/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Header page:
//
// For minimum allocation size (8 bytes), bitmap can store used allocations for
// up to 4032*8*8=258048, which is 256KiB minus the header page
#include <assert.h>
#include <stdlib.h>
#include <sys/cdefs.h>
#include <sys/mman.h>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <mutex>
#include "android-base/macros.h"
#include "anon_vma_naming.h"
#include "Allocator.h"
#include "LinkedList.h"
// runtime interfaces used:
// abort
// assert - fprintf + mmap
// mmap
// munmap
// prctl
constexpr size_t const_log2(size_t n, size_t p = 0) {
return (n <= 1) ? p : const_log2(n / 2, p + 1);
}
constexpr unsigned int div_round_up(unsigned int x, unsigned int y) {
return (x + y - 1) / y;
}
static constexpr size_t kPageSize = 4096;
static constexpr size_t kChunkSize = 256 * 1024;
static constexpr size_t kUsableChunkSize = kChunkSize - kPageSize;
static constexpr size_t kMaxBucketAllocationSize = kChunkSize / 4;
static constexpr size_t kMinBucketAllocationSize = 8;
static constexpr unsigned int kNumBuckets = const_log2(kMaxBucketAllocationSize)
- const_log2(kMinBucketAllocationSize) + 1;
static constexpr unsigned int kUsablePagesPerChunk = kUsableChunkSize
/ kPageSize;
std::atomic<int> heap_count;
class Chunk;
class HeapImpl {
public:
HeapImpl();
~HeapImpl();
void* operator new(std::size_t count) noexcept;
void operator delete(void* ptr);
void* Alloc(size_t size);
void Free(void* ptr);
bool Empty();
void MoveToFullList(Chunk* chunk, int bucket_);
void MoveToFreeList(Chunk* chunk, int bucket_);
private:
DISALLOW_COPY_AND_ASSIGN(HeapImpl);
LinkedList<Chunk*> free_chunks_[kNumBuckets];
LinkedList<Chunk*> full_chunks_[kNumBuckets];
void MoveToList(Chunk* chunk, LinkedList<Chunk*>* head);
void* MapAlloc(size_t size);
void MapFree(void* ptr);
void* AllocLocked(size_t size);
void FreeLocked(void* ptr);
struct MapAllocation {
void *ptr;
size_t size;
MapAllocation* next;
};
MapAllocation* map_allocation_list_;
std::mutex m_;
};
// Integer log 2, rounds down
static inline unsigned int log2(size_t n) {
return 8 * sizeof(unsigned long long) - __builtin_clzll(n) - 1;
}
static inline unsigned int size_to_bucket(size_t size) {
if (size < kMinBucketAllocationSize)
return kMinBucketAllocationSize;
return log2(size - 1) + 1 - const_log2(kMinBucketAllocationSize);
}
static inline size_t bucket_to_size(unsigned int bucket) {
return kMinBucketAllocationSize << bucket;
}
static void* MapAligned(size_t size, size_t align) {
const int prot = PROT_READ | PROT_WRITE;
const int flags = MAP_ANONYMOUS | MAP_PRIVATE;
size = (size + kPageSize - 1) & ~(kPageSize - 1);
// Over-allocate enough to align
size_t map_size = size + align - kPageSize;
if (map_size < size) {
return nullptr;
}
void* ptr = mmap(NULL, map_size, prot, flags, -1, 0);
if (ptr == MAP_FAILED) {
return nullptr;
}
size_t aligned_size = map_size;
void* aligned_ptr = ptr;
std::align(align, size, aligned_ptr, aligned_size);
// Trim beginning
if (aligned_ptr != ptr) {
ptrdiff_t extra = reinterpret_cast<uintptr_t>(aligned_ptr)
- reinterpret_cast<uintptr_t>(ptr);
munmap(ptr, extra);
map_size -= extra;
ptr = aligned_ptr;
}
// Trim end
if (map_size != size) {
assert(map_size > size);
assert(ptr != NULL);
munmap(reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(ptr) + size),
map_size - size);
}
#define PR_SET_VMA 0x53564d41
#define PR_SET_VMA_ANON_NAME 0
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME,
reinterpret_cast<uintptr_t>(ptr), size, "leak_detector_malloc");
return ptr;
}
class Chunk {
public:
static void* operator new(std::size_t count) noexcept;
static void operator delete(void* ptr);
Chunk(HeapImpl* heap, int bucket);
~Chunk() {}
void *Alloc();
void Free(void* ptr);
void Purge();
bool Empty();
static Chunk* ptr_to_chunk(void* ptr) {
return reinterpret_cast<Chunk*>(reinterpret_cast<uintptr_t>(ptr)
& ~(kChunkSize - 1));
}
static bool is_chunk(void* ptr) {
return (reinterpret_cast<uintptr_t>(ptr) & (kChunkSize - 1)) != 0;
}
unsigned int free_count() {
return free_count_;
}
HeapImpl* heap() {
return heap_;
}
LinkedList<Chunk*> node_; // linked list sorted by minimum free count
private:
DISALLOW_COPY_AND_ASSIGN(Chunk);
HeapImpl* heap_;
unsigned int bucket_;
unsigned int allocation_size_; // size of allocations in chunk, min 8 bytes
unsigned int max_allocations_; // maximum number of allocations in the chunk
unsigned int first_free_bitmap_; // index into bitmap for first non-full entry
unsigned int free_count_; // number of available allocations
unsigned int frees_since_purge_; // number of calls to Free since last Purge
// bitmap of pages that have been dirtied
uint32_t dirty_pages_[div_round_up(kUsablePagesPerChunk, 32)];
// bitmap of free allocations.
