// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_AST_AST_H_
#define V8_AST_AST_H_
#include "src/ast/ast-types.h"
#include "src/ast/ast-value-factory.h"
#include "src/ast/modules.h"
#include "src/ast/variables.h"
#include "src/bailout-reason.h"
#include "src/base/flags.h"
#include "src/factory.h"
#include "src/globals.h"
#include "src/isolate.h"
#include "src/list.h"
#include "src/parsing/token.h"
#include "src/runtime/runtime.h"
#include "src/small-pointer-list.h"
#include "src/utils.h"
namespace v8 {
namespace internal {
// The abstract syntax tree is an intermediate, light-weight
// representation of the parsed JavaScript code suitable for
// compilation to native code.
// Nodes are allocated in a separate zone, which allows faster
// allocation and constant-time deallocation of the entire syntax
// tree.
// ----------------------------------------------------------------------------
// Nodes of the abstract syntax tree. Only concrete classes are
// enumerated here.
#define DECLARATION_NODE_LIST(V) \
V(VariableDeclaration) \
V(FunctionDeclaration)
#define ITERATION_NODE_LIST(V) \
V(DoWhileStatement) \
V(WhileStatement) \
V(ForStatement) \
V(ForInStatement) \
V(ForOfStatement)
#define BREAKABLE_NODE_LIST(V) \
V(Block) \
V(SwitchStatement)
#define STATEMENT_NODE_LIST(V) \
ITERATION_NODE_LIST(V) \
BREAKABLE_NODE_LIST(V) \
V(ExpressionStatement) \
V(EmptyStatement) \
V(SloppyBlockFunctionStatement) \
V(IfStatement) \
V(ContinueStatement) \
V(BreakStatement) \
V(ReturnStatement) \
V(WithStatement) \
V(TryCatchStatement) \
V(TryFinallyStatement) \
V(DebuggerStatement)
#define LITERAL_NODE_LIST(V) \
V(RegExpLiteral) \
V(ObjectLiteral) \
V(ArrayLiteral)
#define PROPERTY_NODE_LIST(V) \
V(Assignment) \
V(CountOperation) \
V(Property)
#define CALL_NODE_LIST(V) \
V(Call) \
V(CallNew)
#define EXPRESSION_NODE_LIST(V) \
LITERAL_NODE_LIST(V) \
PROPERTY_NODE_LIST(V) \
CALL_NODE_LIST(V) \
V(FunctionLiteral) \
V(ClassLiteral) \
V(NativeFunctionLiteral) \
V(Conditional) \
V(VariableProxy) \
V(Literal) \
V(Yield) \
V(Throw) \
V(CallRuntime) \
V(UnaryOperation) \
V(BinaryOperation) \
V(CompareOperation) \
V(Spread) \
V(ThisFunction) \
V(SuperPropertyReference) \
V(SuperCallReference) \
V(CaseClause) \
V(EmptyParentheses) \
V(DoExpression) \
V(RewritableExpression)
#define AST_NODE_LIST(V) \
DECLARATION_NODE_LIST(V) \
STATEMENT_NODE_LIST(V) \
EXPRESSION_NODE_LIST(V)
// Forward declarations
class AstNodeFactory;
class Declaration;
class Module;
class BreakableStatement;
class Expression;
class IterationStatement;
class MaterializedLiteral;
class Statement;
class TypeFeedbackOracle;
#define DEF_FORWARD_DECLARATION(type) class type;
AST_NODE_LIST(DEF_FORWARD_DECLARATION)
#undef DEF_FORWARD_DECLARATION
class FeedbackVectorSlotCache {
public:
explicit FeedbackVectorSlotCache(Zone* zone)
: zone_(zone),
hash_map_(ZoneHashMap::kDefaultHashMapCapacity,
ZoneAllocationPolicy(zone)) {}
void Put(Variable* variable, FeedbackVectorSlot slot) {
ZoneHashMap::Entry* entry = hash_map_.LookupOrInsert(
variable, ComputePointerHash(variable), ZoneAllocationPolicy(zone_));
entry->value = reinterpret_cast<void*>(slot.ToInt());
}
ZoneHashMap::Entry* Get(Variable* variable) const {
return hash_map_.Lookup(variable, ComputePointerHash(variable));
}
private:
Zone* zone_;
ZoneHashMap hash_map_;
};
class AstProperties final BASE_EMBEDDED {
public:
enum Flag {
kNoFlags = 0,
kDontSelfOptimize = 1 << 0,
kDontCrankshaft = 1 << 1
};
typedef base::Flags<Flag> Flags;
explicit AstProperties(Zone* zone) : node_count_(0), spec_(zone) {}
Flags& flags() { return flags_; }
Flags flags() const { return flags_; }
int node_count() { return node_count_; }
void add_node_count(int count) { node_count_ += count; }
const FeedbackVectorSpec* get_spec() const { return &spec_; }
FeedbackVectorSpec* get_spec() { return &spec_; }
private:
Flags flags_;
int node_count_;
FeedbackVectorSpec spec_;
};
DEFINE_OPERATORS_FOR_FLAGS(AstProperties::Flags)
class AstNode: public ZoneObject {
public:
#define DECLARE_TYPE_ENUM(type) k##type,
enum NodeType : uint8_t { AST_NODE_LIST(DECLARE_TYPE_ENUM) };
#undef DECLARE_TYPE_ENUM
void* operator new(size_t size, Zone* zone) { return zone->New(size); }
NodeType node_type() const { return NodeTypeField::decode(bit_field_); }
int position() const { return position_; }
#ifdef DEBUG
void Print(Isolate* isolate);
#endif // DEBUG
// Type testing & conversion functions overridden by concrete subclasses.
#define DECLARE_NODE_FUNCTIONS(type) \
V8_INLINE bool Is##type() const; \
V8_INLINE type* As##type(); \
V8_INLINE const type* As##type() const;
AST_NODE_LIST(DECLARE_NODE_FUNCTIONS)
#undef DECLARE_NODE_FUNCTIONS
BreakableStatement* AsBreakableStatement();
IterationStatement* AsIterationStatement();
MaterializedLiteral* AsMaterializedLiteral();
private:
// Hidden to prevent accidental usage. It would have to load the
// current zone from the TLS.
void* operator new(size_t size);
int position_;
class NodeTypeField : public BitField<NodeType, 0, 6> {};
protected:
uint32_t bit_field_;
static const uint8_t kNextBitFieldIndex = NodeTypeField::kNext;
AstNode(int position, NodeType type)
: position_(position), bit_field_(NodeTypeField::encode(type)) {}
};
class Statement : public AstNode {
public:
bool IsEmpty() { return AsEmptyStatement() != NULL; }
bool IsJump() const;
protected:
Statement(int position, NodeType type) : AstNode(position, type) {}
static const uint8_t kNextBitFieldIndex = AstNode::kNextBitFieldIndex;
};
class SmallMapList final {
public:
SmallMapList() {}
SmallMapList(int capacity, Zone* zone) : list_(capacity, zone) {}
void Reserve(int capacity, Zone* zone) { list_.Reserve(capacity, zone); }
void Clear() { list_.Clear(); }
void Sort() { list_.Sort(); }
bool is_empty() const { return list_.is_empty(); }
int length() const { return list_.length(); }
void AddMapIfMissing(Handle<Map> map, Zone* zone) {
if (!Map::TryUpdate(map).ToHandle(&map)) return;
for (int i = 0; i < length(); ++i) {
if (at(i).is_identical_to(map)) return;
}
Add(map, zone);
}
void FilterForPossibleTransitions(Map* root_map) {
for (int i = list_.length() - 1; i >= 0; i--) {
if (at(i)->FindRootMap() != root_map) {
list_.RemoveElement(list_.at(i));
}
}
}
void Add(Handle<Map> handle, Zone* zone) {
list_.Add(handle.location(), zone);
}
Handle<Map> at(int i) const {
return Handle<Map>(list_.at(i));
}
Handle<Map> first() const { return at(0); }
Handle<Map> last() const { return at(length() - 1); }
private:
// The list stores pointers to Map*, that is Map**, so it's GC safe.
SmallPointerList<Map*> list_;
DISALLOW_COPY_AND_ASSIGN(SmallMapList);
};
class Expression : public AstNode {
public:
enum Context {
// Not assigned a context yet, or else will not be visited during
// code generation.
kUninitialized,
// Evaluated for its side effects.
kEffect,
// Evaluated for its value (and side effects).
kValue,
// Evaluated for control flow (and side effects).
kTest
};
// Mark this expression as being in tail position.
void MarkTail();
// True iff the expression is a valid reference expression.
bool IsValidReferenceExpression() const;
// Helpers for ToBoolean conversion.
bool ToBooleanIsTrue() const;
bool ToBooleanIsFalse() const;
// Symbols that cannot be parsed as array indices are considered property
// names. We do not treat symbols that can be array indexes as property
// names because [] for string objects is handled only by keyed ICs.
bool IsPropertyName() const;
// True iff the expression is a class or function expression without
// a syntactic name.
bool IsAnonymousFunctionDefinition() const;
// True iff the expression is a literal represented as a smi.
bool IsSmiLiteral() const;
// True iff the expression is a string literal.
bool IsStringLiteral() const;
// True iff the expression is the null literal.
bool IsNullLiteral() const;
// True if we can prove that the expression is the undefined literal. Note
// that this also checks for loads of the global "undefined" variable.
bool IsUndefinedLiteral() const;
// True iff the expression is a valid target for an assignment.
bool IsValidReferenceExpressionOrThis() const;
// TODO(rossberg): this should move to its own AST node eventually.
void RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle);
uint16_t to_boolean_types() const {
return ToBooleanTypesField::decode(bit_field_);
}
SmallMapList* GetReceiverTypes();
KeyedAccessStoreMode GetStoreMode() const;
IcCheckType GetKeyType() const;
bool IsMonomorphic() const;
void set_base_id(int id) { base_id_ = id; }
static int num_ids() { return parent_num_ids() + 2; }
BailoutId id() const { return BailoutId(local_id(0)); }
TypeFeedbackId test_id() const { return TypeFeedbackId(local_id(1)); }
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
int base_id_;
class ToBooleanTypesField
: public BitField<uint16_t, AstNode::kNextBitFieldIndex, 9> {};
protected:
Expression(int pos, NodeType type)
: AstNode(pos, type), base_id_(BailoutId::None().ToInt()) {
bit_field_ = ToBooleanTypesField::update(bit_field_, 0);
}
static int parent_num_ids() { return 0; }
void set_to_boolean_types(uint16_t types) {
bit_field_ = ToBooleanTypesField::update(bit_field_, types);
}
int base_id() const {
DCHECK(!BailoutId(base_id_).IsNone());
return base_id_;
}
static const uint8_t kNextBitFieldIndex = ToBooleanTypesField::kNext;
};
class BreakableStatement : public Statement {
public:
enum BreakableType {
TARGET_FOR_ANONYMOUS,
TARGET_FOR_NAMED_ONLY
};
// The labels associated with this statement. May be NULL;
// if it is != NULL, guaranteed to contain at least one entry.
ZoneList<const AstRawString*>* labels() const { return labels_; }
// Code generation
Label* break_target() { return &break_target_; }
// Testers.
bool is_target_for_anonymous() const {
return BreakableTypeField::decode(bit_field_) == TARGET_FOR_ANONYMOUS;
}
void set_base_id(int id) { base_id_ = id; }
static int num_ids() { return parent_num_ids() + 2; }
BailoutId EntryId() const { return BailoutId(local_id(0)); }
BailoutId ExitId() const { return BailoutId(local_id(1)); }
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
BreakableType breakableType() const {
return BreakableTypeField::decode(bit_field_);
}
int base_id_;
Label break_target_;
ZoneList<const AstRawString*>* labels_;
class BreakableTypeField
: public BitField<BreakableType, Statement::kNextBitFieldIndex, 1> {};
protected:
BreakableStatement(ZoneList<const AstRawString*>* labels,
BreakableType breakable_type, int position, NodeType type)
: Statement(position, type),
base_id_(BailoutId::None().ToInt()),
labels_(labels) {
DCHECK(labels == NULL || labels->length() > 0);
bit_field_ |= BreakableTypeField::encode(breakable_type);
}
static int parent_num_ids() { return 0; }
int base_id() const {
DCHECK(!BailoutId(base_id_).IsNone());
return base_id_;
}
static const uint8_t kNextBitFieldIndex = BreakableTypeField::kNext;
};
class Block final : public BreakableStatement {
public:
ZoneList<Statement*>* statements() { return &statements_; }
bool ignore_completion_value() const {
return IgnoreCompletionField::decode(bit_field_);
}
static int num_ids() { return parent_num_ids() + 1; }
BailoutId DeclsId() const { return BailoutId(local_id(0)); }
bool IsJump() const {
return !statements_.is_empty() && statements_.last()->IsJump()
&& labels() == NULL; // Good enough as an approximation...
