C++程序  |  721行  |  25.09 KB

/*
 * Copyright (C) 2016 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#define ATRACE_TAG ATRACE_TAG_RESOURCES

#include "androidfw/LoadedArsc.h"

#include <cstddef>
#include <limits>

#include "android-base/logging.h"
#include "android-base/stringprintf.h"
#include "utils/ByteOrder.h"
#include "utils/Trace.h"

#ifdef _WIN32
#ifdef ERROR
#undef ERROR
#endif
#endif

#include "androidfw/ByteBucketArray.h"
#include "androidfw/Chunk.h"
#include "androidfw/ResourceUtils.h"
#include "androidfw/Util.h"

using android::base::StringPrintf;

namespace android {

constexpr const static int kAppPackageId = 0x7f;

// Element of a TypeSpec array. See TypeSpec.
struct Type {
  // The configuration for which this type defines entries.
  // This is already converted to host endianness.
  ResTable_config configuration;

  // Pointer to the mmapped data where entry definitions are kept.
  const ResTable_type* type;
};

// TypeSpec is going to be immediately proceeded by
// an array of Type structs, all in the same block of memory.
struct TypeSpec {
  // Pointer to the mmapped data where flags are kept.
  // Flags denote whether the resource entry is public
  // and under which configurations it varies.
  const ResTable_typeSpec* type_spec;

  // The number of types that follow this struct.
  // There is a type for each configuration
  // that entries are defined for.
  size_t type_count;

  // Trick to easily access a variable number of Type structs
  // proceeding this struct, and to ensure their alignment.
  const Type types[0];
};

// TypeSpecPtr points to the block of memory that holds
// a TypeSpec struct, followed by an array of Type structs.
// TypeSpecPtr is a managed pointer that knows how to delete
// itself.
using TypeSpecPtr = util::unique_cptr<TypeSpec>;

namespace {

// Builder that helps accumulate Type structs and then create a single
// contiguous block of memory to store both the TypeSpec struct and
// the Type structs.
class TypeSpecPtrBuilder {
 public:
  TypeSpecPtrBuilder(const ResTable_typeSpec* header) : header_(header) {}

  void AddType(const ResTable_type* type) {
    ResTable_config config;
    config.copyFromDtoH(type->config);
    types_.push_back(Type{config, type});
  }

  TypeSpecPtr Build() {
    // Check for overflow.
    if ((std::numeric_limits<size_t>::max() - sizeof(TypeSpec)) / sizeof(Type) < types_.size()) {
      return {};
    }
    TypeSpec* type_spec = (TypeSpec*)::malloc(sizeof(TypeSpec) + (types_.size() * sizeof(Type)));
    type_spec->type_spec = header_;
    type_spec->type_count = types_.size();
    memcpy(type_spec + 1, types_.data(), types_.size() * sizeof(Type));
    return TypeSpecPtr(type_spec);
  }

 private:
  DISALLOW_COPY_AND_ASSIGN(TypeSpecPtrBuilder);

  const ResTable_typeSpec* header_;
  std::vector<Type> types_;
};

}  // namespace

bool LoadedPackage::FindEntry(uint8_t type_idx, uint16_t entry_idx, const ResTable_config& config,
                              LoadedArscEntry* out_entry, ResTable_config* out_selected_config,
                              uint32_t* out_flags) const {
  ATRACE_CALL();

  // If the type IDs are offset in this package, we need to take that into account when searching
  // for a type.
  const TypeSpecPtr& ptr = type_specs_[type_idx - type_id_offset_];
  if (ptr == nullptr) {
    return false;
  }

  // Don't bother checking if the entry ID is larger than
  // the number of entries.
  if (entry_idx >= dtohl(ptr->type_spec->entryCount)) {
    return false;
  }

  const ResTable_config* best_config = nullptr;
  const ResTable_type* best_type = nullptr;
  uint32_t best_offset = 0;

  for (uint32_t i = 0; i < ptr->type_count; i++) {
    const Type* type = &ptr->types[i];

