C++程序  |  1041行  |  31.79 KB

/* ----------------------------------------------------------------------- *
 *
 *   Copyright 2006 Erwan Velu - All Rights Reserved
 *
 *   Permission is hereby granted, free of charge, to any person
 *   obtaining a copy of this software and associated documentation
 *   files (the "Software"), to deal in the Software without
 *   restriction, including without limitation the rights to use,
 *   copy, modify, merge, publish, distribute, sublicense, and/or
 *   sell copies of the Software, and to permit persons to whom
 *   the Software is furnished to do so, subject to the following
 *   conditions:
 *
 *   The above copyright notice and this permission notice shall
 *   be included in all copies or substantial portions of the Software.
 *
 *   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 *   EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
 *   OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 *   NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
 *   HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
 *   WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 *   FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 *   OTHER DEALINGS IN THE SOFTWARE.
 *
 * -----------------------------------------------------------------------
*/

#include <stdio.h>
#include <string.h>
#include "dmi/dmi.h"

const char *out_of_spec = "<OUT OF SPEC>";
const char *bad_index = "<BAD INDEX>";

/*
 * Misc. util stuff
 */

/*
 * 3.3.11 On Board Devices Information (Type 10)
 */

static const char *dmi_on_board_devices_type(uint8_t code)
{
    /* 3.3.11.1 */
    static const char *type[] = {
	"Other",		/* 0x01 */
	"Unknown",
	"Video",
	"SCSI Controller",
	"Ethernet",
	"Token Ring",
	"Sound",
	"PATA Controller",
	"SATA Controller",
	"SAS Controller"	/* 0x0A */
    };

    if (code >= 0x01 && code <= 0x0A)
	return type[code - 0x01];
    return out_of_spec;
}

static void dmi_on_board_devices(struct dmi_header *h, s_dmi * dmi)
{
    uint8_t *p = h->data + 4;
    uint8_t count = (h->length - 0x04) / 2;
    unsigned int i;

    for (i = 0;
	 i < count
	 && i <
	 sizeof dmi->base_board.devices_information /
	 sizeof *dmi->base_board.devices_information; i++) {
	strlcpy(dmi->base_board.devices_information[i].type,
		dmi_on_board_devices_type(p[2 * i] & 0x7F),
		sizeof dmi->base_board.devices_information[i].type);
	dmi->base_board.devices_information[i].status = p[2 * i] & 0x80;
	strlcpy(dmi->base_board.devices_information[i].description,
		dmi_string(h, p[2 * i + 1]),
		sizeof dmi->base_board.devices_information[i].description);
    }
}

/*
 * 3.3.24 System Reset (Type 23)
 */

static const char *dmi_system_reset_boot_option(uint8_t code)
{
    static const char *option[] = {
	"Operating System",	/* 0x1 */
	"System Utilities",
	"Do Not Reboot"		/* 0x3 */
    };

    if (code >= 0x1)
	return option[code - 0x1];
    return out_of_spec;
}

static void dmi_system_reset_count(uint16_t code, char *array)
{
    if (code == 0xFFFF)
	strlcpy(array, "Unknown", sizeof array);
    else
	snprintf(array, sizeof array, "%u", code);
}

static void dmi_system_reset_timer(uint16_t code, char *array)
{
    if (code == 0xFFFF)
	strlcpy(array, "Unknown", sizeof array);
    else
	snprintf(array, sizeof array, "%u min", code);
}

/*
 * 3.3.25 Hardware Security (Type 24)
 */

static const char *dmi_hardware_security_status(uint8_t code)
{
    static const char *status[] = {
	"Disabled",		/* 0x00 */
	"Enabled",
	"Not Implemented",
	"Unknown"		/* 0x03 */
    };

    return status[code];
}

/*
 * 3.3.12 OEM Strings (Type 11)
 */

static void dmi_oem_strings(struct dmi_header *h, const char *prefix,
			    s_dmi * dmi)
{
    uint8_t *p = h->data + 4;
    uint8_t count = p[0x00];
    int i;

    for (i = 1; i <= count; i++)
	snprintf(dmi->oem_strings, OEM_STRINGS_SIZE, "%s %s %s\n",
		 dmi->oem_strings, prefix, dmi_string(h, i));
}

/*
 * 3.3.13 System Configuration Options (Type 12)
 */
static void dmi_system_configuration_options(struct dmi_header *h,
					     const char *prefix, s_dmi * dmi)
{
    uint8_t *p = h->data + 4;
    uint8_t count = p[0x00];
    int i;

    for (i = 1; i <= count; i++)
	snprintf(dmi->system.configuration_options,
		 SYSTEM_CONFIGURATION_OPTIONS_SIZE, "%s %s %s\n",
		 dmi->system.configuration_options, prefix, dmi_string(h, i));
}

static void dmi_system_boot_status(uint8_t code, char *array)
{
    static const char *status[] = {
	"No errors detected",	/* 0 */
	"No bootable media",
	"Operating system failed to load",
	"Firmware-detected hardware failure",
	"Operating system-detected hardware failure",
	"User-requested boot",
	"System security violation",
	"Previously-requested image",
	"System watchdog timer expired"	/* 8 */
    };

