// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/arm64/frames-arm64.h"
#include "src/codegen.h"
#include "src/deoptimizer.h"
#include "src/full-codegen/full-codegen.h"
#include "src/register-configuration.h"
#include "src/safepoint-table.h"
namespace v8 {
namespace internal {
int Deoptimizer::patch_size() {
// Size of the code used to patch lazy bailout points.
// Patching is done by Deoptimizer::DeoptimizeFunction.
return 4 * kInstructionSize;
}
void Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(Handle<Code> code) {
// Empty because there is no need for relocation information for the code
// patching in Deoptimizer::PatchCodeForDeoptimization below.
}
void Deoptimizer::PatchCodeForDeoptimization(Isolate* isolate, Code* code) {
// Invalidate the relocation information, as it will become invalid by the
// code patching below, and is not needed any more.
code->InvalidateRelocation();
// TODO(jkummerow): if (FLAG_zap_code_space), make the code object's
// entry sequence unusable (see other architectures).
DeoptimizationInputData* deopt_data =
DeoptimizationInputData::cast(code->deoptimization_data());
Address code_start_address = code->instruction_start();
#ifdef DEBUG
Address prev_call_address = NULL;
#endif
// For each LLazyBailout instruction insert a call to the corresponding
// deoptimization entry.
for (int i = 0; i < deopt_data->DeoptCount(); i++) {
if (deopt_data->Pc(i)->value() == -1) continue;
Address call_address = code_start_address + deopt_data->Pc(i)->value();
Address deopt_entry = GetDeoptimizationEntry(isolate, i, LAZY);
PatchingAssembler patcher(isolate, call_address,
patch_size() / kInstructionSize);
patcher.ldr_pcrel(ip0, (2 * kInstructionSize) >> kLoadLiteralScaleLog2);
patcher.blr(ip0);
patcher.dc64(reinterpret_cast<intptr_t>(deopt_entry));
DCHECK((prev_call_address == NULL) ||
(call_address >= prev_call_address + patch_size()));
DCHECK(call_address + patch_size() <= code->instruction_end());
#ifdef DEBUG
prev_call_address = call_address;
#endif
}
}
void Deoptimizer::SetPlatformCompiledStubRegisters(
FrameDescription* output_frame, CodeStubDescriptor* descriptor) {
ApiFunction function(descriptor->deoptimization_handler());
ExternalReference xref(&function, ExternalReference::BUILTIN_CALL, isolate_);
intptr_t handler = reinterpret_cast<intptr_t>(xref.address());
int params = descriptor->GetHandlerParameterCount();
output_frame->SetRegister(x0.code(), params);
output_frame->SetRegister(x1.code(), handler);
}
void Deoptimizer::CopyDoubleRegisters(FrameDescription* output_frame) {
for (int i = 0; i < DoubleRegister::kMaxNumRegisters; ++i) {
double double_value = input_->GetDoubleRegister(i);
output_frame->SetDoubleRegister(i, double_value);
}
}
#define __ masm()->
void Deoptimizer::TableEntryGenerator::Generate() {
GeneratePrologue();
// TODO(all): This code needs to be revisited. We probably only need to save
// caller-saved registers here. Callee-saved registers can be stored directly
// in the input frame.
// Save all allocatable floating point registers.
CPURegList saved_fp_registers(
CPURegister::kFPRegister, kDRegSizeInBits,
RegisterConfiguration::Crankshaft()->allocatable_double_codes_mask());
__ PushCPURegList(saved_fp_registers);
// We save all the registers expcept jssp, sp and lr.
CPURegList saved_registers(CPURegister::kRegister, kXRegSizeInBits, 0, 27);
saved_registers.Combine(fp);
__ PushCPURegList(saved_registers);
__ Mov(x3, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
__ Str(fp, MemOperand(x3));
const int kSavedRegistersAreaSize =
(saved_registers.Count() * kXRegSize) +
(saved_fp_registers.Count() * kDRegSize);
// Floating point registers are saved on the stack above core registers.
const int kFPRegistersOffset = saved_registers.Count() * kXRegSize;
// Get the bailout id from the stack.
Register bailout_id = x2;
__ Peek(bailout_id, kSavedRegistersAreaSize);
Register code_object = x3;
Register fp_to_sp = x4;
// Get the address of the location in the code object. This is the return
// address for lazy deoptimization.