    if (type->configuration.match(config) &&
        (best_config == nullptr || type->configuration.isBetterThan(*best_config, &config))) {
      // The configuration matches and is better than the previous selection.
      // Find the entry value if it exists for this configuration.
      size_t entry_count = dtohl(type->type->entryCount);
      if (entry_idx < entry_count) {
        const uint32_t* entry_offsets = reinterpret_cast<const uint32_t*>(
            reinterpret_cast<const uint8_t*>(type->type) + dtohs(type->type->header.headerSize));
        const uint32_t offset = dtohl(entry_offsets[entry_idx]);
        if (offset != ResTable_type::NO_ENTRY) {
          // There is an entry for this resource, record it.
          best_config = &type->configuration;
          best_type = type->type;
          best_offset = offset + dtohl(type->type->entriesStart);
        }
      }
    }
  }

  if (best_type == nullptr) {
    return false;
  }

  const uint32_t* flags = reinterpret_cast<const uint32_t*>(ptr->type_spec + 1);
  *out_flags = dtohl(flags[entry_idx]);
  *out_selected_config = *best_config;

  const ResTable_entry* best_entry = reinterpret_cast<const ResTable_entry*>(
      reinterpret_cast<const uint8_t*>(best_type) + best_offset);
  out_entry->entry = best_entry;
  out_entry->type_string_ref = StringPoolRef(&type_string_pool_, best_type->id - 1);
  out_entry->entry_string_ref = StringPoolRef(&key_string_pool_, dtohl(best_entry->key.index));
  return true;
}

// The destructor gets generated into arbitrary translation units
// if left implicit, which causes the compiler to complain about
// forward declarations and incomplete types.
LoadedArsc::~LoadedArsc() {}

bool LoadedArsc::FindEntry(uint32_t resid, const ResTable_config& config,
                           LoadedArscEntry* out_entry, ResTable_config* out_selected_config,
                           uint32_t* out_flags) const {
  ATRACE_CALL();
  const uint8_t package_id = get_package_id(resid);
  const uint8_t type_id = get_type_id(resid);
  const uint16_t entry_id = get_entry_id(resid);

  if (type_id == 0) {
    LOG(ERROR) << "Invalid ID 0x" << std::hex << resid << std::dec << ".";
    return false;
  }

  for (const auto& loaded_package : packages_) {
    if (loaded_package->package_id_ == package_id) {
      return loaded_package->FindEntry(type_id - 1, entry_id, config, out_entry,
                                       out_selected_config, out_flags);
    }
  }
  return false;
}

const LoadedPackage* LoadedArsc::GetPackageForId(uint32_t resid) const {
  const uint8_t package_id = get_package_id(resid);
  for (const auto& loaded_package : packages_) {
    if (loaded_package->package_id_ == package_id) {
      return loaded_package.get();
    }
  }
  return nullptr;
}

static bool VerifyType(const Chunk& chunk) {
  ATRACE_CALL();
  const ResTable_type* header = chunk.header<ResTable_type, kResTableTypeMinSize>();

  const size_t entry_count = dtohl(header->entryCount);
  if (entry_count > std::numeric_limits<uint16_t>::max()) {
    LOG(ERROR) << "Too many entries in RES_TABLE_TYPE_TYPE.";
    return false;
  }

  // Make sure that there is enough room for the entry offsets.
  const size_t offsets_offset = chunk.header_size();
  const size_t entries_offset = dtohl(header->entriesStart);
  const size_t offsets_length = sizeof(uint32_t) * entry_count;

  if (offsets_offset + offsets_length > entries_offset) {
    LOG(ERROR) << "Entry offsets overlap actual entry data.";
    return false;
  }

  if (entries_offset > chunk.size()) {
    LOG(ERROR) << "Entry offsets extend beyond chunk.";
    return false;
  }

  if (entries_offset & 0x03) {
    LOG(ERROR) << "Entries start at unaligned address.";
    return false;
  }

  // Check each entry offset.
  const uint32_t* offsets =
      reinterpret_cast<const uint32_t*>(reinterpret_cast<const uint8_t*>(header) + offsets_offset);
  for (size_t i = 0; i < entry_count; i++) {
    uint32_t offset = dtohl(offsets[i]);
    if (offset != ResTable_type::NO_ENTRY) {
      // Check that the offset is aligned.
      if (offset & 0x03) {
        LOG(ERROR) << "Entry offset at index " << i << " is not 4-byte aligned.";
        return false;
      }