    if (code <= 8)
	strlcpy(array, status[code], SYSTEM_BOOT_STATUS_SIZE);
    if (code >= 128 && code <= 191)
	strlcpy(array, "OEM-specific", SYSTEM_BOOT_STATUS_SIZE);
    if (code >= 192)
	strlcpy(array, "Product-specific", SYSTEM_BOOT_STATUS_SIZE);
}

void dmi_bios_runtime_size(uint32_t code, s_dmi * dmi)
{
    if (code & 0x000003FF) {
	dmi->bios.runtime_size = code;
	strlcpy(dmi->bios.runtime_size_unit, "bytes",
		sizeof(dmi->bios.runtime_size_unit));
    } else {
	dmi->bios.runtime_size = code >> 10;
	strlcpy(dmi->bios.runtime_size_unit, "KB",
		sizeof(dmi->bios.runtime_size_unit));

    }
}

void dmi_bios_characteristics(uint64_t code, s_dmi * dmi)
{
    int i;
    /*
     * This isn't very clear what this bit is supposed to mean
     */
    //if(code.l&(1<<3))
    if (code && (1 << 3)) {
	((bool *) (&dmi->bios.characteristics))[0] = true;
	return;
    }

    for (i = 4; i <= 31; i++)
	//if(code.l&(1<<i))
	if (code & (1 << i))
	    ((bool *) (&dmi->bios.characteristics))[i - 3] = true;
}

void dmi_bios_characteristics_x1(uint8_t code, s_dmi * dmi)
{
    int i;

    for (i = 0; i <= 7; i++)
	if (code & (1 << i))
	    ((bool *) (&dmi->bios.characteristics_x1))[i] = true;
}

void dmi_bios_characteristics_x2(uint8_t code, s_dmi * dmi)
{
    int i;

    for (i = 0; i <= 2; i++)
	if (code & (1 << i))
	    ((bool *) (&dmi->bios.characteristics_x2))[i] = true;
}

void dmi_system_uuid(uint8_t * p, s_dmi * dmi)
{
    int only0xFF = 1, only0x00 = 1;
    int i;

    for (i = 0; i < 16 && (only0x00 || only0xFF); i++) {
	if (p[i] != 0x00)
	    only0x00 = 0;
	if (p[i] != 0xFF)
	    only0xFF = 0;
    }

    if (only0xFF) {
	sprintf(dmi->system.uuid, "Not Present");
	return;
    }
    if (only0x00) {
	sprintf(dmi->system.uuid, "Not Settable");
	return;
    }

    sprintf(dmi->system.uuid,
	    "%02X%02X%02X%02X-%02X%02X-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8], p[9], p[10],
	    p[11], p[12], p[13], p[14], p[15]);
}

void dmi_system_wake_up_type(uint8_t code, s_dmi * dmi)
{
    /* 3.3.2.1 */
    static const char *type[] = {
	"Reserved",		/* 0x00 */
	"Other",
	"Unknown",
	"APM Timer",
	"Modem Ring",
	"LAN Remote",
	"Power Switch",
	"PCI PME#",
	"AC Power Restored"	/* 0x08 */
    };

    if (code <= 0x08) {
	strlcpy(dmi->system.wakeup_type, type[code],
		sizeof(dmi->system.wakeup_type));
    } else {
	strlcpy(dmi->system.wakeup_type, out_of_spec,
		sizeof(dmi->system.wakeup_type));
    }
    return;
}

static void dmi_base_board_features(uint8_t code, s_dmi * dmi)
{
    if ((code & 0x1F) != 0) {
	int i;

	for (i = 0; i <= 4; i++)
	    if (code & (1 << i))
		((bool *) (&dmi->base_board.features))[i] = true;
    }
}

static void dmi_base_board_type(uint8_t code, s_dmi * dmi)
{
    /* 3.3.3.2 */
    static const char *type[] = {
            "Unknown", /* 0x01 */
            "Other",
            "Server Blade",
            "Connectivity Switch",
            "System Management Module",
            "Processor Module",
            "I/O Module",
            "Memory Module",
            "Daughter Board",
            "Motherboard",
            "Processor+Memory Module",
            "Processor+I/O Module",
            "Interconnect Board" /* 0x0D */
    };

    if (code >= 0x01 && code <= 0x0D) {
	strlcpy(dmi->base_board.type, type[code],
		sizeof(dmi->base_board.type));
    } else {
	strlcpy(dmi->base_board.type, out_of_spec,
		sizeof(dmi->base_board.type));
    }
    return;
}

static void dmi_processor_voltage(uint8_t code, s_dmi * dmi)
{
    /* 3.3.5.4 */
    static const uint16_t voltage[] = {
	5000,
	3300,
	2900
    };
    int i;

    if (code & 0x80)
	dmi->processor.voltage_mv = (code & 0x7f) * 100;
    else {
	for (i = 0; i <= 2; i++)
	    if (code & (1 << i))
		dmi->processor.voltage_mv = voltage[i];
    }
}

static void dmi_processor_id(uint8_t type, uint8_t * p, const char *version,
			     s_dmi * dmi)
{
    /*
     * Extra flags are now returned in the ECX register when one calls
     * the CPUID instruction. Their meaning is explained in table 6, but
     * DMI doesn't support this yet.
     */
    uint32_t eax, edx;
    int sig = 0;