uint32_t free_bitmap_[kUsableChunkSize / kMinBucketAllocationSize / 32];
char data_[0];
unsigned int ptr_to_n(void* ptr) {
ptrdiff_t offset = reinterpret_cast<uintptr_t>(ptr)
- reinterpret_cast<uintptr_t>(data_);
return offset / allocation_size_;
}
void* n_to_ptr(unsigned int n) {
return data_ + n * allocation_size_;
}
};
static_assert(sizeof(Chunk) <= kPageSize, "header must fit in page");
// Override new operator on chunk to use mmap to allocate kChunkSize
void* Chunk::operator new(std::size_t count __attribute__((unused))) noexcept {
assert(count == sizeof(Chunk));
void* mem = MapAligned(kChunkSize, kChunkSize);
if (!mem) {
abort(); //throw std::bad_alloc;
}
return mem;
}
// Override new operator on chunk to use mmap to allocate kChunkSize
void Chunk::operator delete(void *ptr) {
assert(reinterpret_cast<Chunk*>(ptr) == ptr_to_chunk(ptr));
munmap(ptr, kChunkSize);
}
Chunk::Chunk(HeapImpl* heap, int bucket) :
node_(this), heap_(heap), bucket_(bucket), allocation_size_(
bucket_to_size(bucket)), max_allocations_(
kUsableChunkSize / allocation_size_), first_free_bitmap_(0), free_count_(
max_allocations_), frees_since_purge_(0) {
memset(dirty_pages_, 0, sizeof(dirty_pages_));
memset(free_bitmap_, 0xff, sizeof(free_bitmap_));
}
bool Chunk::Empty() {
return free_count_ == max_allocations_;
}
void* Chunk::Alloc() {
assert(free_count_ > 0);
unsigned int i = first_free_bitmap_;
while (free_bitmap_[i] == 0)
i++;
assert(i < arraysize(free_bitmap_));
unsigned int bit = __builtin_ffs(free_bitmap_[i]) - 1;
assert(free_bitmap_[i] & (1U << bit));
free_bitmap_[i] &= ~(1U << bit);
unsigned int n = i * 32 + bit;
assert(n < max_allocations_);
unsigned int page = n * allocation_size_ / kPageSize;
assert(page / 32 < arraysize(dirty_pages_));
dirty_pages_[page / 32] |= 1U << (page % 32);
free_count_--;
if (free_count_ == 0) {
heap_->MoveToFullList(this, bucket_);
}
return n_to_ptr(n);
}
void Chunk::Free(void* ptr) {
assert(is_chunk(ptr));
assert(ptr_to_chunk(ptr) == this);
unsigned int n = ptr_to_n(ptr);
unsigned int i = n / 32;
unsigned int bit = n % 32;
assert(i < arraysize(free_bitmap_));
assert(!(free_bitmap_[i] & (1U << bit)));
free_bitmap_[i] |= 1U << bit;
free_count_++;
if (i < first_free_bitmap_) {
first_free_bitmap_ = i;
}
if (free_count_ == 1) {
heap_->MoveToFreeList(this, bucket_);
} else {
// TODO(ccross): move down free list if necessary
}
if (frees_since_purge_++ * allocation_size_ > 16 * kPageSize) {
Purge();
}
}
void Chunk::Purge() {
frees_since_purge_ = 0;
//unsigned int allocsPerPage = kPageSize / allocation_size_;
}
// Override new operator on HeapImpl to use mmap to allocate a page
void* HeapImpl::operator new(std::size_t count __attribute__((unused)))
noexcept {
assert(count == sizeof(HeapImpl));
void* mem = MapAligned(kPageSize, kPageSize);
if (!mem) {
abort(); //throw std::bad_alloc;
}
heap_count++;
return mem;
}
void HeapImpl::operator delete(void *ptr) {
munmap(ptr, kPageSize);
}
HeapImpl::HeapImpl() :
free_chunks_(), full_chunks_(), map_allocation_list_(NULL) {
}
bool HeapImpl::Empty() {
for (unsigned int i = 0; i < kNumBuckets; i++) {
for (LinkedList<Chunk*> *it = free_chunks_[i].next(); it->data() != NULL; it = it->next()) {