      // Check that the offset doesn't overflow.
      if (offset > std::numeric_limits<uint32_t>::max() - entries_offset) {
        // Overflow in offset.
        LOG(ERROR) << "Entry offset at index " << i << " is too large.";
        return false;
      }

      offset += entries_offset;
      if (offset > chunk.size() - sizeof(ResTable_entry)) {
        LOG(ERROR) << "Entry offset at index " << i << " is too large. No room for ResTable_entry.";
        return false;
      }

      const ResTable_entry* entry = reinterpret_cast<const ResTable_entry*>(
          reinterpret_cast<const uint8_t*>(header) + offset);
      const size_t entry_size = dtohs(entry->size);
      if (entry_size < sizeof(*entry)) {
        LOG(ERROR) << "ResTable_entry size " << entry_size << " is too small.";
        return false;
      }

      // Check the declared entrySize.
      if (entry_size > chunk.size() || offset > chunk.size() - entry_size) {
        LOG(ERROR) << "ResTable_entry size " << entry_size << " is too large.";
        return false;
      }

      // If this is a map entry, then keep validating.
      if (entry_size >= sizeof(ResTable_map_entry)) {
        const ResTable_map_entry* map = reinterpret_cast<const ResTable_map_entry*>(entry);
        const size_t map_entry_count = dtohl(map->count);

        size_t map_entries_start = offset + entry_size;
        if (map_entries_start & 0x03) {
          LOG(ERROR) << "Map entries start at unaligned offset.";
          return false;
        }

        // Each entry is sizeof(ResTable_map) big.
        if (map_entry_count > ((chunk.size() - map_entries_start) / sizeof(ResTable_map))) {
          LOG(ERROR) << "Too many map entries in ResTable_map_entry.";
          return false;
        }

        // Great, all the map entries fit!.
      } else {
        // There needs to be room for one Res_value struct.
        if (offset + entry_size > chunk.size() - sizeof(Res_value)) {
          LOG(ERROR) << "No room for Res_value after ResTable_entry.";
          return false;
        }

        const Res_value* value = reinterpret_cast<const Res_value*>(
            reinterpret_cast<const uint8_t*>(entry) + entry_size);
        const size_t value_size = dtohs(value->size);
        if (value_size < sizeof(Res_value)) {
          LOG(ERROR) << "Res_value is too small.";
          return false;
        }

        if (value_size > chunk.size() || offset + entry_size > chunk.size() - value_size) {
          LOG(ERROR) << "Res_value size is too large.";
          return false;
        }
      }
    }
  }
  return true;
}

void LoadedPackage::CollectConfigurations(bool exclude_mipmap,
                                          std::set<ResTable_config>* out_configs) const {
  const static std::u16string kMipMap = u"mipmap";
  const size_t type_count = type_specs_.size();
  for (size_t i = 0; i < type_count; i++) {
    const util::unique_cptr<TypeSpec>& type_spec = type_specs_[i];
    if (type_spec != nullptr) {
      if (exclude_mipmap) {
        const int type_idx = type_spec->type_spec->id - 1;
        size_t type_name_len;
        const char16_t* type_name16 = type_string_pool_.stringAt(type_idx, &type_name_len);
        if (type_name16 != nullptr) {
          if (kMipMap.compare(0, std::u16string::npos, type_name16, type_name_len) == 0) {
            // This is a mipmap type, skip collection.
            continue;
          }
        }
        const char* type_name = type_string_pool_.string8At(type_idx, &type_name_len);
        if (type_name != nullptr) {
          if (strncmp(type_name, "mipmap", type_name_len) == 0) {
            // This is a mipmap type, skip collection.
            continue;
          }
        }
      }

      for (size_t j = 0; j < type_spec->type_count; j++) {
        out_configs->insert(type_spec->types[j].configuration);
      }
    }
  }
}

void LoadedPackage::CollectLocales(bool canonicalize, std::set<std::string>* out_locales) const {
  char temp_locale[RESTABLE_MAX_LOCALE_LEN];
  const size_t type_count = type_specs_.size();
  for (size_t i = 0; i < type_count; i++) {
    const util::unique_cptr<TypeSpec>& type_spec = type_specs_[i];
    if (type_spec != nullptr) {
      for (size_t j = 0; j < type_spec->type_count; j++) {
        const ResTable_config& configuration = type_spec->types[j].configuration;
        if (configuration.locale != 0) {
          configuration.getBcp47Locale(temp_locale, canonicalize);
          std::string locale(temp_locale);
          out_locales->insert(std::move(locale));
        }
      }
    }
  }
}

uint32_t LoadedPackage::FindEntryByName(const std::u16string& type_name,
                                        const std::u16string& entry_name) const {
  ssize_t type_idx = type_string_pool_.indexOfString(type_name.data(), type_name.size());
  if (type_idx < 0) {
    return 0u;
  }