    /*
     * This might help learn about new processors supporting the
     * CPUID instruction or another form of identification.
     */
    sprintf(dmi->processor.id, "ID: %02X %02X %02X %02X %02X %02X %02X %02X\n",
	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);

    if (type == 0x05) {		/* 80386 */
	uint16_t dx = WORD(p);
	/*
	 * 80386 have a different signature.
	 */
	dmi->processor.signature.type = (dx >> 12);
	dmi->processor.signature.family = ((dx >> 8) & 0xF);
	dmi->processor.signature.stepping = (dx >> 4) & 0xF;
	dmi->processor.signature.minor_stepping = (dx & 0xF);
	return;
    }
    if (type == 0x06) {		/* 80486 */
	uint16_t dx = WORD(p);
	/*
	 * Not all 80486 CPU support the CPUID instruction, we have to find
	 * wether the one we have here does or not. Note that this trick
	 * works only because we know that 80486 must be little-endian.
	 */
	if ((dx & 0x0F00) == 0x0400
	    && ((dx & 0x00F0) == 0x0040 || (dx & 0x00F0) >= 0x0070)
	    && ((dx & 0x000F) >= 0x0003))
	    sig = 1;
	else {
	    dmi->processor.signature.type = ((dx >> 12) & 0x3);
	    dmi->processor.signature.family = ((dx >> 8) & 0xF);
	    dmi->processor.signature.model = ((dx >> 4) & 0xF);
	    dmi->processor.signature.stepping = (dx & 0xF);
	    return;
	}
    } else if ((type >= 0x0B && type <= 0x13)	/* Intel, Cyrix */
	       ||(type >= 0xB0 && type <= 0xB3)	/* Intel */
	       ||type == 0xB5	/* Intel */
	       || type == 0xB9)	/* Intel */
	sig = 1;
    else if ((type >= 0x18 && type <= 0x1D)	/* AMD */
	     ||type == 0x1F	/* AMD */
	     || (type >= 0xB6 && type <= 0xB7)	/* AMD */
	     ||(type >= 0x83 && type <= 0x85))	/* AMD */
	sig = 2;
    else if (type == 0x01 || type == 0x02) {
	/*
	 * Some X86-class CPU have family "Other" or "Unknown". In this case,
	 * we use the version string to determine if they are known to
	 * support the CPUID instruction.
	 */
	if (strncmp(version, "Pentium III MMX", 15) == 0)
	    sig = 1;
	else if (strncmp(version, "AMD Athlon(TM)", 14) == 0
		 || strncmp(version, "AMD Opteron(tm)", 15) == 0)
	    sig = 2;
	else
	    return;
    } else			/* not X86-class */
	return;

    eax = DWORD(p);
    edx = DWORD(p + 4);
    switch (sig) {
    case 1:			/* Intel */
	dmi->processor.signature.type = ((eax >> 12) & 0x3);
	dmi->processor.signature.family =
	    (((eax >> 16) & 0xFF0) + ((eax >> 8) & 0x00F));
	dmi->processor.signature.model =
	    (((eax >> 12) & 0xF0) + ((eax >> 4) & 0x0F));
	dmi->processor.signature.stepping = (eax & 0xF);
	break;
    case 2:			/* AMD */
	dmi->processor.signature.family =
	    (((eax >> 8) & 0xF) == 0xF ? (eax >> 20) & 0xFF : (eax >> 8) & 0xF);
	dmi->processor.signature.model =
	    (((eax >> 4) & 0xF) == 0xF ? (eax >> 16) & 0xF : (eax >> 4) & 0xF);
	dmi->processor.signature.stepping = (eax & 0xF);
	break;
    }

    edx = DWORD(p + 4);
    if ((edx & 0x3FF7FDFF) != 0) {
	int i;
	for (i = 0; i <= 31; i++)
	    if (cpu_flags_strings[i] != NULL && edx & (1 << i))
		((bool *) (&dmi->processor.cpu_flags))[i] = true;
    }
}

void to_dmi_header(struct dmi_header *h, uint8_t * data)
{
    h->type = data[0];
    h->length = data[1];
    h->handle = WORD(data + 2);
    h->data = data;
}

const char *dmi_string(struct dmi_header *dm, uint8_t s)
{
    char *bp = (char *)dm->data;
    size_t i, len;

    if (s == 0)
	return "Not Specified";

    bp += dm->length;
    while (s > 1 && *bp) {
	bp += strlen(bp);
	bp++;
	s--;
    }

    if (!*bp)
	return bad_index;

