/*
* Copyright (c) 2016-2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch_helpers.h>
#include <arm_gic.h>
#include <assert.h>
#include <bl_common.h>
#include <cci.h>
#include <common_def.h>
#include <console.h>
#include <context_mgmt.h>
#include <debug.h>
#include <generic_delay_timer.h>
#include <mcucfg.h>
#include <mmio.h>
#include <mt_cpuxgpt.h>
#include <mtk_plat_common.h>
#include <mtk_sip_svc.h>
#include <plat_private.h>
#include <platform.h>
#include <string.h>
#include <xlat_tables.h>
/*******************************************************************************
* Declarations of linker defined symbols which will help us find the layout
* of trusted SRAM
******************************************************************************/
unsigned long __RO_START__;
unsigned long __RO_END__;
/*
* The next 2 constants identify the extents of the code & RO data region.
* These addresses are used by the MMU setup code and therefore they must be
* page-aligned. It is the responsibility of the linker script to ensure that
* __RO_START__ and __RO_END__ linker symbols refer to page-aligned addresses.
*/
#define BL31_RO_BASE (unsigned long)(&__RO_START__)
#define BL31_RO_LIMIT (unsigned long)(&__RO_END__)
/*
* Placeholder variables for copying the arguments that have been passed to
* BL3-1 from BL2.
*/
static entry_point_info_t bl32_image_ep_info;
static entry_point_info_t bl33_image_ep_info;
static const int cci_map[] = {
PLAT_MT_CCI_CLUSTER0_SL_IFACE_IX,
PLAT_MT_CCI_CLUSTER1_SL_IFACE_IX
};
static uint32_t cci_map_length = ARRAY_SIZE(cci_map);
/* Table of regions to map using the MMU. */
static const mmap_region_t plat_mmap[] = {
/* for TF text, RO, RW */
MAP_REGION_FLAT(MTK_DEV_RNG0_BASE, MTK_DEV_RNG0_SIZE,
MT_DEVICE | MT_RW | MT_SECURE),
MAP_REGION_FLAT(MTK_DEV_RNG1_BASE, MTK_DEV_RNG1_SIZE,
MT_DEVICE | MT_RW | MT_SECURE),
MAP_REGION_FLAT(RAM_CONSOLE_BASE & ~(PAGE_SIZE_MASK), RAM_CONSOLE_SIZE,
MT_DEVICE | MT_RW | MT_NS),
{ 0 }
};
/*******************************************************************************
* Macro generating the code for the function setting up the pagetables as per
* the platform memory map & initialize the mmu, for the given exception level
******************************************************************************/
#define DEFINE_CONFIGURE_MMU_EL(_el) \
void plat_configure_mmu_el ## _el(unsigned long total_base, \
unsigned long total_size, \
unsigned long ro_start, \
unsigned long ro_limit, \
unsigned long coh_start, \
unsigned long coh_limit) \
{ \
mmap_add_region(total_base, total_base, \
total_size, \
MT_MEMORY | MT_RW | MT_SECURE); \
mmap_add_region(ro_start, ro_start, \
ro_limit - ro_start, \
MT_MEMORY | MT_RO | MT_SECURE); \
mmap_add_region(coh_start, coh_start, \
coh_limit - coh_start, \
MT_DEVICE | MT_RW | MT_SECURE); \
mmap_add(plat_mmap); \
init_xlat_tables(); \
\
enable_mmu_el ## _el(0); \
}
/* Define EL3 variants of the function initialising the MMU */
DEFINE_CONFIGURE_MMU_EL(3)
unsigned int plat_get_syscnt_freq2(void)
{
return SYS_COUNTER_FREQ_IN_TICKS;
}
void plat_cci_init(void)
{
/* Initialize CCI driver */
cci_init(PLAT_MT_CCI_BASE, cci_map, cci_map_length);
}
void plat_cci_enable(void)
{
/*
* Enable CCI coherency for this cluster.
* No need for locks as no other cpu is active at the moment.