__ Mov(code_object, lr);
// Compute the fp-to-sp delta, and correct one word for bailout id.
__ Add(fp_to_sp, __ StackPointer(),
kSavedRegistersAreaSize + (1 * kPointerSize));
__ Sub(fp_to_sp, fp, fp_to_sp);
// Allocate a new deoptimizer object.
__ Mov(x0, 0);
Label context_check;
__ Ldr(x1, MemOperand(fp, CommonFrameConstants::kContextOrFrameTypeOffset));
__ JumpIfSmi(x1, &context_check);
__ Ldr(x0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ bind(&context_check);
__ Mov(x1, type());
// Following arguments are already loaded:
// - x2: bailout id
// - x3: code object address
// - x4: fp-to-sp delta
__ Mov(x5, ExternalReference::isolate_address(isolate()));
{
// Call Deoptimizer::New().
AllowExternalCallThatCantCauseGC scope(masm());
__ CallCFunction(ExternalReference::new_deoptimizer_function(isolate()), 6);
}
// Preserve "deoptimizer" object in register x0.
Register deoptimizer = x0;
// Get the input frame descriptor pointer.
__ Ldr(x1, MemOperand(deoptimizer, Deoptimizer::input_offset()));
// Copy core registers into the input frame.
CPURegList copy_to_input = saved_registers;
for (int i = 0; i < saved_registers.Count(); i++) {
__ Peek(x2, i * kPointerSize);
CPURegister current_reg = copy_to_input.PopLowestIndex();
int offset = (current_reg.code() * kPointerSize) +
FrameDescription::registers_offset();
__ Str(x2, MemOperand(x1, offset));
}
// Copy FP registers to the input frame.
CPURegList copy_fp_to_input = saved_fp_registers;
for (int i = 0; i < saved_fp_registers.Count(); i++) {
int src_offset = kFPRegistersOffset + (i * kDoubleSize);
__ Peek(x2, src_offset);
CPURegister reg = copy_fp_to_input.PopLowestIndex();
int dst_offset = FrameDescription::double_registers_offset() +
(reg.code() * kDoubleSize);
__ Str(x2, MemOperand(x1, dst_offset));
}
// Remove the bailout id and the saved registers from the stack.
__ Drop(1 + (kSavedRegistersAreaSize / kXRegSize));
// Compute a pointer to the unwinding limit in register x2; that is
// the first stack slot not part of the input frame.
Register unwind_limit = x2;
__ Ldr(unwind_limit, MemOperand(x1, FrameDescription::frame_size_offset()));
__ Add(unwind_limit, unwind_limit, __ StackPointer());
// Unwind the stack down to - but not including - the unwinding
// limit and copy the contents of the activation frame to the input
// frame description.
__ Add(x3, x1, FrameDescription::frame_content_offset());
Label pop_loop;
Label pop_loop_header;
__ B(&pop_loop_header);
__ Bind(&pop_loop);
__ Pop(x4);
__ Str(x4, MemOperand(x3, kPointerSize, PostIndex));
__ Bind(&pop_loop_header);
__ Cmp(unwind_limit, __ StackPointer());
__ B(ne, &pop_loop);
// Compute the output frame in the deoptimizer.
__ Push(x0); // Preserve deoptimizer object across call.
{
// Call Deoptimizer::ComputeOutputFrames().
AllowExternalCallThatCantCauseGC scope(masm());
__ CallCFunction(
ExternalReference::compute_output_frames_function(isolate()), 1);
}
__ Pop(x4); // Restore deoptimizer object (class Deoptimizer).
__ Ldr(__ StackPointer(),
MemOperand(x4, Deoptimizer::caller_frame_top_offset()));
// Replace the current (input) frame with the output frames.