    /* ASCII filtering */
    len = strlen(bp);
    for (i = 0; i < len; i++)
	if (bp[i] < 32 || bp[i] == 127)
	    bp[i] = '.';

    return bp;
}

int checksum(uint8_t * buf, int len)
{
    uint8_t sum = 0;
    int a;

    for (a = 0; a < len; a++)
	sum += buf[a];
    return (sum == 0);
}

static int smbios_decode(s_dmi * dmi, uint8_t * buf)
{

    dmi->dmitable.ver = (buf[0x06] << 8) + buf[0x07];
    /* Some BIOS report weird SMBIOS version, fix that up */
    switch (dmi->dmitable.ver) {
    case 0x021F:
	dmi->dmitable.ver = 0x0203;
	break;
    case 0x0233:
	dmi->dmitable.ver = 0x0206;
	break;
    }
    dmi->dmitable.major_version = dmi->dmitable.ver >> 8;
    dmi->dmitable.minor_version = dmi->dmitable.ver & 0xFF;

    return DMI_TABLE_PRESENT;
}

static int legacy_decode(s_dmi * dmi, uint8_t * buf)
{
    dmi->dmitable.num = buf[13] << 8 | buf[12];
    dmi->dmitable.len = buf[7] << 8 | buf[6];
    dmi->dmitable.base = buf[11] << 24 | buf[10] << 16 | buf[9] << 8 | buf[8];

    /* Version already found? */
    if (dmi->dmitable.ver > 0)
	return DMI_TABLE_PRESENT;

    dmi->dmitable.ver = (buf[0x06] << 8) + buf[0x07];

    /*
     * DMI version 0.0 means that the real version is taken from
     * the SMBIOS version, which we don't know at this point.
     */
    if (buf[14] != 0) {
	dmi->dmitable.major_version = buf[14] >> 4;
	dmi->dmitable.minor_version = buf[14] & 0x0F;
    } else {
	dmi->dmitable.major_version = 0;
	dmi->dmitable.minor_version = 0;
    }
    return DMI_TABLE_PRESENT;
}

int dmi_iterate(s_dmi * dmi)
{
    uint8_t *p, *q;
    int found = 0;

    /* Cleaning structures */
    memset(dmi, 0, sizeof(s_dmi));

    memset(&dmi->base_board, 0, sizeof(s_base_board));
    memset(&dmi->battery, 0, sizeof(s_battery));
    memset(&dmi->bios, 0, sizeof(s_bios));
    memset(&dmi->chassis, 0, sizeof(s_chassis));
    for (int i = 0; i < MAX_DMI_MEMORY_ITEMS; i++)
	memset(&dmi->memory[i], 0, sizeof(s_memory));
    memset(&dmi->processor, 0, sizeof(s_processor));
    memset(&dmi->system, 0, sizeof(s_system));

    /* Until we found this elements in the dmitable, we consider them as not filled */
    dmi->base_board.filled = false;
    dmi->battery.filled = false;
    dmi->bios.filled = false;
    dmi->chassis.filled = false;
    for (int i = 0; i < MAX_DMI_MEMORY_ITEMS; i++)
	dmi->memory[i].filled = false;
    dmi->processor.filled = false;
    dmi->system.filled = false;

    p = (uint8_t *) 0xF0000;	/* The start address to look at the dmi table */
    /* The anchor-string is 16-bytes aligned */
    for (q = p; q < p + 0x10000; q += 16) {
	/* To validate the presence of SMBIOS:
	 * + the overall checksum must be correct
	 * + the intermediate anchor-string must be _DMI_
	 * + the intermediate checksum must be correct
	 */
	if (memcmp(q, "_SM_", 4) == 0 &&
	    checksum(q, q[0x05]) &&
	    memcmp(q + 0x10, "_DMI_", 5) == 0 && checksum(q + 0x10, 0x0F)) {
	    /* Do not return, legacy_decode will need to be called
	     * on the intermediate structure to get the table length
	     * and address
	     */
	    smbios_decode(dmi, q);
	} else if (memcmp(q, "_DMI_", 5) == 0 && checksum(q, 0x0F)) {
	    found = 1;
	    legacy_decode(dmi, q);
	}
    }

    if (found)
	return DMI_TABLE_PRESENT;

    dmi->dmitable.base = 0;
    dmi->dmitable.num = 0;
    dmi->dmitable.ver = 0;
    dmi->dmitable.len = 0;
    return -ENODMITABLE;
}

void dmi_decode(struct dmi_header *h, uint16_t ver, s_dmi * dmi)
{
    uint8_t *data = h->data;

    /*
     * Note: DMI types 37, 38 and 39 are untested
     */
    switch (h->type) {
    case 0:			/* 3.3.1 BIOS Information */
	if (h->length < 0x12)
	    break;
	dmi->bios.filled = true;
	strlcpy(dmi->bios.vendor, dmi_string(h, data[0x04]),
		sizeof(dmi->bios.vendor));
	strlcpy(dmi->bios.version, dmi_string(h, data[0x05]),
		sizeof(dmi->bios.version));
	strlcpy(dmi->bios.release_date, dmi_string(h, data[0x08]),
		sizeof(dmi->bios.release_date));
	dmi->bios.address = WORD(data + 0x06);
	dmi_bios_runtime_size((0x10000 - WORD(data + 0x06)) << 4, dmi);
	dmi->bios.rom_size = (data[0x09] + 1) << 6;
	strlcpy(dmi->bios.rom_size_unit, "kB", sizeof(dmi->bios.rom_size_unit));
	dmi_bios_characteristics(QWORD(data + 0x0A), dmi);

