof(header->payload_size))
return;
header->payload_size = -(reinterpret_cast<uintptr_t>(start) + header_size2);
EXPECT_TRUE(NULL == Pickle::FindNext(header_size2, start, end));
header->payload_size = -header_size2;
EXPECT_TRUE(NULL == Pickle::FindNext(header_size2, start, end));
header->payload_size = 0;
end = start + header_size;
EXPECT_TRUE(NULL == Pickle::FindNext(header_size2, start, end));
}
#if defined(COMPILER_MSVC)
#pragma warning(pop)
#endif
TEST(PickleTest, GetReadPointerAndAdvance) {
Pickle pickle;
PickleIterator iter(pickle);
EXPECT_FALSE(iter.GetReadPointerAndAdvance(1));
EXPECT_TRUE(pickle.WriteInt(1));
EXPECT_TRUE(pickle.WriteInt(2));
int bytes = sizeof(int) * 2;
EXPECT_TRUE(PickleIterator(pickle).GetReadPointerAndAdvance(0));
EXPECT_TRUE(PickleIterator(pickle).GetReadPointerAndAdvance(1));
EXPECT_FALSE(PickleIterator(pickle).GetReadPointerAndAdvance(-1));
EXPECT_TRUE(PickleIterator(pickle).GetReadPointerAndAdvance(bytes));
EXPECT_FALSE(PickleIterator(pickle).GetReadPointerAndAdvance(bytes + 1));
EXPECT_FALSE(PickleIterator(pickle).GetReadPointerAndAdvance(INT_MAX));
EXPECT_FALSE(PickleIterator(pickle).GetReadPointerAndAdvance(INT_MIN));
}
TEST(PickleTest, Resize) {
size_t unit = Pickle::kPayloadUnit;
std::unique_ptr<char[]> data(new char[unit]);
char* data_ptr = data.get();
for (size_t i = 0; i < unit; i++)
data_ptr[i] = 'G';
// construct a message that will be exactly the size of one payload unit,
// note that any data will have a 4-byte header indicating the size
const size_t payload_size_after_header = unit - sizeof(uint32_t);
Pickle pickle;
pickle.WriteData(
data_ptr, static_cast<int>(payload_size_after_header - sizeof(uint32_t)));
size_t cur_payload = payload_size_after_header;
// note: we assume 'unit' is a power of 2
EXPECT_EQ(unit, pickle.capacity_after_header());
EXPECT_EQ(pickle.payload_size(), payload_size_after_header);
// fill out a full page (noting data header)
pickle.WriteData(data_ptr, static_cast<int>(unit - sizeof(uint32_t)));
cur_payload += unit;
EXPECT_EQ(unit * 2, pickle.capacity_after_header());
EXPECT_EQ(cur_payload, pickle.payload_size());
// one more byte should double the capacity
pickle.WriteData(data_ptr, 1);
cur_payload += 8;
EXPECT_EQ(unit * 4, pickle.capacity_after_header());
EXPECT_EQ(cur_payload, pickle.payload_size());
}
namespace {
struct CustomHeader : Pickle::Header {
int blah;
};
} // namespace
TEST(PickleTest, HeaderPadding) {
const uint32_t kMagic = 0x12345678;
Pickle pickle(sizeof(CustomHeader));
pickle.WriteInt(kMagic);
// this should not overwrite the 'int' payload
pickle.headerT<CustomHeader>()->blah = 10;
PickleIterator iter(pickle);
int result;
ASSERT_TRUE(iter.ReadInt(&result));
EXPECT_EQ(static_cast<uint32_t>(result), kMagic);
}
TEST(PickleTest, EqualsOperator) {
Pickle source;
source.WriteInt(1);
Pickle copy_refs_source_buffer(static_cast<const char*>(source.data()),
source.size());
Pickle copy;
copy = copy_refs_source_buffer;
ASSERT_EQ(source.size(), copy.size());
}
TEST(PickleTest, EvilLengths) {
Pickle source;
std::string str(100000, 'A');
EXPECT_TRUE(source.WriteData(str.c_str(), 100000));
// ReadString16 used to have its read buffer length calculation wrong leading
// to out-of-bounds reading.
PickleIterator iter(source);
string16 str16;
EXPECT_FALSE(iter.ReadString16(&str16));
// And check we didn't break ReadString16.
str16 = (wchar_t) 'A';
Pickle str16_pickle;
EXPECT_TRUE(str16_pickle.WriteString16(str16));
iter = PickleIterator(str16_pickle);
EXPECT_TRUE(iter.ReadString16(&str16));
EXPECT_EQ(1U, str16.length());
// Check we don't fail in a length check with invalid String16 size.
// (1<<31) * sizeof(char16) == 0, so this is particularly evil.
Pickle bad_len;
EXPECT_TRUE(bad_len.WriteInt(1 << 31));
iter = PickleIterator(bad_len);
EXPECT_FALSE(iter.ReadString16(&str16));
}
// Check we can write zero bytes of data and 'data' can be NULL.
TEST(PickleTest, ZeroLength) {
Pickle pickle;
EXPECT_TRUE(pickle.WriteData(NULL, 0));
PickleIterator iter(pickle);
const char* outdata;
int outdatalen;
EXPECT_TRUE(iter.ReadData(&outdata, &outdatalen));
EXPECT_EQ(0, outdatalen);
// We can't assert that outdata is NULL.