}
Scope* scope() const { return scope_; }
void set_scope(Scope* scope) { scope_ = scope; }
private:
friend class AstNodeFactory;
Block(Zone* zone, ZoneList<const AstRawString*>* labels, int capacity,
bool ignore_completion_value, int pos)
: BreakableStatement(labels, TARGET_FOR_NAMED_ONLY, pos, kBlock),
statements_(capacity, zone),
scope_(NULL) {
bit_field_ |= IgnoreCompletionField::encode(ignore_completion_value);
}
static int parent_num_ids() { return BreakableStatement::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
ZoneList<Statement*> statements_;
Scope* scope_;
class IgnoreCompletionField
: public BitField<bool, BreakableStatement::kNextBitFieldIndex, 1> {};
protected:
static const uint8_t kNextBitFieldIndex = IgnoreCompletionField::kNext;
};
class DoExpression final : public Expression {
public:
Block* block() { return block_; }
void set_block(Block* b) { block_ = b; }
VariableProxy* result() { return result_; }
void set_result(VariableProxy* v) { result_ = v; }
FunctionLiteral* represented_function() { return represented_function_; }
void set_represented_function(FunctionLiteral* f) {
represented_function_ = f;
}
bool IsAnonymousFunctionDefinition() const;
protected:
static const uint8_t kNextBitFieldIndex = Expression::kNextBitFieldIndex;
private:
friend class AstNodeFactory;
DoExpression(Block* block, VariableProxy* result, int pos)
: Expression(pos, kDoExpression),
block_(block),
result_(result),
represented_function_(nullptr) {
DCHECK_NOT_NULL(block_);
DCHECK_NOT_NULL(result_);
}
static int parent_num_ids() { return Expression::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Block* block_;
VariableProxy* result_;
FunctionLiteral* represented_function_;
};
class Declaration : public AstNode {
public:
typedef ThreadedList<Declaration> List;
VariableProxy* proxy() const { return proxy_; }
Scope* scope() const { return scope_; }
protected:
Declaration(VariableProxy* proxy, Scope* scope, int pos, NodeType type)
: AstNode(pos, type), proxy_(proxy), scope_(scope), next_(nullptr) {}
static const uint8_t kNextBitFieldIndex = AstNode::kNextBitFieldIndex;
private:
VariableProxy* proxy_;
// Nested scope from which the declaration originated.
Scope* scope_;
// Declarations list threaded through the declarations.
Declaration** next() { return &next_; }
Declaration* next_;
friend List;
};
class VariableDeclaration final : public Declaration {
private:
friend class AstNodeFactory;
VariableDeclaration(VariableProxy* proxy, Scope* scope, int pos)
: Declaration(proxy, scope, pos, kVariableDeclaration) {}
};
class FunctionDeclaration final : public Declaration {
public:
FunctionLiteral* fun() const { return fun_; }
void set_fun(FunctionLiteral* f) { fun_ = f; }
private:
friend class AstNodeFactory;
FunctionDeclaration(VariableProxy* proxy, FunctionLiteral* fun, Scope* scope,
int pos)
: Declaration(proxy, scope, pos, kFunctionDeclaration), fun_(fun) {
DCHECK(fun != NULL);
}
FunctionLiteral* fun_;
};
class IterationStatement : public BreakableStatement {
public:
Statement* body() const { return body_; }
void set_body(Statement* s) { body_ = s; }
int yield_count() const { return yield_count_; }
int first_yield_id() const { return first_yield_id_; }
void set_yield_count(int yield_count) { yield_count_ = yield_count; }
void set_first_yield_id(int first_yield_id) {
first_yield_id_ = first_yield_id;
}
static int num_ids() { return parent_num_ids() + 1; }
BailoutId OsrEntryId() const { return BailoutId(local_id(0)); }
// Code generation
Label* continue_target() { return &continue_target_; }
protected:
IterationStatement(ZoneList<const AstRawString*>* labels, int pos,
NodeType type)
: BreakableStatement(labels, TARGET_FOR_ANONYMOUS, pos, type),
body_(NULL),
yield_count_(0),
first_yield_id_(0) {}
static int parent_num_ids() { return BreakableStatement::num_ids(); }
void Initialize(Statement* body) { body_ = body; }
static const uint8_t kNextBitFieldIndex =
BreakableStatement::kNextBitFieldIndex;
private:
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Statement* body_;
Label continue_target_;
int yield_count_;
int first_yield_id_;
};
class DoWhileStatement final : public IterationStatement {
public:
void Initialize(Expression* cond, Statement* body) {
IterationStatement::Initialize(body);
cond_ = cond;
}
Expression* cond() const { return cond_; }
void set_cond(Expression* e) { cond_ = e; }
static int num_ids() { return parent_num_ids() + 2; }
BailoutId ContinueId() const { return BailoutId(local_id(0)); }
BailoutId StackCheckId() const { return BackEdgeId(); }
BailoutId BackEdgeId() const { return BailoutId(local_id(1)); }
private:
friend class AstNodeFactory;
DoWhileStatement(ZoneList<const AstRawString*>* labels, int pos)
: IterationStatement(labels, pos, kDoWhileStatement), cond_(NULL) {}
static int parent_num_ids() { return IterationStatement::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Expression* cond_;
};
class WhileStatement final : public IterationStatement {
public:
void Initialize(Expression* cond, Statement* body) {
IterationStatement::Initialize(body);
cond_ = cond;
}
Expression* cond() const { return cond_; }
void set_cond(Expression* e) { cond_ = e; }
static int num_ids() { return parent_num_ids() + 1; }
BailoutId ContinueId() const { return EntryId(); }
BailoutId StackCheckId() const { return BodyId(); }
BailoutId BodyId() const { return BailoutId(local_id(0)); }
private:
friend class AstNodeFactory;
WhileStatement(ZoneList<const AstRawString*>* labels, int pos)
: IterationStatement(labels, pos, kWhileStatement), cond_(NULL) {}
static int parent_num_ids() { return IterationStatement::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Expression* cond_;
};
class ForStatement final : public IterationStatement {
public:
void Initialize(Statement* init,
Expression* cond,
Statement* next,
Statement* body) {
IterationStatement::Initialize(body);
init_ = init;
cond_ = cond;
next_ = next;
}
Statement* init() const { return init_; }
Expression* cond() const { return cond_; }
Statement* next() const { return next_; }
void set_init(Statement* s) { init_ = s; }
void set_cond(Expression* e) { cond_ = e; }
void set_next(Statement* s) { next_ = s; }
static int num_ids() { return parent_num_ids() + 2; }
BailoutId ContinueId() const { return BailoutId(local_id(0)); }
BailoutId StackCheckId() const { return BodyId(); }
BailoutId BodyId() const { return BailoutId(local_id(1)); }
private:
friend class AstNodeFactory;
ForStatement(ZoneList<const AstRawString*>* labels, int pos)
: IterationStatement(labels, pos, kForStatement),
init_(NULL),
cond_(NULL),
next_(NULL) {}
static int parent_num_ids() { return IterationStatement::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Statement* init_;
Expression* cond_;
Statement* next_;
};
class ForEachStatement : public IterationStatement {
public:
enum VisitMode {
ENUMERATE, // for (each in subject) body;
ITERATE // for (each of subject) body;
};
using IterationStatement::Initialize;
static const char* VisitModeString(VisitMode mode) {
return mode == ITERATE ? "for-of" : "for-in";
}
protected:
ForEachStatement(ZoneList<const AstRawString*>* labels, int pos,
NodeType type)
: IterationStatement(labels, pos, type) {}
};
class ForInStatement final : public ForEachStatement {
public:
void Initialize(Expression* each, Expression* subject, Statement* body) {
ForEachStatement::Initialize(body);
each_ = each;
subject_ = subject;
}
Expression* enumerable() const {
return subject();
}
Expression* each() const { return each_; }
Expression* subject() const { return subject_; }
void set_each(Expression* e) { each_ = e; }
void set_subject(Expression* e) { subject_ = e; }
// Type feedback information.
void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache);
FeedbackVectorSlot EachFeedbackSlot() const { return each_slot_; }
FeedbackVectorSlot ForInFeedbackSlot() {
DCHECK(!for_in_feedback_slot_.IsInvalid());
return for_in_feedback_slot_;
}
enum ForInType { FAST_FOR_IN, SLOW_FOR_IN };
ForInType for_in_type() const { return ForInTypeField::decode(bit_field_); }
void set_for_in_type(ForInType type) {
bit_field_ = ForInTypeField::update(bit_field_, type);
}
static int num_ids() { return parent_num_ids() + 7; }
BailoutId BodyId() const { return BailoutId(local_id(0)); }
BailoutId EnumId() const { return BailoutId(local_id(1)); }
BailoutId ToObjectId() const { return BailoutId(local_id(2)); }
BailoutId PrepareId() const { return BailoutId(local_id(3)); }
BailoutId FilterId() const { return BailoutId(local_id(4)); }
BailoutId AssignmentId() const { return BailoutId(local_id(5)); }
BailoutId IncrementId() const { return BailoutId(local_id(6)); }
BailoutId StackCheckId() const { return BodyId(); }
private:
friend class AstNodeFactory;
ForInStatement(ZoneList<const AstRawString*>* labels, int pos)
: ForEachStatement(labels, pos, kForInStatement),
each_(nullptr),
subject_(nullptr) {
bit_field_ = ForInTypeField::update(bit_field_, SLOW_FOR_IN);
}
static int parent_num_ids() { return ForEachStatement::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Expression* each_;
Expression* subject_;
FeedbackVectorSlot each_slot_;
FeedbackVectorSlot for_in_feedback_slot_;
class ForInTypeField
: public BitField<ForInType, ForEachStatement::kNextBitFieldIndex, 1> {};
protected:
static const uint8_t kNextBitFieldIndex = ForInTypeField::kNext;
};
class ForOfStatement final : public ForEachStatement {
public:
void Initialize(Statement* body, Variable* iterator,
Expression* assign_iterator, Expression* next_result,
Expression* result_done, Expression* assign_each) {
ForEachStatement::Initialize(body);
iterator_ = iterator;
assign_iterator_ = assign_iterator;
next_result_ = next_result;
result_done_ = result_done;
assign_each_ = assign_each;
}
Variable* iterator() const {
return iterator_;
}
// iterator = subject[Symbol.iterator]()
Expression* assign_iterator() const {
return assign_iterator_;
}
// result = iterator.next() // with type check
Expression* next_result() const {
return next_result_;
}
// result.done
Expression* result_done() const {
return result_done_;
}
// each = result.value
Expression* assign_each() const {
return assign_each_;
}
void set_assign_iterator(Expression* e) { assign_iterator_ = e; }
void set_next_result(Expression* e) { next_result_ = e; }
void set_result_done(Expression* e) { result_done_ = e; }
void set_assign_each(Expression* e) { assign_each_ = e; }
BailoutId ContinueId() const { return EntryId(); }
BailoutId StackCheckId() const { return BackEdgeId(); }
static int num_ids() { return parent_num_ids() + 1; }
BailoutId BackEdgeId() const { return BailoutId(local_id(0)); }
private:
friend class AstNodeFactory;
ForOfStatement(ZoneList<const AstRawString*>* labels, int pos)
: ForEachStatement(labels, pos, kForOfStatement),
iterator_(NULL),
assign_iterator_(NULL),
next_result_(NULL),
result_done_(NULL),
assign_each_(NULL) {}
static int parent_num_ids() { return ForEachStatement::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Variable* iterator_;
Expression* assign_iterator_;
Expression* next_result_;
Expression* result_done_;
Expression* assign_each_;
};
class ExpressionStatement final : public Statement {
public:
void set_expression(Expression* e) { expression_ = e; }
Expression* expression() const { return expression_; }
bool IsJump() const { return expression_->IsThrow(); }
private:
friend class AstNodeFactory;
ExpressionStatement(Expression* expression, int pos)
: Statement(pos, kExpressionStatement), expression_(expression) {}
Expression* expression_;
};
class JumpStatement : public Statement {
public:
bool IsJump() const { return true; }
protected:
JumpStatement(int pos, NodeType type) : Statement(pos, type) {}
};
class ContinueStatement final : public JumpStatement {
public:
IterationStatement* target() const { return target_; }
private:
friend class AstNodeFactory;
ContinueStatement(IterationStatement* target, int pos)
: JumpStatement(pos, kContinueStatement), target_(target) {}
IterationStatement* target_;
};
class BreakStatement final : public JumpStatement {
public:
BreakableStatement* target() const { return target_; }
private:
friend class AstNodeFactory;
BreakStatement(BreakableStatement* target, int pos)
: JumpStatement(pos, kBreakStatement), target_(target) {}
BreakableStatement* target_;
};
class ReturnStatement final : public JumpStatement {
public:
Expression* expression() const { return expression_; }
void set_expression(Expression* e) { expression_ = e; }
private:
friend class AstNodeFactory;
ReturnStatement(Expression* expression, int pos)
: JumpStatement(pos, kReturnStatement), expression_(expression) {}
Expression* expression_;
};
class WithStatement final : public Statement {
public:
Scope* scope() { return scope_; }
Expression* expression() const { return expression_; }
void set_expression(Expression* e) { expression_ = e; }
Statement* statement() const { return statement_; }
void set_statement(Statement* s) { statement_ = s; }
void set_base_id(int id) { base_id_ = id; }
static int num_ids() { return parent_num_ids() + 2; }
BailoutId ToObjectId() const { return BailoutId(local_id(0)); }
BailoutId EntryId() const { return BailoutId(local_id(1)); }
private:
friend class AstNodeFactory;
WithStatement(Scope* scope, Expression* expression, Statement* statement,
int pos)
: Statement(pos, kWithStatement),
base_id_(BailoutId::None().ToInt()),
scope_(scope),
expression_(expression),
statement_(statement) {}
static int parent_num_ids() { return 0; }
int base_id() const {
DCHECK(!BailoutId(base_id_).IsNone());
return base_id_;
}
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
int base_id_;
Scope* scope_;
Expression* expression_;
Statement* statement_;
};
class CaseClause final : public Expression {
public:
bool is_default() const { return label_ == NULL; }
Expression* label() const {
CHECK(!is_default());
return label_;
}
void set_label(Expression* e) { label_ = e; }
Label* body_target() { return &body_target_; }
ZoneList<Statement*>* statements() const { return statements_; }
static int num_ids() { return parent_num_ids() + 2; }
BailoutId EntryId() const { return BailoutId(local_id(0)); }
TypeFeedbackId CompareId() { return TypeFeedbackId(local_id(1)); }
AstType* compare_type() { return compare_type_; }
void set_compare_type(AstType* type) { compare_type_ = type; }
// CaseClause will have both a slot in the feedback vector and the
// TypeFeedbackId to record the type information. TypeFeedbackId is used by
// full codegen and the feedback vector slot is used by interpreter.