  ssize_t key_idx = key_string_pool_.indexOfString(entry_name.data(), entry_name.size());
  if (key_idx < 0) {
    return 0u;
  }

  const TypeSpec* type_spec = type_specs_[type_idx].get();
  if (type_spec == nullptr) {
    return 0u;
  }

  for (size_t ti = 0; ti < type_spec->type_count; ti++) {
    const Type* type = &type_spec->types[ti];
    size_t entry_count = dtohl(type->type->entryCount);
    for (size_t entry_idx = 0; entry_idx < entry_count; entry_idx++) {
      const uint32_t* entry_offsets = reinterpret_cast<const uint32_t*>(
          reinterpret_cast<const uint8_t*>(type->type) + dtohs(type->type->header.headerSize));
      const uint32_t offset = dtohl(entry_offsets[entry_idx]);
      if (offset != ResTable_type::NO_ENTRY) {
        const ResTable_entry* entry =
            reinterpret_cast<const ResTable_entry*>(reinterpret_cast<const uint8_t*>(type->type) +
                                                    dtohl(type->type->entriesStart) + offset);
        if (dtohl(entry->key.index) == static_cast<uint32_t>(key_idx)) {
          // The package ID will be overridden by the caller (due to runtime assignment of package
          // IDs for shared libraries).
          return make_resid(0x00, type_idx + type_id_offset_ + 1, entry_idx);
        }
      }
    }
  }
  return 0u;
}

std::unique_ptr<LoadedPackage> LoadedPackage::Load(const Chunk& chunk) {
  ATRACE_CALL();
  std::unique_ptr<LoadedPackage> loaded_package{new LoadedPackage()};

  constexpr size_t kMinPackageSize =
      sizeof(ResTable_package) - sizeof(ResTable_package::typeIdOffset);
  const ResTable_package* header = chunk.header<ResTable_package, kMinPackageSize>();
  if (header == nullptr) {
    LOG(ERROR) << "Chunk RES_TABLE_PACKAGE_TYPE is too small.";
    return {};
  }

  loaded_package->package_id_ = dtohl(header->id);
  if (loaded_package->package_id_ == 0) {
    // Package ID of 0 means this is a shared library.
    loaded_package->dynamic_ = true;
  }

  if (header->header.headerSize >= sizeof(ResTable_package)) {
    uint32_t type_id_offset = dtohl(header->typeIdOffset);
    if (type_id_offset > std::numeric_limits<uint8_t>::max()) {
      LOG(ERROR) << "Type ID offset in RES_TABLE_PACKAGE_TYPE is too large.";
      return {};
    }
    loaded_package->type_id_offset_ = static_cast<int>(type_id_offset);
  }

  util::ReadUtf16StringFromDevice(header->name, arraysize(header->name),
                                  &loaded_package->package_name_);

  // A TypeSpec builder. We use this to accumulate the set of Types
  // available for a TypeSpec, and later build a single, contiguous block
  // of memory that holds all the Types together with the TypeSpec.
  std::unique_ptr<TypeSpecPtrBuilder> types_builder;

  // Keep track of the last seen type index. Since type IDs are 1-based,
  // this records their index, which is 0-based (type ID - 1).
  uint8_t last_type_idx = 0;

  ChunkIterator iter(chunk.data_ptr(), chunk.data_size());
  while (iter.HasNext()) {
    const Chunk child_chunk = iter.Next();
    switch (child_chunk.type()) {
      case RES_STRING_POOL_TYPE: {
        const uintptr_t pool_address =
            reinterpret_cast<uintptr_t>(child_chunk.header<ResChunk_header>());
        const uintptr_t header_address = reinterpret_cast<uintptr_t>(header);
        if (pool_address == header_address + dtohl(header->typeStrings)) {
          // This string pool is the type string pool.
          status_t err = loaded_package->type_string_pool_.setTo(
              child_chunk.header<ResStringPool_header>(), child_chunk.size());
          if (err != NO_ERROR) {
            LOG(ERROR) << "Corrupt package type string pool.";
            return {};
          }
        } else if (pool_address == header_address + dtohl(header->keyStrings)) {
          // This string pool is the key string pool.
          status_t err = loaded_package->key_string_pool_.setTo(
              child_chunk.header<ResStringPool_header>(), child_chunk.size());
          if (err != NO_ERROR) {
            LOG(ERROR) << "Corrupt package key string pool.";
            return {};
          }
        } else {
          LOG(WARNING) << "Too many string pool chunks found in package.";
        }
      } break;

      case RES_TABLE_TYPE_SPEC_TYPE: {
        ATRACE_NAME("LoadTableTypeSpec");