*/
cci_enable_snoop_dvm_reqs(MPIDR_AFFLVL1_VAL(read_mpidr()));
}
void plat_cci_disable(void)
{
cci_disable_snoop_dvm_reqs(MPIDR_AFFLVL1_VAL(read_mpidr()));
}
static void platform_setup_cpu(void)
{
/* setup big cores */
mmio_write_32((uintptr_t)&mt6795_mcucfg->mp1_config_res,
MP1_DIS_RGU0_WAIT_PD_CPUS_L1_ACK |
MP1_DIS_RGU1_WAIT_PD_CPUS_L1_ACK |
MP1_DIS_RGU2_WAIT_PD_CPUS_L1_ACK |
MP1_DIS_RGU3_WAIT_PD_CPUS_L1_ACK |
MP1_DIS_RGU_NOCPU_WAIT_PD_CPUS_L1_ACK);
mmio_setbits_32((uintptr_t)&mt6795_mcucfg->mp1_miscdbg, MP1_AINACTS);
mmio_setbits_32((uintptr_t)&mt6795_mcucfg->mp1_clkenm_div,
MP1_SW_CG_GEN);
mmio_clrbits_32((uintptr_t)&mt6795_mcucfg->mp1_rst_ctl,
MP1_L2RSTDISABLE);
/* set big cores arm64 boot mode */
mmio_setbits_32((uintptr_t)&mt6795_mcucfg->mp1_cpucfg,
MP1_CPUCFG_64BIT);
/* set LITTLE cores arm64 boot mode */
mmio_setbits_32((uintptr_t)&mt6795_mcucfg->mp0_rv_addr[0].rv_addr_hw,
MP0_CPUCFG_64BIT);
}
/*******************************************************************************
* Return a pointer to the 'entry_point_info' structure of the next image for
* the security state specified. BL33 corresponds to the non-secure image type
* while BL32 corresponds to the secure image type. A NULL pointer is returned
* if the image does not exist.
******************************************************************************/
entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type)
{
entry_point_info_t *next_image_info;
next_image_info = (type == NON_SECURE) ?
&bl33_image_ep_info : &bl32_image_ep_info;
/* None of the images on this platform can have 0x0 as the entrypoint */
if (next_image_info->pc)
return next_image_info;
else
return NULL;
}
/*******************************************************************************
* Perform any BL3-1 early platform setup. Here is an opportunity to copy
* parameters passed by the calling EL (S-EL1 in BL2 & S-EL3 in BL1) before they
* are lost (potentially). This needs to be done before the MMU is initialized
* so that the memory layout can be used while creating page tables.
* BL2 has flushed this information to memory, so we are guaranteed to pick up
* good data.
******************************************************************************/
void bl31_early_platform_setup(bl31_params_t *from_bl2,
void *plat_params_from_bl2)
{
struct mtk_bl_param_t *pmtk_bl_param =
(struct mtk_bl_param_t *)from_bl2;
struct atf_arg_t *teearg;
unsigned long long normal_base;
unsigned long long atf_base;
assert(from_bl2 != NULL);
/*
* Mediatek preloader(i.e, BL2) is in 32 bit state, high 32bits
* of 64 bit GP registers are UNKNOWN if CPU warm reset from 32 bit
* to 64 bit state. So we need to clear high 32bit,
* which may be random value.
*/
pmtk_bl_param =
(struct mtk_bl_param_t *)((uint64_t)pmtk_bl_param & 0x00000000ffffffff);
plat_params_from_bl2 =
(void *)((uint64_t)plat_params_from_bl2 & 0x00000000ffffffff);
teearg = (struct atf_arg_t *)pmtk_bl_param->tee_info_addr;
console_init(teearg->atf_log_port, UART_CLOCK, UART_BAUDRATE);
memcpy((void *)>eearg, (void *)teearg, sizeof(struct atf_arg_t));
normal_base = 0;
/* in ATF boot time, timer for cntpct_el0 is not initialized
* so it will not count now.