void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache);
FeedbackVectorSlot CompareOperationFeedbackSlot() {
return type_feedback_slot_;
}
private:
friend class AstNodeFactory;
static int parent_num_ids() { return Expression::num_ids(); }
CaseClause(Expression* label, ZoneList<Statement*>* statements, int pos);
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Expression* label_;
Label body_target_;
ZoneList<Statement*>* statements_;
AstType* compare_type_;
FeedbackVectorSlot type_feedback_slot_;
};
class SwitchStatement final : public BreakableStatement {
public:
void Initialize(Expression* tag, ZoneList<CaseClause*>* cases) {
tag_ = tag;
cases_ = cases;
}
Expression* tag() const { return tag_; }
ZoneList<CaseClause*>* cases() const { return cases_; }
void set_tag(Expression* t) { tag_ = t; }
private:
friend class AstNodeFactory;
SwitchStatement(ZoneList<const AstRawString*>* labels, int pos)
: BreakableStatement(labels, TARGET_FOR_ANONYMOUS, pos, kSwitchStatement),
tag_(NULL),
cases_(NULL) {}
Expression* tag_;
ZoneList<CaseClause*>* cases_;
};
// If-statements always have non-null references to their then- and
// else-parts. When parsing if-statements with no explicit else-part,
// the parser implicitly creates an empty statement. Use the
// HasThenStatement() and HasElseStatement() functions to check if a
// given if-statement has a then- or an else-part containing code.
class IfStatement final : public Statement {
public:
bool HasThenStatement() const { return !then_statement()->IsEmpty(); }
bool HasElseStatement() const { return !else_statement()->IsEmpty(); }
Expression* condition() const { return condition_; }
Statement* then_statement() const { return then_statement_; }
Statement* else_statement() const { return else_statement_; }
void set_condition(Expression* e) { condition_ = e; }
void set_then_statement(Statement* s) { then_statement_ = s; }
void set_else_statement(Statement* s) { else_statement_ = s; }
bool IsJump() const {
return HasThenStatement() && then_statement()->IsJump()
&& HasElseStatement() && else_statement()->IsJump();
}
void set_base_id(int id) { base_id_ = id; }
static int num_ids() { return parent_num_ids() + 3; }
BailoutId IfId() const { return BailoutId(local_id(0)); }
BailoutId ThenId() const { return BailoutId(local_id(1)); }
BailoutId ElseId() const { return BailoutId(local_id(2)); }
private:
friend class AstNodeFactory;
IfStatement(Expression* condition, Statement* then_statement,
Statement* else_statement, int pos)
: Statement(pos, kIfStatement),
base_id_(BailoutId::None().ToInt()),
condition_(condition),
then_statement_(then_statement),
else_statement_(else_statement) {}
static int parent_num_ids() { return 0; }
int base_id() const {
DCHECK(!BailoutId(base_id_).IsNone());
return base_id_;
}
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
int base_id_;
Expression* condition_;
Statement* then_statement_;
Statement* else_statement_;
};
class TryStatement : public Statement {
public:
Block* try_block() const { return try_block_; }
void set_try_block(Block* b) { try_block_ = b; }
// Prediction of whether exceptions thrown into the handler for this try block
// will be caught.
//
// This is set in ast-numbering and later compiled into the code's handler
// table. The runtime uses this information to implement a feature that
// notifies the debugger when an uncaught exception is thrown, _before_ the
// exception propagates to the top.
//
// Since it's generally undecidable whether an exception will be caught, our
// prediction is only an approximation.
HandlerTable::CatchPrediction catch_prediction() const {
return catch_prediction_;
}
void set_catch_prediction(HandlerTable::CatchPrediction prediction) {
catch_prediction_ = prediction;
}
protected:
TryStatement(Block* try_block, int pos, NodeType type)
: Statement(pos, type),
catch_prediction_(HandlerTable::UNCAUGHT),
try_block_(try_block) {}
HandlerTable::CatchPrediction catch_prediction_;
private:
Block* try_block_;
};
class TryCatchStatement final : public TryStatement {
public:
Scope* scope() { return scope_; }
Variable* variable() { return variable_; }
Block* catch_block() const { return catch_block_; }
void set_catch_block(Block* b) { catch_block_ = b; }
// The clear_pending_message flag indicates whether or not to clear the
// isolate's pending exception message before executing the catch_block. In
// the normal use case, this flag is always on because the message object
// is not needed anymore when entering the catch block and should not be kept
// alive.
// The use case where the flag is off is when the catch block is guaranteed to
// rethrow the caught exception (using %ReThrow), which reuses the pending
// message instead of generating a new one.
// (When the catch block doesn't rethrow but is guaranteed to perform an
// ordinary throw, not clearing the old message is safe but not very useful.)
bool clear_pending_message() const {
return catch_prediction_ != HandlerTable::UNCAUGHT;
}
private:
friend class AstNodeFactory;
TryCatchStatement(Block* try_block, Scope* scope, Variable* variable,
Block* catch_block,
HandlerTable::CatchPrediction catch_prediction, int pos)
: TryStatement(try_block, pos, kTryCatchStatement),
scope_(scope),
variable_(variable),
catch_block_(catch_block) {
catch_prediction_ = catch_prediction;
}
Scope* scope_;
Variable* variable_;
Block* catch_block_;
};
class TryFinallyStatement final : public TryStatement {
public:
Block* finally_block() const { return finally_block_; }
void set_finally_block(Block* b) { finally_block_ = b; }
private:
friend class AstNodeFactory;
TryFinallyStatement(Block* try_block, Block* finally_block, int pos)
: TryStatement(try_block, pos, kTryFinallyStatement),
finally_block_(finally_block) {}
Block* finally_block_;
};
class DebuggerStatement final : public Statement {
public:
void set_base_id(int id) { base_id_ = id; }
static int num_ids() { return parent_num_ids() + 1; }
BailoutId DebugBreakId() const { return BailoutId(local_id(0)); }
private:
friend class AstNodeFactory;
explicit DebuggerStatement(int pos)
: Statement(pos, kDebuggerStatement),
base_id_(BailoutId::None().ToInt()) {}
static int parent_num_ids() { return 0; }
int base_id() const {
DCHECK(!BailoutId(base_id_).IsNone());
return base_id_;
}
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
int base_id_;
};
class EmptyStatement final : public Statement {
private:
friend class AstNodeFactory;
explicit EmptyStatement(int pos) : Statement(pos, kEmptyStatement) {}
};
// Delegates to another statement, which may be overwritten.
// This was introduced to implement ES2015 Annex B3.3 for conditionally making
// sloppy-mode block-scoped functions have a var binding, which is changed
// from one statement to another during parsing.
class SloppyBlockFunctionStatement final : public Statement {
public:
Statement* statement() const { return statement_; }
void set_statement(Statement* statement) { statement_ = statement; }
Scope* scope() const { return scope_; }
SloppyBlockFunctionStatement* next() { return next_; }
void set_next(SloppyBlockFunctionStatement* next) { next_ = next; }
private:
friend class AstNodeFactory;
SloppyBlockFunctionStatement(Statement* statement, Scope* scope)
: Statement(kNoSourcePosition, kSloppyBlockFunctionStatement),
statement_(statement),
scope_(scope),
next_(nullptr) {}
Statement* statement_;
Scope* const scope_;
SloppyBlockFunctionStatement* next_;
};
class Literal final : public Expression {
public:
// Returns true if literal represents a property name (i.e. cannot be parsed
// as array indices).
bool IsPropertyName() const { return value_->IsPropertyName(); }
Handle<String> AsPropertyName() {
DCHECK(IsPropertyName());
return Handle<String>::cast(value());
}
const AstRawString* AsRawPropertyName() {
DCHECK(IsPropertyName());
return value_->AsString();
}
bool ToBooleanIsTrue() const { return raw_value()->BooleanValue(); }
bool ToBooleanIsFalse() const { return !raw_value()->BooleanValue(); }
Handle<Object> value() const { return value_->value(); }
const AstValue* raw_value() const { return value_; }
// Support for using Literal as a HashMap key. NOTE: Currently, this works
// only for string and number literals!
uint32_t Hash();
static bool Match(void* literal1, void* literal2);
static int num_ids() { return parent_num_ids() + 1; }
TypeFeedbackId LiteralFeedbackId() const {
return TypeFeedbackId(local_id(0));
}
private:
friend class AstNodeFactory;
Literal(const AstValue* value, int position)
: Expression(position, kLiteral), value_(value) {}
static int parent_num_ids() { return Expression::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
const AstValue* value_;
};
class AstLiteralReindexer;
// Base class for literals that needs space in the corresponding JSFunction.
class MaterializedLiteral : public Expression {
public:
int literal_index() { return literal_index_; }
int depth() const {
// only callable after initialization.
DCHECK(depth_ >= 1);
return depth_;
}
private:
int depth_ : 31;
int literal_index_;
friend class AstLiteralReindexer;
class IsSimpleField
: public BitField<bool, Expression::kNextBitFieldIndex, 1> {};
protected:
MaterializedLiteral(int literal_index, int pos, NodeType type)
: Expression(pos, type), depth_(0), literal_index_(literal_index) {
bit_field_ |= IsSimpleField::encode(false);
}
// A materialized literal is simple if the values consist of only
// constants and simple object and array literals.
bool is_simple() const { return IsSimpleField::decode(bit_field_); }
void set_is_simple(bool is_simple) {
bit_field_ = IsSimpleField::update(bit_field_, is_simple);
}
friend class CompileTimeValue;
void set_depth(int depth) {
DCHECK_LE(1, depth);
depth_ = depth;
}
// Populate the constant properties/elements fixed array.
void BuildConstants(Isolate* isolate);
friend class ArrayLiteral;
friend class ObjectLiteral;
// If the expression is a literal, return the literal value;
// if the expression is a materialized literal and is simple return a
// compile time value as encoded by CompileTimeValue::GetValue().
// Otherwise, return undefined literal as the placeholder
// in the object literal boilerplate.
Handle<Object> GetBoilerplateValue(Expression* expression, Isolate* isolate);
static const uint8_t kNextBitFieldIndex = IsSimpleField::kNext;
};
// Common supertype for ObjectLiteralProperty and ClassLiteralProperty
class LiteralProperty : public ZoneObject {
public:
Expression* key() const { return key_; }
Expression* value() const { return value_; }
void set_key(Expression* e) { key_ = e; }
void set_value(Expression* e) { value_ = e; }
bool is_computed_name() const { return is_computed_name_; }
FeedbackVectorSlot GetSlot(int offset = 0) const {
DCHECK_LT(offset, static_cast<int>(arraysize(slots_)));
return slots_[offset];
}
void SetSlot(FeedbackVectorSlot slot, int offset = 0) {
DCHECK_LT(offset, static_cast<int>(arraysize(slots_)));
slots_[offset] = slot;
}
bool NeedsSetFunctionName() const;
protected:
LiteralProperty(Expression* key, Expression* value, bool is_computed_name)
: key_(key), value_(value), is_computed_name_(is_computed_name) {}
Expression* key_;
Expression* value_;
FeedbackVectorSlot slots_[2];
bool is_computed_name_;
};
// Property is used for passing information
// about an object literal's properties from the parser
// to the code generator.
class ObjectLiteralProperty final : public LiteralProperty {
public:
enum Kind : uint8_t {
CONSTANT, // Property with constant value (compile time).
COMPUTED, // Property with computed value (execution time).
MATERIALIZED_LITERAL, // Property value is a materialized literal.
GETTER,
SETTER, // Property is an accessor function.
PROTOTYPE // Property is __proto__.
};
Kind kind() const { return kind_; }
// Type feedback information.
bool IsMonomorphic() const { return !receiver_type_.is_null(); }
Handle<Map> GetReceiverType() const { return receiver_type_; }
bool IsCompileTimeValue() const;
void set_emit_store(bool emit_store);
bool emit_store() const;
void set_receiver_type(Handle<Map> map) { receiver_type_ = map; }
private:
friend class AstNodeFactory;
ObjectLiteralProperty(Expression* key, Expression* value, Kind kind,
bool is_computed_name);
ObjectLiteralProperty(AstValueFactory* ast_value_factory, Expression* key,
Expression* value, bool is_computed_name);
Kind kind_;
bool emit_store_;
Handle<Map> receiver_type_;
};
// An object literal has a boilerplate object that is used
// for minimizing the work when constructing it at runtime.
class ObjectLiteral final : public MaterializedLiteral {
public:
typedef ObjectLiteralProperty Property;
Handle<FixedArray> constant_properties() const {
return constant_properties_;
}
int properties_count() const { return boilerplate_properties_; }
ZoneList<Property*>* properties() const { return properties_; }
bool fast_elements() const { return FastElementsField::decode(bit_field_); }
bool may_store_doubles() const {
return MayStoreDoublesField::decode(bit_field_);
}
bool has_elements() const { return HasElementsField::decode(bit_field_); }
bool has_shallow_properties() const {
return depth() == 1 && !has_elements() && !may_store_doubles();
}
// Decide if a property should be in the object boilerplate.
static bool IsBoilerplateProperty(Property* property);
// Populate the constant properties fixed array.
void BuildConstantProperties(Isolate* isolate);
// Mark all computed expressions that are bound to a key that
// is shadowed by a later occurrence of the same key. For the
// marked expressions, no store code is emitted.
void CalculateEmitStore(Zone* zone);
// Assemble bitfield of flags for the CreateObjectLiteral helper.
int ComputeFlags(bool disable_mementos = false) const {
int flags = fast_elements() ? kFastElements : kNoFlags;
if (has_shallow_properties()) {
flags |= kShallowProperties;
}
if (disable_mementos) {
flags |= kDisableMementos;
}
return flags;
}
enum Flags {
kNoFlags = 0,
kFastElements = 1,
kShallowProperties = 1 << 1,
kDisableMementos = 1 << 2
};
struct Accessors: public ZoneObject {
Accessors() : getter(NULL), setter(NULL), bailout_id(BailoutId::None()) {}
ObjectLiteralProperty* getter;
ObjectLiteralProperty* setter;
BailoutId bailout_id;
};
BailoutId CreateLiteralId() const { return BailoutId(local_id(0)); }
// Return an AST id for a property that is used in simulate instructions.