if (!it->data()->Empty()) {
return false;
}
}
for (LinkedList<Chunk*> *it = full_chunks_[i].next(); it->data() != NULL; it = it->next()) {
if (!it->data()->Empty()) {
return false;
}
}
}
return true;
}
HeapImpl::~HeapImpl() {
for (unsigned int i = 0; i < kNumBuckets; i++) {
while (!free_chunks_[i].empty()) {
Chunk *chunk = free_chunks_[i].next()->data();
chunk->node_.remove();
delete chunk;
}
while (!full_chunks_[i].empty()) {
Chunk *chunk = full_chunks_[i].next()->data();
chunk->node_.remove();
delete chunk;
}
}
}
void* HeapImpl::Alloc(size_t size) {
std::lock_guard<std::mutex> lk(m_);
return AllocLocked(size);
}
void* HeapImpl::AllocLocked(size_t size) {
if (size > kMaxBucketAllocationSize) {
return MapAlloc(size);
}
int bucket = size_to_bucket(size);
if (free_chunks_[bucket].empty()) {
Chunk *chunk = new Chunk(this, bucket);
free_chunks_[bucket].insert(chunk->node_);
}
return free_chunks_[bucket].next()->data()->Alloc();
}
void HeapImpl::Free(void *ptr) {
std::lock_guard<std::mutex> lk(m_);
FreeLocked(ptr);
}
void HeapImpl::FreeLocked(void *ptr) {
if (!Chunk::is_chunk(ptr)) {
HeapImpl::MapFree(ptr);
} else {
Chunk* chunk = Chunk::ptr_to_chunk(ptr);
assert(chunk->heap() == this);
chunk->Free(ptr);
}
}
void* HeapImpl::MapAlloc(size_t size) {
size = (size + kPageSize - 1) & ~(kPageSize - 1);
MapAllocation* allocation = reinterpret_cast<MapAllocation*>(AllocLocked(
sizeof(MapAllocation)));
void* ptr = MapAligned(size, kChunkSize);
if (!ptr) {
FreeLocked(allocation);
abort(); //throw std::bad_alloc;
}
allocation->ptr = ptr;
allocation->size = size;
allocation->next = map_allocation_list_;
map_allocation_list_ = allocation;
return ptr;
}
void HeapImpl::MapFree(void *ptr) {
MapAllocation **allocation = &map_allocation_list_;
while (*allocation && (*allocation)->ptr != ptr)
allocation = &(*allocation)->next;
assert(*allocation != nullptr);
munmap((*allocation)->ptr, (*allocation)->size);
FreeLocked(*allocation);
*allocation = (*allocation)->next;
}
void HeapImpl::MoveToFreeList(Chunk *chunk, int bucket) {
MoveToList(chunk, &free_chunks_[bucket]);
}
void HeapImpl::MoveToFullList(Chunk *chunk, int bucket) {
MoveToList(chunk, &full_chunks_[bucket]);
}
void HeapImpl::MoveToList(Chunk *chunk, LinkedList<Chunk*>* head) {
// Remove from old list
chunk->node_.remove();
LinkedList<Chunk*> *node = head;
// Insert into new list, sorted by lowest free count
while (node->next() != head && node->data() != nullptr
&& node->data()->free_count() < chunk->free_count())
node = node->next();
node->insert(chunk->node_);
}
Heap::Heap() {
// HeapImpl overloads the operator new in order to mmap itself instead of
// allocating with new.
// Can't use a shared_ptr to store the result because shared_ptr needs to
// allocate, and Allocator<T> is still being constructed.
impl_ = new HeapImpl();
owns_impl_ = true;
}
Heap::~Heap() {
if (owns_impl_) {
delete impl_;
}
}
void* Heap::allocate(size_t size) {
return impl_->Alloc(size);
}
void Heap::deallocate(void* ptr) {
impl_->Free(ptr);
}
void Heap::deallocate(HeapImpl*impl, void* ptr) {
impl->Free(ptr);
}
bool Heap::empty() {
return impl_->Empty();
}