#ifndef ANDROID_DVR_NUMERIC_H_
#define ANDROID_DVR_NUMERIC_H_
#include <cmath>
#include <limits>
#include <random>
#include <type_traits>
#include <private/dvr/eigen.h>
#include <private/dvr/types.h>
namespace android {
namespace dvr {
template <typename FT>
static inline FT ToDeg(FT f) {
return f * static_cast<FT>(180.0 / M_PI);
}
template <typename FT>
static inline FT ToRad(FT f) {
return f * static_cast<FT>(M_PI / 180.0);
}
// Adjusts `x` to the periodic range `[lo, hi]` (to normalize angle values
// for example).
template <typename T>
T NormalizePeriodicRange(T x, T lo, T hi) {
T range_size = hi - lo;
while (x < lo) {
x += range_size;
}
while (x > hi) {
x -= range_size;
}
return x;
}
// Normalizes a measurement in radians.
// @param x the angle to be normalized
// @param centre the point around which to normalize the range
// @return the value of x, normalized to the range [centre - 180, centre + 180]
template <typename T>
T NormalizeDegrees(T x, T centre = static_cast<T>(180.0)) {
return NormalizePeriodicRange(x, centre - static_cast<T>(180.0),
centre + static_cast<T>(180.0));
}
// Normalizes a measurement in radians.
// @param x the angle to be normalized
// @param centre the point around which to normalize the range
// @return the value of x, normalized to the range
// [centre - M_PI, centre + M_PI]
// @remark the centre parameter is to make it possible to specify a different
// periodic range. This is useful if you are planning on comparing two
// angles close to 0 or M_PI, so that one might not accidentally end
// up on the other side of the range
template <typename T>
T NormalizeRadians(T x, T centre = static_cast<T>(M_PI)) {
return NormalizePeriodicRange(x, centre - static_cast<T>(M_PI),
centre + static_cast<T>(M_PI));
}
static inline vec2i Round(const vec2& v) {
return vec2i(roundf(v.x()), roundf(v.y()));
}
static inline vec2i Scale(const vec2i& v, float scale) {
return vec2i(roundf(static_cast<float>(v.x()) * scale),
roundf(static_cast<float>(v.y()) * scale));
}
// Re-maps `x` from `[lba,uba]` to `[lbb,ubb]`.
template <typename T>
T ConvertRange(T x, T lba, T uba, T lbb, T ubb) {
return (((x - lba) * (ubb - lbb)) / (uba - lba)) + lbb;
}
template <typename R1, typename R2>
static inline vec2 MapPoint(const vec2& pt, const R1& from, const R2& to) {
vec2 normalized((pt - vec2(from.p1)).array() / vec2(from.GetSize()).array());
return (normalized * vec2(to.GetSize())) + vec2(to.p1);
}
template <typename T>
inline bool IsZero(const T& v,
const T& tol = std::numeric_limits<T>::epsilon()) {
return std::abs(v) <= tol;
}
template <typename T>
inline bool IsEqual(const T& a, const T& b,
const T& tol = std::numeric_limits<T>::epsilon()) {
return std::abs(b - a) <= tol;
}
template <typename T>
T Square(const T& x) {
return x * x;
}
template <typename T>
T RandomInRange(T lo, T hi,
typename
std::enable_if<std::is_floating_point<T>::value>::type* = 0) {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<T> distro(lo, hi);
return distro(gen);
}
template <typename T>
T RandomInRange(T lo, T hi,
typename
std::enable_if<std::is_integral<T>::value>::type* = 0) {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<T> distro(lo, hi);
return distro(gen);
}
template <typename Derived1, typename Derived2>
Derived1 RandomInRange(
const Eigen::MatrixBase<Derived1>& lo,
const Eigen::MatrixBase<Derived2>& hi) {
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Derived1, Derived2);
Derived1 result = Eigen::MatrixBase<Derived1>::Zero();
for (int row = 0; row < result.rows(); ++row) {
for (int col = 0; col < result.cols(); ++col) {
result(row, col) = RandomInRange(lo(row, col), hi(row, col));
}
}
return result;
}
template <typename T>
T RandomRange(T x) {
return RandomInRange(-x, x);
}
template <typename T>
T Clamp(T x, T lo, T hi) {
return std::min(std::max(x, lo), hi);
}
inline mat3 ScaleMatrix(const vec2& scale_xy) {
return mat3(Eigen::Scaling(scale_xy[0], scale_xy[1], 1.0f));
}
inline mat3 TranslationMatrix(const vec2& translation) {
return mat3(Eigen::Translation2f(translation));
}
inline mat4 TranslationMatrix(const vec3& translation) {
return mat4(Eigen::Translation3f(translation));
}
inline vec2 TransformPoint(const mat3& m, const vec2& p) {
return m.linear() * p + m.translation();
}
inline vec2 TransformVector(const mat3& m, const vec2& p) {
return m.linear() * p;
}
} // namespace dvr
} // namespace android
#endif // ANDROID_DVR_NUMERIC_H_