BailoutId GetIdForPropertyName(int i) {
return BailoutId(local_id(2 * i + 1));
}
BailoutId GetIdForPropertySet(int i) {
return BailoutId(local_id(2 * i + 2));
}
// Unlike other AST nodes, this number of bailout IDs allocated for an
// ObjectLiteral can vary, so num_ids() is not a static method.
int num_ids() const {
return parent_num_ids() + 1 + 2 * properties()->length();
}
// Object literals need one feedback slot for each non-trivial value, as well
// as some slots for home objects.
void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache);
private:
friend class AstNodeFactory;
ObjectLiteral(ZoneList<Property*>* properties, int literal_index,
uint32_t boilerplate_properties, int pos)
: MaterializedLiteral(literal_index, pos, kObjectLiteral),
boilerplate_properties_(boilerplate_properties),
properties_(properties) {
bit_field_ |= FastElementsField::encode(false) |
HasElementsField::encode(false) |
MayStoreDoublesField::encode(false);
}
static int parent_num_ids() { return MaterializedLiteral::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
uint32_t boilerplate_properties_;
FeedbackVectorSlot slot_;
Handle<FixedArray> constant_properties_;
ZoneList<Property*>* properties_;
class FastElementsField
: public BitField<bool, MaterializedLiteral::kNextBitFieldIndex, 1> {};
class HasElementsField : public BitField<bool, FastElementsField::kNext, 1> {
};
class MayStoreDoublesField
: public BitField<bool, HasElementsField::kNext, 1> {};
protected:
static const uint8_t kNextBitFieldIndex = MayStoreDoublesField::kNext;
};
// A map from property names to getter/setter pairs allocated in the zone.
class AccessorTable
: public base::TemplateHashMap<Literal, ObjectLiteral::Accessors,
bool (*)(void*, void*),
ZoneAllocationPolicy> {
public:
explicit AccessorTable(Zone* zone)
: base::TemplateHashMap<Literal, ObjectLiteral::Accessors,
bool (*)(void*, void*), ZoneAllocationPolicy>(
Literal::Match, ZoneAllocationPolicy(zone)),
zone_(zone) {}
Iterator lookup(Literal* literal) {
Iterator it = find(literal, true, ZoneAllocationPolicy(zone_));
if (it->second == NULL) it->second = new (zone_) ObjectLiteral::Accessors();
return it;
}
private:
Zone* zone_;
};
// Node for capturing a regexp literal.
class RegExpLiteral final : public MaterializedLiteral {
public:
Handle<String> pattern() const { return pattern_->string(); }
int flags() const { return flags_; }
private:
friend class AstNodeFactory;
RegExpLiteral(const AstRawString* pattern, int flags, int literal_index,
int pos)
: MaterializedLiteral(literal_index, pos, kRegExpLiteral),
flags_(flags),
pattern_(pattern) {
set_depth(1);
}
int const flags_;
const AstRawString* const pattern_;
};
// An array literal has a literals object that is used
// for minimizing the work when constructing it at runtime.
class ArrayLiteral final : public MaterializedLiteral {
public:
Handle<FixedArray> constant_elements() const { return constant_elements_; }
ElementsKind constant_elements_kind() const {
DCHECK_EQ(2, constant_elements_->length());
return static_cast<ElementsKind>(
Smi::cast(constant_elements_->get(0))->value());
}
ZoneList<Expression*>* values() const { return values_; }
BailoutId CreateLiteralId() const { return BailoutId(local_id(0)); }
// Return an AST id for an element that is used in simulate instructions.
BailoutId GetIdForElement(int i) { return BailoutId(local_id(i + 1)); }
// Unlike other AST nodes, this number of bailout IDs allocated for an
// ArrayLiteral can vary, so num_ids() is not a static method.
int num_ids() const { return parent_num_ids() + 1 + values()->length(); }
// Populate the constant elements fixed array.
void BuildConstantElements(Isolate* isolate);
// Assemble bitfield of flags for the CreateArrayLiteral helper.
int ComputeFlags(bool disable_mementos = false) const {
int flags = depth() == 1 ? kShallowElements : kNoFlags;
if (disable_mementos) {
flags |= kDisableMementos;
}
return flags;
}
// Provide a mechanism for iterating through values to rewrite spreads.
ZoneList<Expression*>::iterator FirstSpread() const {
return (first_spread_index_ >= 0) ? values_->begin() + first_spread_index_
: values_->end();
}
ZoneList<Expression*>::iterator EndValue() const { return values_->end(); }
// Rewind an array literal omitting everything from the first spread on.
void RewindSpreads() {
values_->Rewind(first_spread_index_);
first_spread_index_ = -1;
}
enum Flags {
kNoFlags = 0,
kShallowElements = 1,
kDisableMementos = 1 << 1
};
void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache);
FeedbackVectorSlot LiteralFeedbackSlot() const { return literal_slot_; }
private:
friend class AstNodeFactory;
ArrayLiteral(ZoneList<Expression*>* values, int first_spread_index,
int literal_index, int pos)
: MaterializedLiteral(literal_index, pos, kArrayLiteral),
first_spread_index_(first_spread_index),
values_(values) {}
static int parent_num_ids() { return MaterializedLiteral::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
int first_spread_index_;
FeedbackVectorSlot literal_slot_;
Handle<FixedArray> constant_elements_;
ZoneList<Expression*>* values_;
};
class VariableProxy final : public Expression {
public:
bool IsValidReferenceExpression() const {
return !is_this() && !is_new_target();
}
Handle<String> name() const { return raw_name()->string(); }
const AstRawString* raw_name() const {
return is_resolved() ? var_->raw_name() : raw_name_;
}
Variable* var() const {
DCHECK(is_resolved());
return var_;
}
void set_var(Variable* v) {
DCHECK(!is_resolved());
DCHECK_NOT_NULL(v);
var_ = v;
}
bool is_this() const { return IsThisField::decode(bit_field_); }
bool is_assigned() const { return IsAssignedField::decode(bit_field_); }
void set_is_assigned() {
bit_field_ = IsAssignedField::update(bit_field_, true);
}
bool is_resolved() const { return IsResolvedField::decode(bit_field_); }
void set_is_resolved() {
bit_field_ = IsResolvedField::update(bit_field_, true);
}
bool is_new_target() const { return IsNewTargetField::decode(bit_field_); }
void set_is_new_target() {
bit_field_ = IsNewTargetField::update(bit_field_, true);
}
HoleCheckMode hole_check_mode() const {
return HoleCheckModeField::decode(bit_field_);
}
void set_needs_hole_check() {
bit_field_ =
HoleCheckModeField::update(bit_field_, HoleCheckMode::kRequired);
}
// Bind this proxy to the variable var.
void BindTo(Variable* var);
bool UsesVariableFeedbackSlot() const {
return var()->IsUnallocated() || var()->IsLookupSlot();
}
void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache);
FeedbackVectorSlot VariableFeedbackSlot() { return variable_feedback_slot_; }
static int num_ids() { return parent_num_ids() + 1; }
BailoutId BeforeId() const { return BailoutId(local_id(0)); }
void set_next_unresolved(VariableProxy* next) { next_unresolved_ = next; }
VariableProxy* next_unresolved() { return next_unresolved_; }
private:
friend class AstNodeFactory;
VariableProxy(Variable* var, int start_position);
VariableProxy(const AstRawString* name, VariableKind variable_kind,
int start_position);
explicit VariableProxy(const VariableProxy* copy_from);
static int parent_num_ids() { return Expression::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
class IsThisField : public BitField<bool, Expression::kNextBitFieldIndex, 1> {
};
class IsAssignedField : public BitField<bool, IsThisField::kNext, 1> {};
class IsResolvedField : public BitField<bool, IsAssignedField::kNext, 1> {};
class IsNewTargetField : public BitField<bool, IsResolvedField::kNext, 1> {};
class HoleCheckModeField
: public BitField<HoleCheckMode, IsNewTargetField::kNext, 1> {};
FeedbackVectorSlot variable_feedback_slot_;
union {
const AstRawString* raw_name_; // if !is_resolved_
Variable* var_; // if is_resolved_
};
VariableProxy* next_unresolved_;
};
// Left-hand side can only be a property, a global or a (parameter or local)
// slot.
enum LhsKind {
VARIABLE,
NAMED_PROPERTY,
KEYED_PROPERTY,
NAMED_SUPER_PROPERTY,
KEYED_SUPER_PROPERTY
};
class Property final : public Expression {
public:
bool IsValidReferenceExpression() const { return true; }
Expression* obj() const { return obj_; }
Expression* key() const { return key_; }
void set_obj(Expression* e) { obj_ = e; }
void set_key(Expression* e) { key_ = e; }
static int num_ids() { return parent_num_ids() + 1; }
BailoutId LoadId() const { return BailoutId(local_id(0)); }
bool IsStringAccess() const {
return IsStringAccessField::decode(bit_field_);
}
// Type feedback information.
bool IsMonomorphic() const { return receiver_types_.length() == 1; }
SmallMapList* GetReceiverTypes() { return &receiver_types_; }
KeyedAccessStoreMode GetStoreMode() const { return STANDARD_STORE; }
IcCheckType GetKeyType() const { return KeyTypeField::decode(bit_field_); }
bool IsUninitialized() const {
return !is_for_call() && HasNoTypeInformation();
}
bool HasNoTypeInformation() const {
return GetInlineCacheState() == UNINITIALIZED;
}
InlineCacheState GetInlineCacheState() const {
return InlineCacheStateField::decode(bit_field_);
}
void set_is_string_access(bool b) {
bit_field_ = IsStringAccessField::update(bit_field_, b);
}
void set_key_type(IcCheckType key_type) {
bit_field_ = KeyTypeField::update(bit_field_, key_type);
}
void set_inline_cache_state(InlineCacheState state) {
bit_field_ = InlineCacheStateField::update(bit_field_, state);
}
void mark_for_call() {
bit_field_ = IsForCallField::update(bit_field_, true);
}
bool is_for_call() const { return IsForCallField::decode(bit_field_); }
bool IsSuperAccess() { return obj()->IsSuperPropertyReference(); }
void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
FeedbackVectorSlotKind kind = key()->IsPropertyName()
? FeedbackVectorSlotKind::LOAD_IC
: FeedbackVectorSlotKind::KEYED_LOAD_IC;
property_feedback_slot_ = spec->AddSlot(kind);
}
FeedbackVectorSlot PropertyFeedbackSlot() const {
return property_feedback_slot_;
}
// Returns the properties assign type.
static LhsKind GetAssignType(Property* property) {
if (property == NULL) return VARIABLE;
bool super_access = property->IsSuperAccess();
return (property->key()->IsPropertyName())
? (super_access ? NAMED_SUPER_PROPERTY : NAMED_PROPERTY)
: (super_access ? KEYED_SUPER_PROPERTY : KEYED_PROPERTY);
}
private:
friend class AstNodeFactory;
Property(Expression* obj, Expression* key, int pos)
: Expression(pos, kProperty), obj_(obj), key_(key) {
bit_field_ |= IsForCallField::encode(false) |
IsStringAccessField::encode(false) |
InlineCacheStateField::encode(UNINITIALIZED);
}
static int parent_num_ids() { return Expression::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
class IsForCallField
: public BitField<bool, Expression::kNextBitFieldIndex, 1> {};
class IsStringAccessField : public BitField<bool, IsForCallField::kNext, 1> {
};
class KeyTypeField
: public BitField<IcCheckType, IsStringAccessField::kNext, 1> {};
class InlineCacheStateField
: public BitField<InlineCacheState, KeyTypeField::kNext, 4> {};
FeedbackVectorSlot property_feedback_slot_;
Expression* obj_;
Expression* key_;
SmallMapList receiver_types_;
};
class Call final : public Expression {
public:
Expression* expression() const { return expression_; }
ZoneList<Expression*>* arguments() const { return arguments_; }
void set_expression(Expression* e) { expression_ = e; }
// Type feedback information.
void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache);
FeedbackVectorSlot CallFeedbackICSlot() const { return ic_slot_; }
SmallMapList* GetReceiverTypes() {
if (expression()->IsProperty()) {
return expression()->AsProperty()->GetReceiverTypes();
}
return nullptr;
}
bool IsMonomorphic() const {
if (expression()->IsProperty()) {
return expression()->AsProperty()->IsMonomorphic();
}
return !target_.is_null();
}
Handle<JSFunction> target() { return target_; }
Handle<AllocationSite> allocation_site() { return allocation_site_; }
void SetKnownGlobalTarget(Handle<JSFunction> target) {
target_ = target;
set_is_uninitialized(false);
}
void set_target(Handle<JSFunction> target) { target_ = target; }
void set_allocation_site(Handle<AllocationSite> site) {
allocation_site_ = site;
}
static int num_ids() { return parent_num_ids() + 4; }
BailoutId ReturnId() const { return BailoutId(local_id(0)); }
BailoutId EvalId() const { return BailoutId(local_id(1)); }
BailoutId LookupId() const { return BailoutId(local_id(2)); }
BailoutId CallId() const { return BailoutId(local_id(3)); }
bool is_uninitialized() const {
return IsUninitializedField::decode(bit_field_);
}
void set_is_uninitialized(bool b) {
bit_field_ = IsUninitializedField::update(bit_field_, b);
}
bool is_possibly_eval() const {
return IsPossiblyEvalField::decode(bit_field_);
}
TailCallMode tail_call_mode() const {
return IsTailField::decode(bit_field_) ? TailCallMode::kAllow
: TailCallMode::kDisallow;
}
void MarkTail() { bit_field_ = IsTailField::update(bit_field_, true); }
enum CallType {
GLOBAL_CALL,
WITH_CALL,
NAMED_PROPERTY_CALL,
KEYED_PROPERTY_CALL,
NAMED_SUPER_PROPERTY_CALL,
KEYED_SUPER_PROPERTY_CALL,
SUPER_CALL,
OTHER_CALL
};
enum PossiblyEval {
IS_POSSIBLY_EVAL,
NOT_EVAL,
};
// Helpers to determine how to handle the call.