Label outer_push_loop, inner_push_loop,
outer_loop_header, inner_loop_header;
__ Ldrsw(x1, MemOperand(x4, Deoptimizer::output_count_offset()));
__ Ldr(x0, MemOperand(x4, Deoptimizer::output_offset()));
__ Add(x1, x0, Operand(x1, LSL, kPointerSizeLog2));
__ B(&outer_loop_header);
__ Bind(&outer_push_loop);
Register current_frame = x2;
__ Ldr(current_frame, MemOperand(x0, 0));
__ Ldr(x3, MemOperand(current_frame, FrameDescription::frame_size_offset()));
__ B(&inner_loop_header);
__ Bind(&inner_push_loop);
__ Sub(x3, x3, kPointerSize);
__ Add(x6, current_frame, x3);
__ Ldr(x7, MemOperand(x6, FrameDescription::frame_content_offset()));
__ Push(x7);
__ Bind(&inner_loop_header);
__ Cbnz(x3, &inner_push_loop);
__ Add(x0, x0, kPointerSize);
__ Bind(&outer_loop_header);
__ Cmp(x0, x1);
__ B(lt, &outer_push_loop);
__ Ldr(x1, MemOperand(x4, Deoptimizer::input_offset()));
DCHECK(!saved_fp_registers.IncludesAliasOf(crankshaft_fp_scratch) &&
!saved_fp_registers.IncludesAliasOf(fp_zero) &&
!saved_fp_registers.IncludesAliasOf(fp_scratch));
while (!saved_fp_registers.IsEmpty()) {
const CPURegister reg = saved_fp_registers.PopLowestIndex();
int src_offset = FrameDescription::double_registers_offset() +
(reg.code() * kDoubleSize);
__ Ldr(reg, MemOperand(x1, src_offset));
}
// Push state from the last output frame.
__ Ldr(x6, MemOperand(current_frame, FrameDescription::state_offset()));
__ Push(x6);
// TODO(all): ARM copies a lot (if not all) of the last output frame onto the
// stack, then pops it all into registers. Here, we try to load it directly
// into the relevant registers. Is this correct? If so, we should improve the
// ARM code.
// TODO(all): This code needs to be revisited, We probably don't need to
// restore all the registers as fullcodegen does not keep live values in
// registers (note that at least fp must be restored though).
// Restore registers from the last output frame.
// Note that lr is not in the list of saved_registers and will be restored
// later. We can use it to hold the address of last output frame while
// reloading the other registers.
DCHECK(!saved_registers.IncludesAliasOf(lr));
Register last_output_frame = lr;
__ Mov(last_output_frame, current_frame);
// We don't need to restore x7 as it will be clobbered later to hold the
// continuation address.
Register continuation = x7;
saved_registers.Remove(continuation);
while (!saved_registers.IsEmpty()) {
// TODO(all): Look for opportunities to optimize this by using ldp.
CPURegister current_reg = saved_registers.PopLowestIndex();
int offset = (current_reg.code() * kPointerSize) +
FrameDescription::registers_offset();
__ Ldr(current_reg, MemOperand(last_output_frame, offset));
}
__ Ldr(continuation, MemOperand(last_output_frame,
FrameDescription::continuation_offset()));
__ Ldr(lr, MemOperand(last_output_frame, FrameDescription::pc_offset()));
__ InitializeRootRegister();
__ Br(continuation);
}
// Size of an entry of the second level deopt table.
// This is the code size generated by GeneratePrologue for one entry.
const int Deoptimizer::table_entry_size_ = 2 * kInstructionSize;
void Deoptimizer::TableEntryGenerator::GeneratePrologue() {
UseScratchRegisterScope temps(masm());
Register entry_id = temps.AcquireX();
// Create a sequence of deoptimization entries.
// Note that registers are still live when jumping to an entry.
Label done;
{
InstructionAccurateScope scope(masm());
// The number of entry will never exceed kMaxNumberOfEntries.
// As long as kMaxNumberOfEntries is a valid 16 bits immediate you can use
// a movz instruction to load the entry id.
DCHECK(is_uint16(Deoptimizer::kMaxNumberOfEntries));
for (int i = 0; i < count(); i++) {
int start = masm()->pc_offset();
USE(start);
__ movz(entry_id, i);
__ b(&done);
DCHECK(masm()->pc_offset() - start == table_entry_size_);
}
}
__ Bind(&done);
__ Push(entry_id);
}
void FrameDescription::SetCallerPc(unsigned offset, intptr_t value) {
SetFrameSlot(offset, value);
}
void FrameDescription::SetCallerFp(unsigned offset, intptr_t value) {
SetFrameSlot(offset, value);
}
void FrameDescription::SetCallerConstantPool(unsigned offset, intptr_t value) {
// No embedded constant pool support.
UNREACHABLE();
}
#undef __
} // namespace internal
} // namespace v8