        // Starting a new TypeSpec, so finish the old one if there was one.
        if (types_builder) {
          TypeSpecPtr type_spec_ptr = types_builder->Build();
          if (type_spec_ptr == nullptr) {
            LOG(ERROR) << "Too many type configurations, overflow detected.";
            return {};
          }
          loaded_package->type_specs_.editItemAt(last_type_idx) = std::move(type_spec_ptr);

          types_builder = {};
          last_type_idx = 0;
        }

        const ResTable_typeSpec* type_spec = child_chunk.header<ResTable_typeSpec>();
        if (type_spec == nullptr) {
          LOG(ERROR) << "Chunk RES_TABLE_TYPE_SPEC_TYPE is too small.";
          return {};
        }

        if (type_spec->id == 0) {
          LOG(ERROR) << "Chunk RES_TABLE_TYPE_SPEC_TYPE has invalid ID 0.";
          return {};
        }

        if (loaded_package->type_id_offset_ + static_cast<int>(type_spec->id) >
            std::numeric_limits<uint8_t>::max()) {
          LOG(ERROR) << "Chunk RES_TABLE_TYPE_SPEC_TYPE has out of range ID.";
          return {};
        }

        // The data portion of this chunk contains entry_count 32bit entries,
        // each one representing a set of flags.
        // Here we only validate that the chunk is well formed.
        const size_t entry_count = dtohl(type_spec->entryCount);

        // There can only be 2^16 entries in a type, because that is the ID
        // space for entries (EEEE) in the resource ID 0xPPTTEEEE.
        if (entry_count > std::numeric_limits<uint16_t>::max()) {
          LOG(ERROR) << "Too many entries in RES_TABLE_TYPE_SPEC_TYPE: " << entry_count << ".";
          return {};
        }

        if (entry_count * sizeof(uint32_t) > chunk.data_size()) {
          LOG(ERROR) << "Chunk too small to hold entries in RES_TABLE_TYPE_SPEC_TYPE.";
          return {};
        }

        last_type_idx = type_spec->id - 1;
        types_builder = util::make_unique<TypeSpecPtrBuilder>(type_spec);
      } break;

      case RES_TABLE_TYPE_TYPE: {
        const ResTable_type* type = child_chunk.header<ResTable_type, kResTableTypeMinSize>();
        if (type == nullptr) {
          LOG(ERROR) << "Chunk RES_TABLE_TYPE_TYPE is too small.";
          return {};
        }

        if (type->id == 0) {
          LOG(ERROR) << "Chunk RES_TABLE_TYPE_TYPE has invalid ID 0.";
          return {};
        }

        // Type chunks must be preceded by their TypeSpec chunks.
        if (!types_builder || type->id - 1 != last_type_idx) {
          LOG(ERROR) << "Found RES_TABLE_TYPE_TYPE chunk without "
                        "RES_TABLE_TYPE_SPEC_TYPE.";
          return {};
        }

        if (!VerifyType(child_chunk)) {
          return {};
        }

        types_builder->AddType(type);
      } break;

      case RES_TABLE_LIBRARY_TYPE: {
        const ResTable_lib_header* lib = child_chunk.header<ResTable_lib_header>();
        if (lib == nullptr) {
          LOG(ERROR) << "Chunk RES_TABLE_LIBRARY_TYPE is too small.";
          return {};
        }

        if (child_chunk.data_size() / sizeof(ResTable_lib_entry) < dtohl(lib->count)) {
          LOG(ERROR) << "Chunk too small to hold entries in RES_TABLE_LIBRARY_TYPE.";
          return {};
        }

        loaded_package->dynamic_package_map_.reserve(dtohl(lib->count));

        const ResTable_lib_entry* const entry_begin =
            reinterpret_cast<const ResTable_lib_entry*>(child_chunk.data_ptr());
        const ResTable_lib_entry* const entry_end = entry_begin + dtohl(lib->count);
        for (auto entry_iter = entry_begin; entry_iter != entry_end; ++entry_iter) {
          std::string package_name;
          util::ReadUtf16StringFromDevice(entry_iter->packageName,
                                          arraysize(entry_iter->packageName), &package_name);

          if (dtohl(entry_iter->packageId) >= std::numeric_limits<uint8_t>::max()) {
            LOG(ERROR) << base::StringPrintf(
                "Package ID %02x in RES_TABLE_LIBRARY_TYPE too large for package '%s'.",
                dtohl(entry_iter->packageId), package_name.c_str());
            return {};
          }

          loaded_package->dynamic_package_map_.emplace_back(std::move(package_name),
                                                            dtohl(entry_iter->packageId));
        }