CallType GetCallType() const;
#ifdef DEBUG
// Used to assert that the FullCodeGenerator records the return site.
bool return_is_recorded_;
#endif
private:
friend class AstNodeFactory;
Call(Expression* expression, ZoneList<Expression*>* arguments, int pos,
PossiblyEval possibly_eval)
: Expression(pos, kCall),
expression_(expression),
arguments_(arguments) {
bit_field_ |=
IsUninitializedField::encode(false) |
IsPossiblyEvalField::encode(possibly_eval == IS_POSSIBLY_EVAL);
if (expression->IsProperty()) {
expression->AsProperty()->mark_for_call();
}
}
static int parent_num_ids() { return Expression::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
class IsUninitializedField
: public BitField<bool, Expression::kNextBitFieldIndex, 1> {};
class IsTailField : public BitField<bool, IsUninitializedField::kNext, 1> {};
class IsPossiblyEvalField : public BitField<bool, IsTailField::kNext, 1> {};
FeedbackVectorSlot ic_slot_;
Expression* expression_;
ZoneList<Expression*>* arguments_;
Handle<JSFunction> target_;
Handle<AllocationSite> allocation_site_;
};
class CallNew final : public Expression {
public:
Expression* expression() const { return expression_; }
ZoneList<Expression*>* arguments() const { return arguments_; }
void set_expression(Expression* e) { expression_ = e; }
// Type feedback information.
void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
// CallNew stores feedback in the exact same way as Call. We can
// piggyback on the type feedback infrastructure for calls.
callnew_feedback_slot_ = spec->AddCallICSlot();
}
FeedbackVectorSlot CallNewFeedbackSlot() {
DCHECK(!callnew_feedback_slot_.IsInvalid());
return callnew_feedback_slot_;
}
bool IsMonomorphic() const { return IsMonomorphicField::decode(bit_field_); }
Handle<JSFunction> target() const { return target_; }
Handle<AllocationSite> allocation_site() const {
return allocation_site_;
}
static int num_ids() { return parent_num_ids() + 1; }
static int feedback_slots() { return 1; }
BailoutId ReturnId() const { return BailoutId(local_id(0)); }
void set_allocation_site(Handle<AllocationSite> site) {
allocation_site_ = site;
}
void set_is_monomorphic(bool monomorphic) {
bit_field_ = IsMonomorphicField::update(bit_field_, monomorphic);
}
void set_target(Handle<JSFunction> target) { target_ = target; }
void SetKnownGlobalTarget(Handle<JSFunction> target) {
target_ = target;
set_is_monomorphic(true);
}
private:
friend class AstNodeFactory;
CallNew(Expression* expression, ZoneList<Expression*>* arguments, int pos)
: Expression(pos, kCallNew),
expression_(expression),
arguments_(arguments) {
bit_field_ |= IsMonomorphicField::encode(false);
}
static int parent_num_ids() { return Expression::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
FeedbackVectorSlot callnew_feedback_slot_;
Expression* expression_;
ZoneList<Expression*>* arguments_;
Handle<JSFunction> target_;
Handle<AllocationSite> allocation_site_;
class IsMonomorphicField
: public BitField<bool, Expression::kNextBitFieldIndex, 1> {};
};
// The CallRuntime class does not represent any official JavaScript
// language construct. Instead it is used to call a C or JS function
// with a set of arguments. This is used from the builtins that are
// implemented in JavaScript (see "v8natives.js").
class CallRuntime final : public Expression {
public:
ZoneList<Expression*>* arguments() const { return arguments_; }
bool is_jsruntime() const { return function_ == NULL; }
int context_index() const {
DCHECK(is_jsruntime());
return context_index_;
}
void set_context_index(int index) {
DCHECK(is_jsruntime());
context_index_ = index;
}
const Runtime::Function* function() const {
DCHECK(!is_jsruntime());
return function_;
}
static int num_ids() { return parent_num_ids() + 1; }
BailoutId CallId() { return BailoutId(local_id(0)); }
const char* debug_name() {
return is_jsruntime() ? "(context function)" : function_->name;
}
private:
friend class AstNodeFactory;
CallRuntime(const Runtime::Function* function,
ZoneList<Expression*>* arguments, int pos)
: Expression(pos, kCallRuntime),
function_(function),
arguments_(arguments) {}
CallRuntime(int context_index, ZoneList<Expression*>* arguments, int pos)
: Expression(pos, kCallRuntime),
context_index_(context_index),
function_(NULL),
arguments_(arguments) {}
static int parent_num_ids() { return Expression::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
int context_index_;
const Runtime::Function* function_;
ZoneList<Expression*>* arguments_;
};
class UnaryOperation final : public Expression {
public:
Token::Value op() const { return OperatorField::decode(bit_field_); }
Expression* expression() const { return expression_; }
void set_expression(Expression* e) { expression_ = e; }
// For unary not (Token::NOT), the AST ids where true and false will
// actually be materialized, respectively.
static int num_ids() { return parent_num_ids() + 2; }
BailoutId MaterializeTrueId() const { return BailoutId(local_id(0)); }
BailoutId MaterializeFalseId() const { return BailoutId(local_id(1)); }
void RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle);
private:
friend class AstNodeFactory;
UnaryOperation(Token::Value op, Expression* expression, int pos)
: Expression(pos, kUnaryOperation), expression_(expression) {
bit_field_ |= OperatorField::encode(op);
DCHECK(Token::IsUnaryOp(op));
}
static int parent_num_ids() { return Expression::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Expression* expression_;
class OperatorField
: public BitField<Token::Value, Expression::kNextBitFieldIndex, 7> {};
};
class BinaryOperation final : public Expression {
public:
Token::Value op() const { return OperatorField::decode(bit_field_); }
Expression* left() const { return left_; }
void set_left(Expression* e) { left_ = e; }
Expression* right() const { return right_; }
void set_right(Expression* e) { right_ = e; }
Handle<AllocationSite> allocation_site() const { return allocation_site_; }
void set_allocation_site(Handle<AllocationSite> allocation_site) {
allocation_site_ = allocation_site;
}
void MarkTail() {
switch (op()) {
case Token::COMMA:
case Token::AND:
case Token::OR:
right_->MarkTail();
default:
break;
}
}
// The short-circuit logical operations need an AST ID for their
// right-hand subexpression.
static int num_ids() { return parent_num_ids() + 2; }
BailoutId RightId() const { return BailoutId(local_id(0)); }
// BinaryOperation will have both a slot in the feedback vector and the
// TypeFeedbackId to record the type information. TypeFeedbackId is used
// by full codegen and the feedback vector slot is used by interpreter.
void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache);
FeedbackVectorSlot BinaryOperationFeedbackSlot() const {
return type_feedback_slot_;
}
TypeFeedbackId BinaryOperationFeedbackId() const {
return TypeFeedbackId(local_id(1));
}
Maybe<int> fixed_right_arg() const {
return has_fixed_right_arg_ ? Just(fixed_right_arg_value_) : Nothing<int>();
}
void set_fixed_right_arg(Maybe<int> arg) {
has_fixed_right_arg_ = arg.IsJust();
if (arg.IsJust()) fixed_right_arg_value_ = arg.FromJust();
}
void RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle);
private:
friend class AstNodeFactory;
BinaryOperation(Token::Value op, Expression* left, Expression* right, int pos)
: Expression(pos, kBinaryOperation),
has_fixed_right_arg_(false),
fixed_right_arg_value_(0),
left_(left),
right_(right) {
bit_field_ |= OperatorField::encode(op);
DCHECK(Token::IsBinaryOp(op));
}
static int parent_num_ids() { return Expression::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
// TODO(rossberg): the fixed arg should probably be represented as a Constant
// type for the RHS. Currenty it's actually a Maybe<int>
bool has_fixed_right_arg_;
int fixed_right_arg_value_;
Expression* left_;
Expression* right_;
Handle<AllocationSite> allocation_site_;
FeedbackVectorSlot type_feedback_slot_;
class OperatorField
: public BitField<Token::Value, Expression::kNextBitFieldIndex, 7> {};
};
class CountOperation final : public Expression {
public:
bool is_prefix() const { return IsPrefixField::decode(bit_field_); }
bool is_postfix() const { return !is_prefix(); }
Token::Value op() const { return TokenField::decode(bit_field_); }
Token::Value binary_op() {
return (op() == Token::INC) ? Token::ADD : Token::SUB;
}
Expression* expression() const { return expression_; }
void set_expression(Expression* e) { expression_ = e; }
bool IsMonomorphic() const { return receiver_types_.length() == 1; }
SmallMapList* GetReceiverTypes() { return &receiver_types_; }
IcCheckType GetKeyType() const { return KeyTypeField::decode(bit_field_); }
KeyedAccessStoreMode GetStoreMode() const {
return StoreModeField::decode(bit_field_);
}
AstType* type() const { return type_; }
void set_key_type(IcCheckType type) {
bit_field_ = KeyTypeField::update(bit_field_, type);
}
void set_store_mode(KeyedAccessStoreMode mode) {
bit_field_ = StoreModeField::update(bit_field_, mode);
}
void set_type(AstType* type) { type_ = type; }
static int num_ids() { return parent_num_ids() + 4; }
BailoutId AssignmentId() const { return BailoutId(local_id(0)); }
BailoutId ToNumberId() const { return BailoutId(local_id(1)); }
TypeFeedbackId CountBinOpFeedbackId() const {
return TypeFeedbackId(local_id(2));
}
TypeFeedbackId CountStoreFeedbackId() const {
return TypeFeedbackId(local_id(3));
}
// Feedback slot for binary operation is only used by ignition.
FeedbackVectorSlot CountBinaryOpFeedbackSlot() const {
return binary_operation_slot_;
}
void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache);
FeedbackVectorSlot CountSlot() const { return slot_; }
private:
friend class AstNodeFactory;
CountOperation(Token::Value op, bool is_prefix, Expression* expr, int pos)
: Expression(pos, kCountOperation), type_(NULL), expression_(expr) {
bit_field_ |=
IsPrefixField::encode(is_prefix) | KeyTypeField::encode(ELEMENT) |
StoreModeField::encode(STANDARD_STORE) | TokenField::encode(op);
}
static int parent_num_ids() { return Expression::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
class IsPrefixField
: public BitField<bool, Expression::kNextBitFieldIndex, 1> {};
class KeyTypeField : public BitField<IcCheckType, IsPrefixField::kNext, 1> {};
class StoreModeField
: public BitField<KeyedAccessStoreMode, KeyTypeField::kNext, 3> {};
class TokenField : public BitField<Token::Value, StoreModeField::kNext, 7> {};
FeedbackVectorSlot slot_;
FeedbackVectorSlot binary_operation_slot_;
AstType* type_;
Expression* expression_;
SmallMapList receiver_types_;
};
class CompareOperation final : public Expression {
public:
Token::Value op() const { return OperatorField::decode(bit_field_); }
Expression* left() const { return left_; }
Expression* right() const { return right_; }
void set_left(Expression* e) { left_ = e; }
void set_right(Expression* e) { right_ = e; }
// Type feedback information.
static int num_ids() { return parent_num_ids() + 1; }
TypeFeedbackId CompareOperationFeedbackId() const {
return TypeFeedbackId(local_id(0));
}
AstType* combined_type() const { return combined_type_; }
void set_combined_type(AstType* type) { combined_type_ = type; }
// CompareOperation will have both a slot in the feedback vector and the
// TypeFeedbackId to record the type information. TypeFeedbackId is used
// by full codegen and the feedback vector slot is used by interpreter.
void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache);
FeedbackVectorSlot CompareOperationFeedbackSlot() const {
return type_feedback_slot_;
}
// Match special cases.
bool IsLiteralCompareTypeof(Expression** expr, Handle<String>* check);
bool IsLiteralCompareUndefined(Expression** expr);
bool IsLiteralCompareNull(Expression** expr);
private:
friend class AstNodeFactory;
CompareOperation(Token::Value op, Expression* left, Expression* right,
int pos)
: Expression(pos, kCompareOperation),
left_(left),
right_(right),
combined_type_(AstType::None()) {
bit_field_ |= OperatorField::encode(op);
DCHECK(Token::IsCompareOp(op));
}
static int parent_num_ids() { return Expression::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Expression* left_;
Expression* right_;
AstType* combined_type_;
FeedbackVectorSlot type_feedback_slot_;
class OperatorField
: public BitField<Token::Value, Expression::kNextBitFieldIndex, 7> {};
};
class Spread final : public Expression {
public:
Expression* expression() const { return expression_; }
void set_expression(Expression* e) { expression_ = e; }
int expression_position() const { return expr_pos_; }
static int num_ids() { return parent_num_ids(); }
private:
friend class AstNodeFactory;
Spread(Expression* expression, int pos, int expr_pos)
: Expression(pos, kSpread),
expr_pos_(expr_pos),
expression_(expression) {}
static int parent_num_ids() { return Expression::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
int expr_pos_;
Expression* expression_;
};
class Conditional final : public Expression {
public:
Expression* condition() const { return condition_; }
Expression* then_expression() const { return then_expression_; }
Expression* else_expression() const { return else_expression_; }
void set_condition(Expression* e) { condition_ = e; }
void set_then_expression(Expression* e) { then_expression_ = e; }
void set_else_expression(Expression* e) { else_expression_ = e; }
void MarkTail() {
then_expression_->MarkTail();
else_expression_->MarkTail();
}
static int num_ids() { return parent_num_ids() + 2; }
BailoutId ThenId() const { return BailoutId(local_id(0)); }
BailoutId ElseId() const { return BailoutId(local_id(1)); }
private:
friend class AstNodeFactory;
Conditional(Expression* condition, Expression* then_expression,
Expression* else_expression, int position)
: Expression(position, kConditional),
condition_(condition),
then_expression_(then_expression),
else_expression_(else_expression) {}
static int parent_num_ids() { return Expression::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Expression* condition_;
Expression* then_expression_;
Expression* else_expression_;
};
class Assignment final : public Expression {
public:
Assignment* AsSimpleAssignment() { return !is_compound() ? this : NULL; }
Token::Value binary_op() const;
Token::Value op() const { return TokenField::decode(bit_field_); }
Expression* target() const { return target_; }
Expression* value() const { return value_; }
void set_target(Expression* e) { target_ = e; }
void set_value(Expression* e) { value_ = e; }
BinaryOperation* binary_operation() const { return binary_operation_; }
// This check relies on the definition order of token in token.h.
bool is_compound() const { return op() > Token::ASSIGN; }
static int num_ids() { return parent_num_ids() + 2; }
BailoutId AssignmentId() const { return BailoutId(local_id(0)); }
// Type feedback information.