	if (h->length < 0x13)
	    break;
	dmi_bios_characteristics_x1(data[0x12], dmi);
	if (h->length < 0x14)
	    break;
	dmi_bios_characteristics_x2(data[0x13], dmi);
	if (h->length < 0x18)
	    break;
	if (data[0x14] != 0xFF && data[0x15] != 0xFF)
	    snprintf(dmi->bios.bios_revision, sizeof(dmi->bios.bios_revision),
		     "%u.%u", data[0x14], data[0x15]);
	if (data[0x16] != 0xFF && data[0x17] != 0xFF)
	    snprintf(dmi->bios.firmware_revision,
		     sizeof(dmi->bios.firmware_revision), "%u.%u", data[0x16],
		     data[0x17]);
	break;
    case 1:			/* 3.3.2 System Information */
	if (h->length < 0x08)
	    break;
	dmi->system.filled = true;
	strlcpy(dmi->system.manufacturer, dmi_string(h, data[0x04]),
		sizeof(dmi->system.manufacturer));
	strlcpy(dmi->system.product_name, dmi_string(h, data[0x05]),
		sizeof(dmi->system.product_name));
	strlcpy(dmi->system.version, dmi_string(h, data[0x06]),
		sizeof(dmi->system.version));
	strlcpy(dmi->system.serial, dmi_string(h, data[0x07]),
		sizeof(dmi->system.serial));
	if (h->length < 0x19)
	    break;
	dmi_system_uuid(data + 0x08, dmi);
	dmi_system_wake_up_type(data[0x18], dmi);
	if (h->length < 0x1B)
	    break;
	strlcpy(dmi->system.sku_number, dmi_string(h, data[0x19]),
		sizeof(dmi->system.sku_number));
	strlcpy(dmi->system.family, dmi_string(h, data[0x1A]),
		sizeof(dmi->system.family));
	break;