}
// Check that ReadBytes works properly with an iterator initialized to NULL.
TEST(PickleTest, ReadBytes) {
Pickle pickle;
int data = 0x7abcd;
EXPECT_TRUE(pickle.WriteBytes(&data, sizeof(data)));
PickleIterator iter(pickle);
const char* outdata_char = NULL;
EXPECT_TRUE(iter.ReadBytes(&outdata_char, sizeof(data)));
int outdata;
memcpy(&outdata, outdata_char, sizeof(outdata));
EXPECT_EQ(data, outdata);
}
// Checks that when a pickle is deep-copied, the result is not larger than
// needed.
TEST(PickleTest, DeepCopyResize) {
Pickle pickle;
while (pickle.capacity_after_header() != pickle.payload_size())
pickle.WriteBool(true);
// Make a deep copy.
Pickle pickle2(pickle);
// Check that there isn't any extraneous capacity.
EXPECT_EQ(pickle.capacity_after_header(), pickle2.capacity_after_header());
}
namespace {
// Publicly exposes the ClaimBytes interface for testing.
class TestingPickle : public Pickle {
public:
TestingPickle() {}
void* ClaimBytes(size_t num_bytes) { return Pickle::ClaimBytes(num_bytes); }
};
} // namespace
// Checks that claimed bytes are zero-initialized.
TEST(PickleTest, ClaimBytesInitialization) {
static const int kChunkSize = 64;
TestingPickle pickle;
const char* bytes = static_cast<const char*>(pickle.ClaimBytes(kChunkSize));
for (size_t i = 0; i < kChunkSize; ++i) {
EXPECT_EQ(0, bytes[i]);
}
}
// Checks that ClaimBytes properly advances the write offset.
TEST(PickleTest, ClaimBytes) {
std::string data("Hello, world!");
TestingPickle pickle;
pickle.WriteUInt32(data.size());
void* bytes = pickle.ClaimBytes(data.size());
pickle.WriteInt(42);
memcpy(bytes, data.data(), data.size());
PickleIterator iter(pickle);
uint32_t out_data_length;
EXPECT_TRUE(iter.ReadUInt32(&out_data_length));
EXPECT_EQ(data.size(), out_data_length);
const char* out_data = nullptr;
EXPECT_TRUE(iter.ReadBytes(&out_data, out_data_length));
EXPECT_EQ(data, std::string(out_data, out_data_length));
int out_value;
EXPECT_TRUE(iter.ReadInt(&out_value));
EXPECT_EQ(42, out_value);
}
// Checks that PickleSizer and Pickle agree on the size of things.
TEST(PickleTest, PickleSizer) {
{
TestingPickle pickle;
base::PickleSizer sizer;
pickle.WriteBool(true);
sizer.AddBool();
EXPECT_EQ(sizer.payload_size(), pickle.payload_size());
}
{
TestingPickle pickle;
base::PickleSizer sizer;
pickle.WriteInt(42);
sizer.AddInt();
EXPECT_EQ(sizer.payload_size(), pickle.payload_size());
}
{
TestingPickle pickle;
base::PickleSizer sizer;
pickle.WriteLong(42);
sizer.AddLong();
EXPECT_EQ(sizer.payload_size(), pickle.payload_size());
}
{
TestingPickle pickle;
base::PickleSizer sizer;
pickle.WriteUInt16(42);
sizer.AddUInt16();
EXPECT_EQ(sizer.payload_size(), pickle.payload_size());
}
{
TestingPickle pickle;
base::PickleSizer sizer;
pickle.WriteUInt32(42);
sizer.AddUInt32();
EXPECT_EQ(sizer.payload_size(), pickle.payload_size());
}
{
TestingPickle pickle;
base::PickleSizer sizer;
pickle.WriteInt64(42);
sizer.AddInt64();
EXPECT_EQ(sizer.payload_size(), pickle.payload_size());
}
{
TestingPickle pickle;
base::PickleSizer sizer;
pickle.WriteUInt64(42);
sizer.AddUInt64();
EXPECT_EQ(sizer.payload_size(), pickle.payload_size());
}
{
TestingPickle pickle;
base::PickleSizer sizer;
pickle.WriteFloat(42.0f);
sizer.AddFloat();
EXPECT_EQ(sizer.payload_size(), pickle.payload_size());
}
{
TestingPickle pickle;
base::PickleSizer sizer;
pickle.WriteDouble(42.0);
sizer.AddDouble();
EXPECT_EQ(sizer.payload_size(), pickle.payload_size());
}
{
TestingPickle pickle;
base::PickleSizer sizer;
pickle.WriteString(teststring);
sizer.AddString(teststring);
EXPECT_EQ(sizer.payload_size(), pickle.payload_size());
}
{
TestingPickle pickle;
base::PickleSizer sizer;
pickle.WriteString16(teststring16);
sizer.AddString16(teststring16);
EXPECT_EQ(sizer.payload_size(), pickle.payload_size());
}
{
TestingPickle pickle;
base::PickleSizer sizer;
pickle.WriteData(testdata, testdatalen);
sizer.AddData(testdatalen);
EXPECT_EQ(sizer.payload_size(), pickle.payload_size());
}
{
TestingPickle pickle;
base::PickleSizer sizer;
pickle.WriteBytes(testdata, testdatalen);
sizer.AddBytes(testdatalen);
EXPECT_EQ(sizer.payload_size(), pickle.payload_size());
}
}
} // namespace base