*/
atf_base = read_cntpct_el0();
sched_clock_init(normal_base, atf_base);
VERBOSE("bl31_setup\n");
/* Populate entry point information for BL3-2 and BL3-3 */
SET_PARAM_HEAD(&bl32_image_ep_info,
PARAM_EP,
VERSION_1,
0);
SET_SECURITY_STATE(bl32_image_ep_info.h.attr, SECURE);
bl32_image_ep_info.pc = BL32_BASE;
SET_PARAM_HEAD(&bl33_image_ep_info,
PARAM_EP,
VERSION_1,
0);
/*
* Tell BL3-1 where the non-trusted software image
* is located and the entry state information
*/
/* BL33_START_ADDRESS */
bl33_image_ep_info.pc = pmtk_bl_param->bl33_start_addr;
bl33_image_ep_info.spsr = plat_get_spsr_for_bl33_entry();
bl33_image_ep_info.args.arg4 = pmtk_bl_param->bootarg_loc;
bl33_image_ep_info.args.arg5 = pmtk_bl_param->bootarg_size;
SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE);
}
/*******************************************************************************
* Perform any BL3-1 platform setup code
******************************************************************************/
void bl31_platform_setup(void)
{
platform_setup_cpu();
generic_delay_timer_init();
plat_mt_gic_driver_init();
/* Initialize the gic cpu and distributor interfaces */
plat_mt_gic_init();
/* Topologies are best known to the platform. */
mt_setup_topology();
}
/*******************************************************************************
* Perform the very early platform specific architectural setup here. At the
* moment this is only intializes the mmu in a quick and dirty way.
* Init MTK propiartary log buffer control field.
******************************************************************************/
void bl31_plat_arch_setup(void)
{
/* Enable non-secure access to CCI-400 registers */
mmio_write_32(CCI400_BASE + CCI_SEC_ACCESS_OFFSET, 0x1);
plat_cci_init();
plat_cci_enable();
if (gteearg.atf_log_buf_size != 0) {
INFO("mmap atf buffer : 0x%x, 0x%x\n\r",
gteearg.atf_log_buf_start,
gteearg.atf_log_buf_size);
mmap_add_region(
gteearg.atf_log_buf_start &
~(PAGE_SIZE_2MB_MASK),
gteearg.atf_log_buf_start &
~(PAGE_SIZE_2MB_MASK),
PAGE_SIZE_2MB,
MT_DEVICE | MT_RW | MT_NS);
INFO("mmap atf buffer (force 2MB aligned):0x%x, 0x%x\n",
(gteearg.atf_log_buf_start & ~(PAGE_SIZE_2MB_MASK)),
PAGE_SIZE_2MB);
}
/*
* add TZRAM_BASE to memory map
* then set RO and COHERENT to different attribute
*/
plat_configure_mmu_el3(
(TZRAM_BASE & ~(PAGE_SIZE_MASK)),
(TZRAM_SIZE & ~(PAGE_SIZE_MASK)),
(BL31_RO_BASE & ~(PAGE_SIZE_MASK)),
BL31_RO_LIMIT,
BL_COHERENT_RAM_BASE,
BL_COHERENT_RAM_END);
/* Initialize for ATF log buffer */
if (gteearg.atf_log_buf_size != 0) {
gteearg.atf_aee_debug_buf_size = ATF_AEE_BUFFER_SIZE;
gteearg.atf_aee_debug_buf_start =
gteearg.atf_log_buf_start +
gteearg.atf_log_buf_size - ATF_AEE_BUFFER_SIZE;
INFO("ATF log service is registered (0x%x, aee:0x%x)\n",
gteearg.atf_log_buf_start,
gteearg.atf_aee_debug_buf_start);
} else{
gteearg.atf_aee_debug_buf_size = 0;
gteearg.atf_aee_debug_buf_start = 0;
}
/* Platform code before bl31_main */
/* compatible to the earlier chipset */
/* Show to ATF log buffer & UART */
INFO("BL3-1: %s\n", version_string);
INFO("BL3-1: %s\n", build_message);
}
#if 0
/* MTK Define */
#define ACTLR_CPUECTLR_BIT (1 << 1)
void enable_ns_access_to_cpuectlr(void)
{
unsigned int next_actlr;
/* ACTLR_EL1 do not implement CUPECTLR */
next_actlr = read_actlr_el2();
next_actlr |= ACTLR_CPUECTLR_BIT;
write_actlr_el2(next_actlr);
next_actlr = read_actlr_el3();
next_actlr |= ACTLR_CPUECTLR_BIT;
write_actlr_el3(next_actlr);
}
#endif
/*******************************************************************************