    case 2:			/* 3.3.3 Base Board Information */
	if (h->length < 0x08)
	    break;
	dmi->base_board.filled = true;
	strlcpy(dmi->base_board.manufacturer, dmi_string(h, data[0x04]),
		sizeof(dmi->base_board.manufacturer));
	strlcpy(dmi->base_board.product_name, dmi_string(h, data[0x05]),
		sizeof(dmi->base_board.product_name));
	strlcpy(dmi->base_board.version, dmi_string(h, data[0x06]),
		sizeof(dmi->base_board.version));
	strlcpy(dmi->base_board.serial, dmi_string(h, data[0x07]),
		sizeof(dmi->base_board.serial));
	if (h->length < 0x0F)
	    break;
	strlcpy(dmi->base_board.asset_tag, dmi_string(h, data[0x08]),
		sizeof(dmi->base_board.asset_tag));
	dmi_base_board_features(data[0x09], dmi);
	strlcpy(dmi->base_board.location, dmi_string(h, data[0x0A]),
		sizeof(dmi->base_board.location));
	dmi_base_board_type(data[0x0D], dmi);
	if (h->length < 0x0F + data[0x0E] * sizeof(uint16_t))
	    break;
	break;
    case 3:			/* 3.3.4 Chassis Information */
	if (h->length < 0x09)
	    break;
	dmi->chassis.filled = true;
	strlcpy(dmi->chassis.manufacturer, dmi_string(h, data[0x04]),
		sizeof(dmi->chassis.manufacturer));
	strlcpy(dmi->chassis.type, dmi_chassis_type(data[0x05] & 0x7F),
		sizeof(dmi->chassis.type));
	strlcpy(dmi->chassis.lock, dmi_chassis_lock(data[0x05] >> 7),
		sizeof(dmi->chassis.lock));
	strlcpy(dmi->chassis.version, dmi_string(h, data[0x06]),
		sizeof(dmi->chassis.version));
	strlcpy(dmi->chassis.serial, dmi_string(h, data[0x07]),
		sizeof(dmi->chassis.serial));
	strlcpy(dmi->chassis.asset_tag, dmi_string(h, data[0x08]),
		sizeof(dmi->chassis.asset_tag));
	if (h->length < 0x0D)
	    break;
	strlcpy(dmi->chassis.boot_up_state, dmi_chassis_state(data[0x09]),
		sizeof(dmi->chassis.boot_up_state));
	strlcpy(dmi->chassis.power_supply_state,
		dmi_chassis_state(data[0x0A]),
		sizeof(dmi->chassis.power_supply_state));
	strlcpy(dmi->chassis.thermal_state,
		dmi_chassis_state(data[0x0B]),
		sizeof(dmi->chassis.thermal_state));
	strlcpy(dmi->chassis.security_status,
		dmi_chassis_security_status(data[0x0C]),
		sizeof(dmi->chassis.security_status));
	if (h->length < 0x11)
	    break;
	snprintf(dmi->chassis.oem_information,
		 sizeof(dmi->chassis.oem_information), "0x%08X",
		 DWORD(data + 0x0D));
	if (h->length < 0x15)
	    break;
	dmi->chassis.height = data[0x11];
	dmi->chassis.nb_power_cords = data[0x12];
	break;
    case 4:			/* 3.3.5 Processor Information */
	if (h->length < 0x1A)
	    break;
	dmi->processor.filled = true;
	strlcpy(dmi->processor.socket_designation,
		dmi_string(h, data[0x04]),
		sizeof(dmi->processor.socket_designation));
	strlcpy(dmi->processor.type,
		dmi_processor_type(data[0x05]), sizeof(dmi->processor.type));
	strlcpy(dmi->processor.manufacturer,
		dmi_string(h, data[0x07]), sizeof(dmi->processor.manufacturer));
	strlcpy(dmi->processor.family,
		dmi_processor_family(data[0x06],
				     dmi->processor.manufacturer),
		sizeof(dmi->processor.family));
	dmi_processor_id(data[0x06], data + 8, dmi_string(h, data[0x10]), dmi);
	strlcpy(dmi->processor.version,
		dmi_string(h, data[0x10]), sizeof(dmi->processor.version));
	dmi_processor_voltage(data[0x11], dmi);
	dmi->processor.external_clock = WORD(data + 0x12);
	dmi->processor.max_speed = WORD(data + 0x14);
	dmi->processor.current_speed = WORD(data + 0x16);
	if (data[0x18] & (1 << 6))
	    strlcpy(dmi->processor.status,
		    dmi_processor_status(data[0x18] & 0x07),
		    sizeof(dmi->processor.status));
	else
	    sprintf(dmi->processor.status, "Unpopulated");
	strlcpy(dmi->processor.upgrade,
		dmi_processor_upgrade(data[0x19]),
		sizeof(dmi->processor.upgrade));
	if (h->length < 0x20)
	    break;
	dmi_processor_cache(WORD(data + 0x1A), "L1", ver,
			    dmi->processor.cache1);
	dmi_processor_cache(WORD(data + 0x1C), "L2", ver,
			    dmi->processor.cache2);
	dmi_processor_cache(WORD(data + 0x1E), "L3", ver,
			    dmi->processor.cache3);
	if (h->length < 0x23)
	    break;
	strlcpy(dmi->processor.serial, dmi_string(h, data[0x20]),
		sizeof(dmi->processor.serial));
	strlcpy(dmi->processor.asset_tag, dmi_string(h, data[0x21]),
		sizeof(dmi->processor.asset_tag));
	strlcpy(dmi->processor.part_number, dmi_string(h, data[0x22]),
		sizeof(dmi->processor.part_number));
        dmi->processor.core_count = 0;
        dmi->processor.core_enabled = 0;
        dmi->processor.thread_count = 0;
	if (h->length < 0x28)
	    break;
        dmi->processor.core_count = data[0x23];
        dmi->processor.core_enabled = data[0x24];
        dmi->processor.thread_count = data[0x25];
	break;
    case 6:			/* 3.3.7 Memory Module Information */
	if (h->length < 0x0C)
	    break;
	dmi->memory_module_count++;
	s_memory_module *module =
	    &dmi->memory_module[dmi->memory_module_count - 1];
	dmi->memory_module[dmi->memory_module_count - 1].filled = true;
	strlcpy(module->socket_designation, dmi_string(h, data[0x04]),
		sizeof(module->socket_designation));
	dmi_memory_module_connections(data[0x05], module->bank_connections, sizeof(module->bank_connections));
	dmi_memory_module_speed(data[0x06], module->speed);
	dmi_memory_module_types(WORD(data + 0x07), " ", module->type, sizeof(module->type));
	dmi_memory_module_size(data[0x09], module->installed_size, sizeof(module->installed_size));
	dmi_memory_module_size(data[0x0A], module->enabled_size, sizeof(module->enabled_size));
	dmi_memory_module_error(data[0x0B], "\t\t", module->error_status);
	break;
    case 7:			/* 3.3.8 Cache Information */
	if (h->length < 0x0F)
	    break;
	dmi->cache_count++;
	if (dmi->cache_count > MAX_DMI_CACHE_ITEMS)
	    break;
	strlcpy(dmi->cache[dmi->cache_count - 1].socket_designation,
		dmi_string(h, data[0x04]),
		sizeof(dmi->cache[dmi->cache_count - 1].socket_designation));
	snprintf(dmi->cache[dmi->cache_count - 1].configuration,
		 sizeof(dmi->cache[dmi->cache_count - 1].configuration),
		 "%s, %s, %u",
		 WORD(data + 0x05) & 0x0080 ? "Enabled" : "Disabled",
		 WORD(data +
		      0x05) & 0x0008 ? "Socketed" : "Not Socketed",
		 (WORD(data + 0x05) & 0x0007) + 1);
	strlcpy(dmi->cache[dmi->cache_count - 1].mode,
		dmi_cache_mode((WORD(data + 0x05) >> 8) & 0x0003),
		sizeof(dmi->cache[dmi->cache_count - 1].mode));
	strlcpy(dmi->cache[dmi->cache_count - 1].location,
		dmi_cache_location((WORD(data + 0x05) >> 5) & 0x0003),
		sizeof(dmi->cache[dmi->cache_count - 1].location));
	dmi->cache[dmi->cache_count - 1].installed_size =
	    dmi_cache_size(WORD(data + 0x09));
	dmi->cache[dmi->cache_count - 1].max_size =
	    dmi_cache_size(WORD(data + 0x07));
	dmi_cache_types(WORD(data + 0x0B), " ",
			dmi->cache[dmi->cache_count - 1].supported_sram_types);
	dmi_cache_types(WORD(data + 0x0D), " ",
			dmi->cache[dmi->cache_count - 1].installed_sram_types);
	if (h->length < 0x13)
	    break;
	dmi->cache[dmi->cache_count - 1].speed = data[0x0F];	/* ns */