TypeFeedbackId AssignmentFeedbackId() { return TypeFeedbackId(local_id(1)); }
bool IsUninitialized() const {
return IsUninitializedField::decode(bit_field_);
}
bool HasNoTypeInformation() {
return IsUninitializedField::decode(bit_field_);
}
bool IsMonomorphic() const { return receiver_types_.length() == 1; }
SmallMapList* GetReceiverTypes() { return &receiver_types_; }
IcCheckType GetKeyType() const { return KeyTypeField::decode(bit_field_); }
KeyedAccessStoreMode GetStoreMode() const {
return StoreModeField::decode(bit_field_);
}
void set_is_uninitialized(bool b) {
bit_field_ = IsUninitializedField::update(bit_field_, b);
}
void set_key_type(IcCheckType key_type) {
bit_field_ = KeyTypeField::update(bit_field_, key_type);
}
void set_store_mode(KeyedAccessStoreMode mode) {
bit_field_ = StoreModeField::update(bit_field_, mode);
}
void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache);
FeedbackVectorSlot AssignmentSlot() const { return slot_; }
private:
friend class AstNodeFactory;
Assignment(Token::Value op, Expression* target, Expression* value, int pos);
static int parent_num_ids() { return Expression::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
class IsUninitializedField
: public BitField<bool, Expression::kNextBitFieldIndex, 1> {};
class KeyTypeField
: public BitField<IcCheckType, IsUninitializedField::kNext, 1> {};
class StoreModeField
: public BitField<KeyedAccessStoreMode, KeyTypeField::kNext, 3> {};
class TokenField : public BitField<Token::Value, StoreModeField::kNext, 7> {};
FeedbackVectorSlot slot_;
Expression* target_;
Expression* value_;
BinaryOperation* binary_operation_;
SmallMapList receiver_types_;
};
// The RewritableExpression class is a wrapper for AST nodes that wait
// for some potential rewriting. However, even if such nodes are indeed
// rewritten, the RewritableExpression wrapper nodes will survive in the
// final AST and should be just ignored, i.e., they should be treated as
// equivalent to the wrapped nodes. For this reason and to simplify later
// phases, RewritableExpressions are considered as exceptions of AST nodes
// in the following sense:
//
// 1. IsRewritableExpression and AsRewritableExpression behave as usual.
// 2. All other Is* and As* methods are practically delegated to the
// wrapped node, i.e. IsArrayLiteral() will return true iff the
// wrapped node is an array literal.
//
// Furthermore, an invariant that should be respected is that the wrapped
// node is not a RewritableExpression.
class RewritableExpression final : public Expression {
public:
Expression* expression() const { return expr_; }
bool is_rewritten() const { return IsRewrittenField::decode(bit_field_); }
void Rewrite(Expression* new_expression) {
DCHECK(!is_rewritten());
DCHECK_NOT_NULL(new_expression);
DCHECK(!new_expression->IsRewritableExpression());
expr_ = new_expression;
bit_field_ = IsRewrittenField::update(bit_field_, true);
}
static int num_ids() { return parent_num_ids(); }
private:
friend class AstNodeFactory;
explicit RewritableExpression(Expression* expression)
: Expression(expression->position(), kRewritableExpression),
expr_(expression) {
bit_field_ |= IsRewrittenField::encode(false);
DCHECK(!expression->IsRewritableExpression());
}
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
Expression* expr_;
class IsRewrittenField
: public BitField<bool, Expression::kNextBitFieldIndex, 1> {};
};
// Our Yield is different from the JS yield in that it "returns" its argument as
// is, without wrapping it in an iterator result object. Such wrapping, if
// desired, must be done beforehand (see the parser).
class Yield final : public Expression {
public:
enum OnException { kOnExceptionThrow, kOnExceptionRethrow };
Expression* generator_object() const { return generator_object_; }
Expression* expression() const { return expression_; }
OnException on_exception() const {
return OnExceptionField::decode(bit_field_);
}
bool rethrow_on_exception() const {
return on_exception() == kOnExceptionRethrow;
}
int yield_id() const { return yield_id_; }
void set_generator_object(Expression* e) { generator_object_ = e; }
void set_expression(Expression* e) { expression_ = e; }
void set_yield_id(int yield_id) { yield_id_ = yield_id; }
private:
friend class AstNodeFactory;
Yield(Expression* generator_object, Expression* expression, int pos,
OnException on_exception)
: Expression(pos, kYield),
yield_id_(-1),
generator_object_(generator_object),
expression_(expression) {
bit_field_ |= OnExceptionField::encode(on_exception);
}
int yield_id_;
Expression* generator_object_;
Expression* expression_;
class OnExceptionField
: public BitField<OnException, Expression::kNextBitFieldIndex, 1> {};
};
class Throw final : public Expression {
public:
Expression* exception() const { return exception_; }
void set_exception(Expression* e) { exception_ = e; }
private:
friend class AstNodeFactory;
Throw(Expression* exception, int pos)
: Expression(pos, kThrow), exception_(exception) {}
Expression* exception_;
};
class FunctionLiteral final : public Expression {
public:
enum FunctionType {
kAnonymousExpression,
kNamedExpression,
kDeclaration,
kAccessorOrMethod
};
enum ParameterFlag { kNoDuplicateParameters, kHasDuplicateParameters };
enum EagerCompileHint { kShouldEagerCompile, kShouldLazyCompile };
Handle<String> name() const { return raw_name_->string(); }
const AstString* raw_name() const { return raw_name_; }
void set_raw_name(const AstString* name) { raw_name_ = name; }
DeclarationScope* scope() const { return scope_; }
ZoneList<Statement*>* body() const { return body_; }
void set_function_token_position(int pos) { function_token_position_ = pos; }
int function_token_position() const { return function_token_position_; }
int start_position() const;
int end_position() const;
int SourceSize() const { return end_position() - start_position(); }
bool is_declaration() const { return function_type() == kDeclaration; }
bool is_named_expression() const {
return function_type() == kNamedExpression;
}
bool is_anonymous_expression() const {
return function_type() == kAnonymousExpression;
}
LanguageMode language_mode() const;
static bool NeedsHomeObject(Expression* expr);
int materialized_literal_count() { return materialized_literal_count_; }
int expected_property_count() { return expected_property_count_; }
int parameter_count() { return parameter_count_; }
int function_length() { return function_length_; }
bool AllowsLazyCompilation();
Handle<String> debug_name() const {
if (raw_name_ != NULL && !raw_name_->IsEmpty()) {
return raw_name_->string();
}
return inferred_name();
}
Handle<String> inferred_name() const {
if (!inferred_name_.is_null()) {
DCHECK(raw_inferred_name_ == NULL);
return inferred_name_;
}
if (raw_inferred_name_ != NULL) {
return raw_inferred_name_->string();
}
UNREACHABLE();
return Handle<String>();
}
// Only one of {set_inferred_name, set_raw_inferred_name} should be called.
void set_inferred_name(Handle<String> inferred_name) {
DCHECK(!inferred_name.is_null());
inferred_name_ = inferred_name;
DCHECK(raw_inferred_name_== NULL || raw_inferred_name_->IsEmpty());
raw_inferred_name_ = NULL;
}
void set_raw_inferred_name(const AstString* raw_inferred_name) {
DCHECK(raw_inferred_name != NULL);
raw_inferred_name_ = raw_inferred_name;
DCHECK(inferred_name_.is_null());
inferred_name_ = Handle<String>();
}
bool pretenure() const { return Pretenure::decode(bit_field_); }
void set_pretenure() { bit_field_ = Pretenure::update(bit_field_, true); }
bool has_duplicate_parameters() const {
return HasDuplicateParameters::decode(bit_field_);
}
bool is_function() const { return IsFunction::decode(bit_field_); }
// This is used as a heuristic on when to eagerly compile a function
// literal. We consider the following constructs as hints that the
// function will be called immediately:
// - (function() { ... })();
// - var x = function() { ... }();
bool ShouldEagerCompile() const;
void SetShouldEagerCompile();
// A hint that we expect this function to be called (exactly) once,
// i.e. we suspect it's an initialization function.
bool should_be_used_once_hint() const {
return ShouldNotBeUsedOnceHintField::decode(bit_field_);
}
void set_should_be_used_once_hint() {
bit_field_ = ShouldNotBeUsedOnceHintField::update(bit_field_, true);
}
FunctionType function_type() const {
return FunctionTypeBits::decode(bit_field_);
}
FunctionKind kind() const;
int ast_node_count() { return ast_properties_.node_count(); }
AstProperties::Flags flags() const { return ast_properties_.flags(); }
void set_ast_properties(AstProperties* ast_properties) {
ast_properties_ = *ast_properties;
}
const FeedbackVectorSpec* feedback_vector_spec() const {
return ast_properties_.get_spec();
}
bool dont_optimize() { return dont_optimize_reason() != kNoReason; }
BailoutReason dont_optimize_reason() {
return DontOptimizeReasonField::decode(bit_field_);
}
void set_dont_optimize_reason(BailoutReason reason) {
bit_field_ = DontOptimizeReasonField::update(bit_field_, reason);
}
bool IsAnonymousFunctionDefinition() const {
return is_anonymous_expression();
}
int yield_count() { return yield_count_; }
void set_yield_count(int yield_count) { yield_count_ = yield_count; }
bool requires_class_field_init() {
return RequiresClassFieldInit::decode(bit_field_);
}
void set_requires_class_field_init(bool requires_class_field_init) {
bit_field_ =
RequiresClassFieldInit::update(bit_field_, requires_class_field_init);
}
bool is_class_field_initializer() {
return IsClassFieldInitializer::decode(bit_field_);
}
void set_is_class_field_initializer(bool is_class_field_initializer) {
bit_field_ =
IsClassFieldInitializer::update(bit_field_, is_class_field_initializer);
}
int return_position() {
return std::max(start_position(), end_position() - (has_braces_ ? 1 : 0));
}
private:
friend class AstNodeFactory;
FunctionLiteral(Zone* zone, const AstString* name,
AstValueFactory* ast_value_factory, DeclarationScope* scope,
ZoneList<Statement*>* body, int materialized_literal_count,
int expected_property_count, int parameter_count,
int function_length, FunctionType function_type,
ParameterFlag has_duplicate_parameters,
EagerCompileHint eager_compile_hint, int position,
bool is_function, bool has_braces)
: Expression(position, kFunctionLiteral),
materialized_literal_count_(materialized_literal_count),
expected_property_count_(expected_property_count),
parameter_count_(parameter_count),
function_length_(function_length),
function_token_position_(kNoSourcePosition),
yield_count_(0),
has_braces_(has_braces),
raw_name_(name),
scope_(scope),
body_(body),
raw_inferred_name_(ast_value_factory->empty_string()),
ast_properties_(zone) {
bit_field_ |=
FunctionTypeBits::encode(function_type) | Pretenure::encode(false) |
HasDuplicateParameters::encode(has_duplicate_parameters ==
kHasDuplicateParameters) |
IsFunction::encode(is_function) |
RequiresClassFieldInit::encode(false) |
ShouldNotBeUsedOnceHintField::encode(false) |
DontOptimizeReasonField::encode(kNoReason) |
IsClassFieldInitializer::encode(false);
if (eager_compile_hint == kShouldEagerCompile) SetShouldEagerCompile();
}
class FunctionTypeBits
: public BitField<FunctionType, Expression::kNextBitFieldIndex, 2> {};
class Pretenure : public BitField<bool, FunctionTypeBits::kNext, 1> {};
class HasDuplicateParameters : public BitField<bool, Pretenure::kNext, 1> {};
class IsFunction : public BitField<bool, HasDuplicateParameters::kNext, 1> {};
class ShouldNotBeUsedOnceHintField
: public BitField<bool, IsFunction::kNext, 1> {};
class RequiresClassFieldInit
: public BitField<bool, ShouldNotBeUsedOnceHintField::kNext, 1> {};
class IsClassFieldInitializer
: public BitField<bool, RequiresClassFieldInit::kNext, 1> {};
class DontOptimizeReasonField
: public BitField<BailoutReason, IsClassFieldInitializer::kNext, 8> {};
int materialized_literal_count_;
int expected_property_count_;
int parameter_count_;
int function_length_;
int function_token_position_;
int yield_count_;
bool has_braces_;
const AstString* raw_name_;
DeclarationScope* scope_;
ZoneList<Statement*>* body_;
const AstString* raw_inferred_name_;
Handle<String> inferred_name_;
AstProperties ast_properties_;
};
// Property is used for passing information
// about a class literal's properties from the parser to the code generator.
class ClassLiteralProperty final : public LiteralProperty {
public:
enum Kind : uint8_t { METHOD, GETTER, SETTER, FIELD };
Kind kind() const { return kind_; }
bool is_static() const { return is_static_; }
private:
friend class AstNodeFactory;
ClassLiteralProperty(Expression* key, Expression* value, Kind kind,
bool is_static, bool is_computed_name);
Kind kind_;
bool is_static_;
};
class ClassLiteral final : public Expression {
public:
typedef ClassLiteralProperty Property;
VariableProxy* class_variable_proxy() const { return class_variable_proxy_; }
Expression* extends() const { return extends_; }
void set_extends(Expression* e) { extends_ = e; }
FunctionLiteral* constructor() const { return constructor_; }
void set_constructor(FunctionLiteral* f) { constructor_ = f; }
ZoneList<Property*>* properties() const { return properties_; }
int start_position() const { return position(); }
int end_position() const { return end_position_; }
VariableProxy* static_initializer_proxy() const {
return static_initializer_proxy_;
}
void set_static_initializer_proxy(VariableProxy* proxy) {
static_initializer_proxy_ = proxy;
}
BailoutId CreateLiteralId() const { return BailoutId(local_id(0)); }
BailoutId PrototypeId() { return BailoutId(local_id(1)); }
// Return an AST id for a property that is used in simulate instructions.