* This function prepare boot argument for 64 bit kernel entry
******************************************************************************/
static entry_point_info_t *bl31_plat_get_next_kernel64_ep_info(void)
{
entry_point_info_t *next_image_info;
unsigned int mode;
mode = 0;
/* Kernel image is always non-secured */
next_image_info = &bl33_image_ep_info;
/* Figure out what mode we enter the non-secure world in */
if (EL_IMPLEMENTED(2)) {
INFO("Kernel_EL2\n");
mode = MODE_EL2;
} else{
INFO("Kernel_EL1\n");
mode = MODE_EL1;
}
INFO("Kernel is 64Bit\n");
next_image_info->spsr =
SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
next_image_info->pc = get_kernel_info_pc();
next_image_info->args.arg0 = get_kernel_info_r0();
next_image_info->args.arg1 = get_kernel_info_r1();
INFO("pc=0x%lx, r0=0x%lx, r1=0x%lx\n",
next_image_info->pc,
next_image_info->args.arg0,
next_image_info->args.arg1);
SET_SECURITY_STATE(next_image_info->h.attr, NON_SECURE);
/* None of the images on this platform can have 0x0 as the entrypoint */
if (next_image_info->pc)
return next_image_info;
else
return NULL;
}
/*******************************************************************************
* This function prepare boot argument for 32 bit kernel entry
******************************************************************************/
static entry_point_info_t *bl31_plat_get_next_kernel32_ep_info(void)
{
entry_point_info_t *next_image_info;
unsigned int mode;
mode = 0;
/* Kernel image is always non-secured */
next_image_info = &bl33_image_ep_info;
/* Figure out what mode we enter the non-secure world in */
mode = MODE32_hyp;
/*
* TODO: Consider the possibility of specifying the SPSR in
* the FIP ToC and allowing the platform to have a say as
* well.
*/
INFO("Kernel is 32Bit\n");
next_image_info->spsr =
SPSR_MODE32(mode, SPSR_T_ARM, SPSR_E_LITTLE,
(DAIF_FIQ_BIT | DAIF_IRQ_BIT | DAIF_ABT_BIT));
next_image_info->pc = get_kernel_info_pc();
next_image_info->args.arg0 = get_kernel_info_r0();
next_image_info->args.arg1 = get_kernel_info_r1();
next_image_info->args.arg2 = get_kernel_info_r2();
INFO("pc=0x%lx, r0=0x%lx, r1=0x%lx, r2=0x%lx\n",
next_image_info->pc,
next_image_info->args.arg0,
next_image_info->args.arg1,
next_image_info->args.arg2);
SET_SECURITY_STATE(next_image_info->h.attr, NON_SECURE);
/* None of the images on this platform can have 0x0 as the entrypoint */
if (next_image_info->pc)
return next_image_info;
else
return NULL;
}
/*******************************************************************************
* This function prepare boot argument for kernel entrypoint
******************************************************************************/
void bl31_prepare_kernel_entry(uint64_t k32_64)
{
entry_point_info_t *next_image_info;
uint32_t image_type;
/* Determine which image to execute next */
/* image_type = bl31_get_next_image_type(); */
image_type = NON_SECURE;
/* Program EL3 registers to enable entry into the next EL */
if (k32_64 == 0)
next_image_info = bl31_plat_get_next_kernel32_ep_info();
else
next_image_info = bl31_plat_get_next_kernel64_ep_info();
assert(next_image_info);
assert(image_type == GET_SECURITY_STATE(next_image_info->h.attr));
INFO("BL3-1: Preparing for EL3 exit to %s world, Kernel\n",
(image_type == SECURE) ? "secure" : "normal");
INFO("BL3-1: Next image address = 0x%llx\n",
(unsigned long long) next_image_info->pc);
INFO("BL3-1: Next image spsr = 0x%x\n", next_image_info->spsr);
cm_init_context(read_mpidr_el1(), next_image_info);
cm_prepare_el3_exit(image_type);
}