	strlcpy(dmi->cache[dmi->cache_count - 1].error_correction_type,
		dmi_cache_ec_type(data[0x10]),
		sizeof(dmi->cache[dmi->cache_count - 1].error_correction_type));
	strlcpy(dmi->cache[dmi->cache_count - 1].system_type,
		dmi_cache_type(data[0x11]),
		sizeof(dmi->cache[dmi->cache_count - 1].system_type));
	strlcpy(dmi->cache[dmi->cache_count - 1].associativity,
		dmi_cache_associativity(data[0x12]),
		sizeof(dmi->cache[dmi->cache_count - 1].associativity));
	break;
    case 10:			/* 3.3.11 On Board Devices Information */
	dmi_on_board_devices(h, dmi);
	break;
    case 11:			/* 3.3.12 OEM Strings */
	if (h->length < 0x05)
	    break;
	dmi_oem_strings(h, "\t", dmi);
	break;
    case 12:			/* 3.3.13 System Configuration Options */
	if (h->length < 0x05)
	    break;
	dmi_system_configuration_options(h, "\t", dmi);
	break;
    case 17:			/* 3.3.18 Memory Device */
	if (h->length < 0x15)
	    break;
	dmi->memory_count++;
	if (dmi->memory_count > MAX_DMI_MEMORY_ITEMS)
	    break;
	s_memory *mem = &dmi->memory[dmi->memory_count - 1];
	dmi->memory[dmi->memory_count - 1].filled = true;
	dmi_memory_array_error_handle(WORD(data + 0x06), mem->error);
	dmi_memory_device_width(WORD(data + 0x08), mem->total_width);
	dmi_memory_device_width(WORD(data + 0x0A), mem->data_width);
	dmi_memory_device_size(WORD(data + 0x0C), mem->size);
	strlcpy(mem->form_factor,
		dmi_memory_device_form_factor(data[0x0E]),
		sizeof(mem->form_factor));
	dmi_memory_device_set(data[0x0F], mem->device_set);
	strlcpy(mem->device_locator, dmi_string(h, data[0x10]),
		sizeof(mem->device_locator));
	strlcpy(mem->bank_locator, dmi_string(h, data[0x11]),
		sizeof(mem->bank_locator));
	strlcpy(mem->type, dmi_memory_device_type(data[0x12]),
		sizeof(mem->type));
	dmi_memory_device_type_detail(WORD(data + 0x13), mem->type_detail, sizeof(mem->type_detail));
	if (h->length < 0x17)
	    break;
	dmi_memory_device_speed(WORD(data + 0x15), mem->speed);
	if (h->length < 0x1B)
	    break;
	strlcpy(mem->manufacturer, dmi_string(h, data[0x17]),
		sizeof(mem->manufacturer));
	strlcpy(mem->serial, dmi_string(h, data[0x18]), sizeof(mem->serial));
	strlcpy(mem->asset_tag, dmi_string(h, data[0x19]),
		sizeof(mem->asset_tag));
	strlcpy(mem->part_number, dmi_string(h, data[0x1A]),
		sizeof(mem->part_number));
	break;
    case 22:			/* 3.3.23 Portable Battery */
	if (h->length < 0x10)
	    break;
	dmi->battery.filled = true;
	strlcpy(dmi->battery.location, dmi_string(h, data[0x04]),
		sizeof(dmi->battery.location));
	strlcpy(dmi->battery.manufacturer, dmi_string(h, data[0x05]),
		sizeof(dmi->battery.manufacturer));
	if (data[0x06] || h->length < 0x1A)
	    strlcpy(dmi->battery.manufacture_date,
		    dmi_string(h, data[0x06]),
		    sizeof(dmi->battery.manufacture_date));
	if (data[0x07] || h->length < 0x1A)
	    strlcpy(dmi->battery.serial, dmi_string(h, data[0x07]),
		    sizeof(dmi->battery.serial));
	strlcpy(dmi->battery.name, dmi_string(h, data[0x08]),
		sizeof(dmi->battery.name));
	if (data[0x09] != 0x02 || h->length < 0x1A)
	    strlcpy(dmi->battery.chemistry,
		    dmi_battery_chemistry(data[0x09]),
		    sizeof(dmi->battery.chemistry));
	if (h->length < 0x1A)
	    dmi_battery_capacity(WORD(data + 0x0A), 1,
				 dmi->battery.design_capacity);
	else
	    dmi_battery_capacity(WORD(data + 0x0A), data[0x15],
				 dmi->battery.design_capacity);
	dmi_battery_voltage(WORD(data + 0x0C), dmi->battery.design_voltage);
	strlcpy(dmi->battery.sbds, dmi_string(h, data[0x0E]),
		sizeof(dmi->battery.sbds));
	dmi_battery_maximum_error(data[0x0F], dmi->battery.maximum_error);
	if (h->length < 0x1A)
	    break;
	if (data[0x07] == 0)
	    sprintf(dmi->battery.sbds_serial, "%04X", WORD(data + 0x10));
	if (data[0x06] == 0)
	    sprintf(dmi->battery.sbds_manufacture_date, "%u-%02u-%02u",
		    1980 + (WORD(data + 0x12) >> 9),
		    (WORD(data + 0x12) >> 5) & 0x0F, WORD(data + 0x12) & 0x1F);
	if (data[0x09] == 0x02)
	    strlcpy(dmi->battery.sbds_chemistry, dmi_string(h, data[0x14]),
		    sizeof(dmi->battery.sbds_chemistry));
	//      sprintf(dmi->battery.oem_info,"0x%08X",DWORD(h, data+0x16));
	break;
    case 23:			/* 3.3.24 System Reset */
	if (h->length < 0x0D)
	    break;
	dmi->system.system_reset.filled = true;
	dmi->system.system_reset.status = data[0x04] & (1 << 0);
	dmi->system.system_reset.watchdog = data[0x04] & (1 << 5);
	if (!(data[0x04] & (1 << 5)))
	    break;
	strlcpy(dmi->system.system_reset.boot_option,
		dmi_system_reset_boot_option((data[0x04] >> 1) & 0x3),
		sizeof dmi->system.system_reset.boot_option);
	strlcpy(dmi->system.system_reset.boot_option_on_limit,
		dmi_system_reset_boot_option((data[0x04] >> 3) & 0x3),
		sizeof dmi->system.system_reset.boot_option_on_limit);
	dmi_system_reset_count(WORD(data + 0x05),
			       dmi->system.system_reset.reset_count);
	dmi_system_reset_count(WORD(data + 0x07),
			       dmi->system.system_reset.reset_limit);
	dmi_system_reset_timer(WORD(data + 0x09),
			       dmi->system.system_reset.timer_interval);
	dmi_system_reset_timer(WORD(data + 0x0B),
			       dmi->system.system_reset.timeout);
	break;
    case 24:			/* 3.3.25 Hardware Security */
	if (h->length < 0x05)
	    break;
	dmi->hardware_security.filled = true;
	strlcpy(dmi->hardware_security.power_on_passwd_status,
		dmi_hardware_security_status(data[0x04] >> 6),
		sizeof dmi->hardware_security.power_on_passwd_status);
	strlcpy(dmi->hardware_security.keyboard_passwd_status,
		dmi_hardware_security_status((data[0x04] >> 4) & 0x3),
		sizeof dmi->hardware_security.keyboard_passwd_status);
	strlcpy(dmi->hardware_security.administrator_passwd_status,
		dmi_hardware_security_status((data[0x04] >> 2) & 0x3),
		sizeof dmi->hardware_security.administrator_passwd_status);
	strlcpy(dmi->hardware_security.front_panel_reset_status,
		dmi_hardware_security_status(data[0x04] & 0x3),
		sizeof dmi->hardware_security.front_panel_reset_status);
	break;
    case 32:			/* 3.3.33 System Boot Information */
	if (h->length < 0x0B)
	    break;
	dmi_system_boot_status(data[0x0A], dmi->system.system_boot_status);
    case 38:			/* 3.3.39 IPMI Device Information */
	if (h->length < 0x10)
	    break;
	dmi->ipmi.filled = true;
	snprintf(dmi->ipmi.interface_type,
		 sizeof(dmi->ipmi.interface_type), "%s",
		 dmi_ipmi_interface_type(data[0x04]));
	dmi->ipmi.major_specification_version = data[0x05] >> 4;
	dmi->ipmi.minor_specification_version = data[0x05] & 0x0F;
	dmi->ipmi.I2C_slave_address = data[0x06] >> 1;
	if (data[0x07] != 0xFF)
	    dmi->ipmi.nv_address = data[0x07];
	else
	    dmi->ipmi.nv_address = 0;	/* Not Present */
	dmi_ipmi_base_address(data[0x04], data + 0x08, &dmi->ipmi);
	if (h->length < 0x12)
	    break;
	if (data[0x11] != 0x00) {
	    dmi->ipmi.irq = data[0x11];
	}
	break;
    }
}