BailoutId GetIdForProperty(int i) { return BailoutId(local_id(i + 2)); }
// Unlike other AST nodes, this number of bailout IDs allocated for an
// ClassLiteral can vary, so num_ids() is not a static method.
int num_ids() const { return parent_num_ids() + 2 + properties()->length(); }
// Object literals need one feedback slot for each non-trivial value, as well
// as some slots for home objects.
void AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache);
bool NeedsProxySlot() const {
return class_variable_proxy() != nullptr &&
class_variable_proxy()->var()->IsUnallocated();
}
FeedbackVectorSlot PrototypeSlot() const { return prototype_slot_; }
FeedbackVectorSlot ProxySlot() const { return proxy_slot_; }
private:
friend class AstNodeFactory;
ClassLiteral(VariableProxy* class_variable_proxy, Expression* extends,
FunctionLiteral* constructor, ZoneList<Property*>* properties,
int start_position, int end_position)
: Expression(start_position, kClassLiteral),
end_position_(end_position),
class_variable_proxy_(class_variable_proxy),
extends_(extends),
constructor_(constructor),
properties_(properties),
static_initializer_proxy_(nullptr) {}
static int parent_num_ids() { return Expression::num_ids(); }
int local_id(int n) const { return base_id() + parent_num_ids() + n; }
int end_position_;
FeedbackVectorSlot prototype_slot_;
FeedbackVectorSlot proxy_slot_;
VariableProxy* class_variable_proxy_;
Expression* extends_;
FunctionLiteral* constructor_;
ZoneList<Property*>* properties_;
VariableProxy* static_initializer_proxy_;
};
class NativeFunctionLiteral final : public Expression {
public:
Handle<String> name() const { return name_->string(); }
v8::Extension* extension() const { return extension_; }
private:
friend class AstNodeFactory;
NativeFunctionLiteral(const AstRawString* name, v8::Extension* extension,
int pos)
: Expression(pos, kNativeFunctionLiteral),
name_(name),
extension_(extension) {}
const AstRawString* name_;
v8::Extension* extension_;
};
class ThisFunction final : public Expression {
private:
friend class AstNodeFactory;
explicit ThisFunction(int pos) : Expression(pos, kThisFunction) {}
};
class SuperPropertyReference final : public Expression {
public:
VariableProxy* this_var() const { return this_var_; }
void set_this_var(VariableProxy* v) { this_var_ = v; }
Expression* home_object() const { return home_object_; }
void set_home_object(Expression* e) { home_object_ = e; }
private:
friend class AstNodeFactory;
SuperPropertyReference(VariableProxy* this_var, Expression* home_object,
int pos)
: Expression(pos, kSuperPropertyReference),
this_var_(this_var),
home_object_(home_object) {
DCHECK(this_var->is_this());
DCHECK(home_object->IsProperty());
}
VariableProxy* this_var_;
Expression* home_object_;
};
class SuperCallReference final : public Expression {
public:
VariableProxy* this_var() const { return this_var_; }
void set_this_var(VariableProxy* v) { this_var_ = v; }
VariableProxy* new_target_var() const { return new_target_var_; }
void set_new_target_var(VariableProxy* v) { new_target_var_ = v; }
VariableProxy* this_function_var() const { return this_function_var_; }
void set_this_function_var(VariableProxy* v) { this_function_var_ = v; }
private:
friend class AstNodeFactory;
SuperCallReference(VariableProxy* this_var, VariableProxy* new_target_var,
VariableProxy* this_function_var, int pos)
: Expression(pos, kSuperCallReference),
this_var_(this_var),
new_target_var_(new_target_var),
this_function_var_(this_function_var) {
DCHECK(this_var->is_this());
DCHECK(new_target_var->raw_name()->IsOneByteEqualTo(".new.target"));
DCHECK(this_function_var->raw_name()->IsOneByteEqualTo(".this_function"));
}
VariableProxy* this_var_;
VariableProxy* new_target_var_;
VariableProxy* this_function_var_;
};
// This class is produced when parsing the () in arrow functions without any
// arguments and is not actually a valid expression.
class EmptyParentheses final : public Expression {
private:
friend class AstNodeFactory;
explicit EmptyParentheses(int pos) : Expression(pos, kEmptyParentheses) {}
};
// ----------------------------------------------------------------------------
// Basic visitor
// Sub-class should parametrize AstVisitor with itself, e.g.:
// class SpecificVisitor : public AstVisitor<SpecificVisitor> { ... }
template <class Subclass>
class AstVisitor BASE_EMBEDDED {
public:
void Visit(AstNode* node) { impl()->Visit(node); }
void VisitDeclarations(Declaration::List* declarations) {
for (Declaration* decl : *declarations) Visit(decl);
}
void VisitStatements(ZoneList<Statement*>* statements) {
for (int i = 0; i < statements->length(); i++) {
Statement* stmt = statements->at(i);
Visit(stmt);
if (stmt->IsJump()) break;
}
}
void VisitExpressions(ZoneList<Expression*>* expressions) {
for (int i = 0; i < expressions->length(); i++) {
// The variable statement visiting code may pass NULL expressions
// to this code. Maybe this should be handled by introducing an
// undefined expression or literal? Revisit this code if this
// changes
Expression* expression = expressions->at(i);
if (expression != NULL) Visit(expression);
}
}
protected:
Subclass* impl() { return static_cast<Subclass*>(this); }
};
#define GENERATE_VISIT_CASE(NodeType) \
case AstNode::k##NodeType: \
return this->impl()->Visit##NodeType(static_cast<NodeType*>(node));
#define GENERATE_AST_VISITOR_SWITCH() \
switch (node->node_type()) { \
AST_NODE_LIST(GENERATE_VISIT_CASE) \
}
#define DEFINE_AST_VISITOR_SUBCLASS_MEMBERS() \
public: \
void VisitNoStackOverflowCheck(AstNode* node) { \
GENERATE_AST_VISITOR_SWITCH() \
} \
\
void Visit(AstNode* node) { \
if (CheckStackOverflow()) return; \
VisitNoStackOverflowCheck(node); \
} \
\
void SetStackOverflow() { stack_overflow_ = true; } \
void ClearStackOverflow() { stack_overflow_ = false; } \
bool HasStackOverflow() const { return stack_overflow_; } \
\
bool CheckStackOverflow() { \
if (stack_overflow_) return true; \
if (GetCurrentStackPosition() < stack_limit_) { \
stack_overflow_ = true; \
return true; \
} \
return false; \
} \
\
private: \
void InitializeAstVisitor(Isolate* isolate) { \
stack_limit_ = isolate->stack_guard()->real_climit(); \
stack_overflow_ = false; \
} \
\
void InitializeAstVisitor(uintptr_t stack_limit) { \
stack_limit_ = stack_limit; \
stack_overflow_ = false; \
} \
\
uintptr_t stack_limit_; \
bool stack_overflow_
#define DEFINE_AST_VISITOR_MEMBERS_WITHOUT_STACKOVERFLOW() \
public: \
void Visit(AstNode* node) { GENERATE_AST_VISITOR_SWITCH() } \
\
private:
#define DEFINE_AST_REWRITER_SUBCLASS_MEMBERS() \
public: \
AstNode* Rewrite(AstNode* node) { \
DCHECK_NULL(replacement_); \
DCHECK_NOT_NULL(node); \
Visit(node); \
if (HasStackOverflow()) return node; \
if (replacement_ == nullptr) return node; \
AstNode* result = replacement_; \
replacement_ = nullptr; \
return result; \
} \
\
private: \
void InitializeAstRewriter(Isolate* isolate) { \
InitializeAstVisitor(isolate); \
replacement_ = nullptr; \
} \
\
void InitializeAstRewriter(uintptr_t stack_limit) { \
InitializeAstVisitor(stack_limit); \
replacement_ = nullptr; \
} \
\
DEFINE_AST_VISITOR_SUBCLASS_MEMBERS(); \
\
protected: \
AstNode* replacement_
// Generic macro for rewriting things; `GET` is the expression to be
// rewritten; `SET` is a command that should do the rewriting, i.e.
// something sensible with the variable called `replacement`.
#define AST_REWRITE(Type, GET, SET) \
do { \
DCHECK(!HasStackOverflow()); \
DCHECK_NULL(replacement_); \
Visit(GET); \
if (HasStackOverflow()) return; \
if (replacement_ == nullptr) break; \
Type* replacement = reinterpret_cast<Type*>(replacement_); \
do { \
SET; \
} while (false); \
replacement_ = nullptr; \
} while (false)
// Macro for rewriting object properties; it assumes that `object` has
// `property` with a public getter and setter.
#define AST_REWRITE_PROPERTY(Type, object, property) \
do { \
auto _obj = (object); \
AST_REWRITE(Type, _obj->property(), _obj->set_##property(replacement)); \
} while (false)
// Macro for rewriting list elements; it assumes that `list` has methods
// `at` and `Set`.
#define AST_REWRITE_LIST_ELEMENT(Type, list, index) \
do { \
auto _list = (list); \
auto _index = (index); \
AST_REWRITE(Type, _list->at(_index), _list->Set(_index, replacement)); \
} while (false)
// ----------------------------------------------------------------------------
// AstNode factory
class AstNodeFactory final BASE_EMBEDDED {
public:
explicit AstNodeFactory(AstValueFactory* ast_value_factory)
: zone_(nullptr), ast_value_factory_(ast_value_factory) {
if (ast_value_factory != nullptr) {
zone_ = ast_value_factory->zone();
}
}
AstValueFactory* ast_value_factory() const { return ast_value_factory_; }
void set_ast_value_factory(AstValueFactory* ast_value_factory) {
ast_value_factory_ = ast_value_factory;
zone_ = ast_value_factory->zone();
}
VariableDeclaration* NewVariableDeclaration(VariableProxy* proxy,
Scope* scope, int pos) {
return new (zone_) VariableDeclaration(proxy, scope, pos);
}
FunctionDeclaration* NewFunctionDeclaration(VariableProxy* proxy,
FunctionLiteral* fun,
Scope* scope, int pos) {
return new (zone_) FunctionDeclaration(proxy, fun, scope, pos);
}
Block* NewBlock(ZoneList<const AstRawString*>* labels, int capacity,
bool ignore_completion_value, int pos) {
return new (zone_)
Block(zone_, labels, capacity, ignore_completion_value, pos);
}
#define STATEMENT_WITH_LABELS(NodeType) \
NodeType* New##NodeType(ZoneList<const AstRawString*>* labels, int pos) { \
return new (zone_) NodeType(labels, pos); \
}
STATEMENT_WITH_LABELS(DoWhileStatement)
STATEMENT_WITH_LABELS(WhileStatement)
STATEMENT_WITH_LABELS(ForStatement)
STATEMENT_WITH_LABELS(SwitchStatement)
#undef STATEMENT_WITH_LABELS
ForEachStatement* NewForEachStatement(ForEachStatement::VisitMode visit_mode,
ZoneList<const AstRawString*>* labels,
int pos) {
switch (visit_mode) {
case ForEachStatement::ENUMERATE: {
return new (zone_) ForInStatement(labels, pos);
}
case ForEachStatement::ITERATE: {
return new (zone_) ForOfStatement(labels, pos);
}
}
UNREACHABLE();
return NULL;
}
ExpressionStatement* NewExpressionStatement(Expression* expression, int pos) {
return new (zone_) ExpressionStatement(expression, pos);
}
ContinueStatement* NewContinueStatement(IterationStatement* target, int pos) {
return new (zone_) ContinueStatement(target, pos);
}
BreakStatement* NewBreakStatement(BreakableStatement* target, int pos) {
return new (zone_) BreakStatement(target, pos);
}
ReturnStatement* NewReturnStatement(Expression* expression, int pos) {
return new (zone_) ReturnStatement(expression, pos);
}
WithStatement* NewWithStatement(Scope* scope,
Expression* expression,
Statement* statement,
int pos) {
return new (zone_) WithStatement(scope, expression, statement, pos);
}
IfStatement* NewIfStatement(Expression* condition,
Statement* then_statement,
Statement* else_statement,
int pos) {
return new (zone_)
IfStatement(condition, then_statement, else_statement, pos);
}
TryCatchStatement* NewTryCatchStatement(Block* try_block, Scope* scope,
Variable* variable,
Block* catch_block, int pos) {
return new (zone_) TryCatchStatement(
try_block, scope, variable, catch_block, HandlerTable::CAUGHT, pos);
}
TryCatchStatement* NewTryCatchStatementForReThrow(Block* try_block,
Scope* scope,
Variable* variable,
Block* catch_block,
int pos) {
return new (zone_) TryCatchStatement(
try_block, scope, variable, catch_block, HandlerTable::UNCAUGHT, pos);
}
TryCatchStatement* NewTryCatchStatementForPromiseReject(Block* try_block,
Scope* scope,
Variable* variable,
Block* catch_block,
int pos) {
return new (zone_) TryCatchStatement(
try_block, scope, variable, catch_block, HandlerTable::PROMISE, pos);
}
TryCatchStatement* NewTryCatchStatementForDesugaring(Block* try_block,
Scope* scope,
Variable* variable,
Block* catch_block,
int pos) {
return new (zone_) TryCatchStatement(
try_block, scope, variable, catch_block, HandlerTable::DESUGARING, pos);
}
TryCatchStatement* NewTryCatchStatementForAsyncAwait(Block* try_block,
Scope* scope,
Variable* variable,
Block* catch_block,
int pos) {
return new (zone_)
TryCatchStatement(try_block, scope, variable, catch_block,
HandlerTable::ASYNC_AWAIT, pos);
}
TryFinallyStatement* NewTryFinallyStatement(Block* try_block,
Block* finally_block, int pos) {
return new (zone_) TryFinallyStatement(try_block, finally_block, pos);
}
DebuggerStatement* NewDebuggerStatement(int pos) {
return new (zone_) DebuggerStatement(pos);
}
EmptyStatement* NewEmptyStatement(int pos) {
return new (zone_) EmptyStatement(pos);
}
SloppyBlockFunctionStatement* NewSloppyBlockFunctionStatement(Scope* scope) {
return new (zone_) SloppyBlockFunctionStatement(
NewEmptyStatement(kNoSourcePosition), scope);
}
CaseClause* NewCaseClause(
Expression* label, ZoneList<Statement*>* statements, int pos) {
return new (zone_) CaseClause(label, statements, pos);
}
Literal* NewStringLiteral(const AstRawString* string, int pos) {
return new (zone_) Literal(ast_value_factory_->NewString(string), pos);
}
// A JavaScript symbol (ECMA-262 edition 6).