      } break;

      default:
        LOG(WARNING) << base::StringPrintf("Unknown chunk type '%02x'.", chunk.type());
        break;
    }
  }

  // Finish the last TypeSpec.
  if (types_builder) {
    TypeSpecPtr type_spec_ptr = types_builder->Build();
    if (type_spec_ptr == nullptr) {
      LOG(ERROR) << "Too many type configurations, overflow detected.";
      return {};
    }
    loaded_package->type_specs_.editItemAt(last_type_idx) = std::move(type_spec_ptr);
  }

  if (iter.HadError()) {
    LOG(ERROR) << iter.GetLastError();
    return {};
  }
  return loaded_package;
}

bool LoadedArsc::LoadTable(const Chunk& chunk, bool load_as_shared_library) {
  ATRACE_CALL();
  const ResTable_header* header = chunk.header<ResTable_header>();
  if (header == nullptr) {
    LOG(ERROR) << "Chunk RES_TABLE_TYPE is too small.";
    return false;
  }

  const size_t package_count = dtohl(header->packageCount);
  size_t packages_seen = 0;

  packages_.reserve(package_count);

  ChunkIterator iter(chunk.data_ptr(), chunk.data_size());
  while (iter.HasNext()) {
    const Chunk child_chunk = iter.Next();
    switch (child_chunk.type()) {
      case RES_STRING_POOL_TYPE:
        // Only use the first string pool. Ignore others.
        if (global_string_pool_.getError() == NO_INIT) {
          status_t err = global_string_pool_.setTo(child_chunk.header<ResStringPool_header>(),
                                                   child_chunk.size());
          if (err != NO_ERROR) {
            LOG(ERROR) << "Corrupt string pool.";
            return false;
          }
        } else {
          LOG(WARNING) << "Multiple string pool chunks found in resource table.";
        }
        break;

      case RES_TABLE_PACKAGE_TYPE: {
        if (packages_seen + 1 > package_count) {
          LOG(ERROR) << "More package chunks were found than the " << package_count
                     << " declared in the "
                        "header.";
          return false;
        }
        packages_seen++;

        std::unique_ptr<LoadedPackage> loaded_package = LoadedPackage::Load(child_chunk);
        if (!loaded_package) {
          return false;
        }

        // Mark the package as dynamic if we are forcefully loading the Apk as a shared library.
        if (loaded_package->package_id_ == kAppPackageId) {
          loaded_package->dynamic_ = load_as_shared_library;
        }
        loaded_package->system_ = system_;
        packages_.push_back(std::move(loaded_package));
      } break;

      default:
        LOG(WARNING) << base::StringPrintf("Unknown chunk type '%02x'.", chunk.type());
        break;
    }
  }

  if (iter.HadError()) {
    LOG(ERROR) << iter.GetLastError();
    return false;
  }
  return true;
}

std::unique_ptr<const LoadedArsc> LoadedArsc::Load(const void* data, size_t len, bool system,
                                                   bool load_as_shared_library) {
  ATRACE_CALL();

  // Not using make_unique because the constructor is private.
  std::unique_ptr<LoadedArsc> loaded_arsc(new LoadedArsc());
  loaded_arsc->system_ = system;

  ChunkIterator iter(data, len);
  while (iter.HasNext()) {
    const Chunk chunk = iter.Next();
    switch (chunk.type()) {
      case RES_TABLE_TYPE:
        if (!loaded_arsc->LoadTable(chunk, load_as_shared_library)) {
          return {};
        }
        break;

      default:
        LOG(WARNING) << base::StringPrintf("Unknown chunk type '%02x'.", chunk.type());
        break;
    }
  }

  if (iter.HadError()) {
    LOG(ERROR) << iter.GetLastError();
    return {};
  }

  // Need to force a move for mingw32.
  return std::move(loaded_arsc);
}

}  // namespace android