void parse_dmitable(s_dmi * dmi)
{
    int i = 0;
    uint8_t *data = NULL;
    uint8_t buf[dmi->dmitable.len];
    memcpy(buf, (int *)dmi->dmitable.base, sizeof(uint8_t) * dmi->dmitable.len);
    data = buf;
    dmi->memory_count = 0;
    while (i < dmi->dmitable.num && data + 4 <= buf + dmi->dmitable.len) {	/* 4 is the length of an SMBIOS structure header */
	uint8_t *next;
	struct dmi_header h;
	to_dmi_header(&h, data);
	/*
	 * If a short entry is found (less than 4 bytes), not only it
	 * is invalid, but we cannot reliably locate the next entry.
	 * Better stop at this point, and let the user know his/her
	 * table is broken.
	 */
	if (h.length < 4) {
	    printf
		("Invalid entry length (%u). DMI table is broken! Stop.\n\n",
		 (unsigned int)h.length);
	    break;
	}

	/* loo for the next handle */
	next = data + h.length;
	while (next - buf + 1 < dmi->dmitable.len
	       && (next[0] != 0 || next[1] != 0))
	    next++;
	next += 2;
	if (next - buf <= dmi->dmitable.len) {
	    dmi_decode(&h, dmi->dmitable.ver, dmi);
	}
	data = next;
	i++;
    }
}