Literal* NewSymbolLiteral(const char* name, int pos) {
return new (zone_) Literal(ast_value_factory_->NewSymbol(name), pos);
}
Literal* NewNumberLiteral(double number, int pos, bool with_dot = false) {
return new (zone_)
Literal(ast_value_factory_->NewNumber(number, with_dot), pos);
}
Literal* NewSmiLiteral(uint32_t number, int pos) {
return new (zone_) Literal(ast_value_factory_->NewSmi(number), pos);
}
Literal* NewBooleanLiteral(bool b, int pos) {
return new (zone_) Literal(ast_value_factory_->NewBoolean(b), pos);
}
Literal* NewNullLiteral(int pos) {
return new (zone_) Literal(ast_value_factory_->NewNull(), pos);
}
Literal* NewUndefinedLiteral(int pos) {
return new (zone_) Literal(ast_value_factory_->NewUndefined(), pos);
}
Literal* NewTheHoleLiteral(int pos) {
return new (zone_) Literal(ast_value_factory_->NewTheHole(), pos);
}
ObjectLiteral* NewObjectLiteral(
ZoneList<ObjectLiteral::Property*>* properties, int literal_index,
uint32_t boilerplate_properties, int pos) {
return new (zone_)
ObjectLiteral(properties, literal_index, boilerplate_properties, pos);
}
ObjectLiteral::Property* NewObjectLiteralProperty(
Expression* key, Expression* value, ObjectLiteralProperty::Kind kind,
bool is_computed_name) {
return new (zone_)
ObjectLiteral::Property(key, value, kind, is_computed_name);
}
ObjectLiteral::Property* NewObjectLiteralProperty(Expression* key,
Expression* value,
bool is_computed_name) {
return new (zone_) ObjectLiteral::Property(ast_value_factory_, key, value,
is_computed_name);
}
RegExpLiteral* NewRegExpLiteral(const AstRawString* pattern, int flags,
int literal_index, int pos) {
return new (zone_) RegExpLiteral(pattern, flags, literal_index, pos);
}
ArrayLiteral* NewArrayLiteral(ZoneList<Expression*>* values,
int literal_index,
int pos) {
return new (zone_) ArrayLiteral(values, -1, literal_index, pos);
}
ArrayLiteral* NewArrayLiteral(ZoneList<Expression*>* values,
int first_spread_index, int literal_index,
int pos) {
return new (zone_)
ArrayLiteral(values, first_spread_index, literal_index, pos);
}
VariableProxy* NewVariableProxy(Variable* var,
int start_position = kNoSourcePosition) {
return new (zone_) VariableProxy(var, start_position);
}
VariableProxy* NewVariableProxy(const AstRawString* name,
VariableKind variable_kind,
int start_position = kNoSourcePosition) {
DCHECK_NOT_NULL(name);
return new (zone_) VariableProxy(name, variable_kind, start_position);
}
// Recreates the VariableProxy in this Zone.
VariableProxy* CopyVariableProxy(VariableProxy* proxy) {
return new (zone_) VariableProxy(proxy);
}
Property* NewProperty(Expression* obj, Expression* key, int pos) {
return new (zone_) Property(obj, key, pos);
}
Call* NewCall(Expression* expression, ZoneList<Expression*>* arguments,
int pos, Call::PossiblyEval possibly_eval = Call::NOT_EVAL) {
return new (zone_) Call(expression, arguments, pos, possibly_eval);
}
CallNew* NewCallNew(Expression* expression,
ZoneList<Expression*>* arguments,
int pos) {
return new (zone_) CallNew(expression, arguments, pos);
}
CallRuntime* NewCallRuntime(Runtime::FunctionId id,
ZoneList<Expression*>* arguments, int pos) {
return new (zone_) CallRuntime(Runtime::FunctionForId(id), arguments, pos);
}
CallRuntime* NewCallRuntime(const Runtime::Function* function,
ZoneList<Expression*>* arguments, int pos) {
return new (zone_) CallRuntime(function, arguments, pos);
}
CallRuntime* NewCallRuntime(int context_index,
ZoneList<Expression*>* arguments, int pos) {
return new (zone_) CallRuntime(context_index, arguments, pos);
}
UnaryOperation* NewUnaryOperation(Token::Value op,
Expression* expression,
int pos) {
return new (zone_) UnaryOperation(op, expression, pos);
}
BinaryOperation* NewBinaryOperation(Token::Value op,
Expression* left,
Expression* right,
int pos) {
return new (zone_) BinaryOperation(op, left, right, pos);
}
CountOperation* NewCountOperation(Token::Value op,
bool is_prefix,
Expression* expr,
int pos) {
return new (zone_) CountOperation(op, is_prefix, expr, pos);
}
CompareOperation* NewCompareOperation(Token::Value op,
Expression* left,
Expression* right,
int pos) {
return new (zone_) CompareOperation(op, left, right, pos);
}
Spread* NewSpread(Expression* expression, int pos, int expr_pos) {
return new (zone_) Spread(expression, pos, expr_pos);
}
Conditional* NewConditional(Expression* condition,
Expression* then_expression,
Expression* else_expression,
int position) {
return new (zone_)
Conditional(condition, then_expression, else_expression, position);
}
RewritableExpression* NewRewritableExpression(Expression* expression) {
DCHECK_NOT_NULL(expression);
return new (zone_) RewritableExpression(expression);
}
Assignment* NewAssignment(Token::Value op,
Expression* target,
Expression* value,
int pos) {
DCHECK(Token::IsAssignmentOp(op));
Assignment* assign = new (zone_) Assignment(op, target, value, pos);
if (assign->is_compound()) {
DCHECK(Token::IsAssignmentOp(op));
assign->binary_operation_ =
NewBinaryOperation(assign->binary_op(), target, value, pos + 1);
}
return assign;
}
Yield* NewYield(Expression* generator_object, Expression* expression, int pos,
Yield::OnException on_exception) {
if (!expression) expression = NewUndefinedLiteral(pos);
return new (zone_) Yield(generator_object, expression, pos, on_exception);
}
Throw* NewThrow(Expression* exception, int pos) {
return new (zone_) Throw(exception, pos);
}
FunctionLiteral* NewFunctionLiteral(
const AstRawString* name, DeclarationScope* scope,
ZoneList<Statement*>* body, int materialized_literal_count,
int expected_property_count, int parameter_count, int function_length,
FunctionLiteral::ParameterFlag has_duplicate_parameters,
FunctionLiteral::FunctionType function_type,
FunctionLiteral::EagerCompileHint eager_compile_hint, int position,
bool has_braces) {
return new (zone_) FunctionLiteral(
zone_, name, ast_value_factory_, scope, body,
materialized_literal_count, expected_property_count, parameter_count,
function_length, function_type, has_duplicate_parameters,
eager_compile_hint, position, true, has_braces);
}
// Creates a FunctionLiteral representing a top-level script, the
// result of an eval (top-level or otherwise), or the result of calling
// the Function constructor.
FunctionLiteral* NewScriptOrEvalFunctionLiteral(
DeclarationScope* scope, ZoneList<Statement*>* body,
int materialized_literal_count, int expected_property_count,
int parameter_count) {
return new (zone_) FunctionLiteral(
zone_, ast_value_factory_->empty_string(), ast_value_factory_, scope,
body, materialized_literal_count, expected_property_count,
parameter_count, parameter_count, FunctionLiteral::kAnonymousExpression,
FunctionLiteral::kNoDuplicateParameters,
FunctionLiteral::kShouldLazyCompile, 0, false, true);
}
ClassLiteral::Property* NewClassLiteralProperty(
Expression* key, Expression* value, ClassLiteralProperty::Kind kind,
bool is_static, bool is_computed_name) {
return new (zone_)
ClassLiteral::Property(key, value, kind, is_static, is_computed_name);
}
ClassLiteral* NewClassLiteral(VariableProxy* proxy, Expression* extends,
FunctionLiteral* constructor,
ZoneList<ClassLiteral::Property*>* properties,
int start_position, int end_position) {
return new (zone_) ClassLiteral(proxy, extends, constructor, properties,
start_position, end_position);
}
NativeFunctionLiteral* NewNativeFunctionLiteral(const AstRawString* name,
v8::Extension* extension,
int pos) {
return new (zone_) NativeFunctionLiteral(name, extension, pos);
}
DoExpression* NewDoExpression(Block* block, Variable* result_var, int pos) {
VariableProxy* result = NewVariableProxy(result_var, pos);
return new (zone_) DoExpression(block, result, pos);
}
ThisFunction* NewThisFunction(int pos) {
return new (zone_) ThisFunction(pos);
}
SuperPropertyReference* NewSuperPropertyReference(VariableProxy* this_var,
Expression* home_object,
int pos) {
return new (zone_) SuperPropertyReference(this_var, home_object, pos);
}
SuperCallReference* NewSuperCallReference(VariableProxy* this_var,
VariableProxy* new_target_var,
VariableProxy* this_function_var,
int pos) {
return new (zone_)
SuperCallReference(this_var, new_target_var, this_function_var, pos);
}
EmptyParentheses* NewEmptyParentheses(int pos) {
return new (zone_) EmptyParentheses(pos);
}
Zone* zone() const { return zone_; }
void set_zone(Zone* zone) { zone_ = zone; }
// Handles use of temporary zones when parsing inner function bodies.
class BodyScope {
public:
BodyScope(AstNodeFactory* factory, Zone* temp_zone, bool use_temp_zone)
: factory_(factory), prev_zone_(factory->zone_) {
if (use_temp_zone) {
factory->zone_ = temp_zone;
}
}
void Reset() { factory_->zone_ = prev_zone_; }
~BodyScope() { Reset(); }
private:
AstNodeFactory* factory_;
Zone* prev_zone_;
};
private:
// This zone may be deallocated upon returning from parsing a function body
// which we can guarantee is not going to be compiled or have its AST
// inspected.
// See ParseFunctionLiteral in parser.cc for preconditions.
Zone* zone_;
AstValueFactory* ast_value_factory_;
};
// Type testing & conversion functions overridden by concrete subclasses.
// Inline functions for AstNode.
#define DECLARE_NODE_FUNCTIONS(type) \
bool AstNode::Is##type() const { \
NodeType mine = node_type(); \
if (mine == AstNode::kRewritableExpression && \
AstNode::k##type != AstNode::kRewritableExpression) \
mine = reinterpret_cast<const RewritableExpression*>(this) \
->expression() \
->node_type(); \
return mine == AstNode::k##type; \
} \
type* AstNode::As##type() { \
NodeType mine = node_type(); \
AstNode* result = this; \
if (mine == AstNode::kRewritableExpression && \
AstNode::k##type != AstNode::kRewritableExpression) { \
result = \
reinterpret_cast<const RewritableExpression*>(this)->expression(); \
mine = result->node_type(); \
} \
return mine == AstNode::k##type ? reinterpret_cast<type*>(result) : NULL; \
} \
const type* AstNode::As##type() const { \
NodeType mine = node_type(); \
const AstNode* result = this; \
if (mine == AstNode::kRewritableExpression && \
AstNode::k##type != AstNode::kRewritableExpression) { \
result = \
reinterpret_cast<const RewritableExpression*>(this)->expression(); \
mine = result->node_type(); \
} \
return mine == AstNode::k##type ? reinterpret_cast<const type*>(result) \
: NULL; \
}
AST_NODE_LIST(DECLARE_NODE_FUNCTIONS)
#undef DECLARE_NODE_FUNCTIONS
} // namespace internal
} // namespace v8
#endif // V8_AST_AST_H_