/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "model-executor.h"
#include "quantization.h"
#include "util/base/logging.h"
namespace libtextclassifier2 {
namespace internal {
bool FromModelSpec(const tflite::Model* model_spec,
std::unique_ptr<const tflite::FlatBufferModel>* model) {
*model = tflite::FlatBufferModel::BuildFromModel(model_spec);
if (!(*model) || !(*model)->initialized()) {
TC_LOG(ERROR) << "Could not build TFLite model from a model spec. ";
return false;
}
return true;
}
} // namespace internal
std::unique_ptr<tflite::Interpreter> ModelExecutor::CreateInterpreter() const {
std::unique_ptr<tflite::Interpreter> interpreter;
tflite::InterpreterBuilder(*model_, builtins_)(&interpreter);
return interpreter;
}
std::unique_ptr<TFLiteEmbeddingExecutor> TFLiteEmbeddingExecutor::Instance(
const flatbuffers::Vector<uint8_t>* model_spec_buffer, int embedding_size,
int quantization_bits) {
const tflite::Model* model_spec =
flatbuffers::GetRoot<tflite::Model>(model_spec_buffer->data());
flatbuffers::Verifier verifier(model_spec_buffer->data(),
model_spec_buffer->Length());
std::unique_ptr<const tflite::FlatBufferModel> model;
if (!model_spec->Verify(verifier) ||
!internal::FromModelSpec(model_spec, &model)) {
TC_LOG(ERROR) << "Could not load TFLite model.";
return nullptr;
}
std::unique_ptr<tflite::Interpreter> interpreter;
tflite::ops::builtin::BuiltinOpResolver builtins;
tflite::InterpreterBuilder(*model, builtins)(&interpreter);
if (!interpreter) {
TC_LOG(ERROR) << "Could not build TFLite interpreter for embeddings.";
return nullptr;
}
if (interpreter->tensors_size() != 2) {
return nullptr;
}
const TfLiteTensor* embeddings = interpreter->tensor(0);
if (embeddings->dims->size != 2) {
return nullptr;
}
int num_buckets = embeddings->dims->data[0];
const TfLiteTensor* scales = interpreter->tensor(1);
if (scales->dims->size != 2 || scales->dims->data[0] != num_buckets ||
scales->dims->data[1] != 1) {
return nullptr;
}
int bytes_per_embedding = embeddings->dims->data[1];
if (!CheckQuantizationParams(bytes_per_embedding, quantization_bits,
embedding_size)) {
TC_LOG(ERROR) << "Mismatch in quantization parameters.";
return nullptr;
}
return std::unique_ptr<TFLiteEmbeddingExecutor>(new TFLiteEmbeddingExecutor(
std::move(model), quantization_bits, num_buckets, bytes_per_embedding,
embedding_size, scales, embeddings, std::move(interpreter)));
}
TFLiteEmbeddingExecutor::TFLiteEmbeddingExecutor(
std::unique_ptr<const tflite::FlatBufferModel> model, int quantization_bits,
int num_buckets, int bytes_per_embedding, int output_embedding_size,
const TfLiteTensor* scales, const TfLiteTensor* embeddings,
std::unique_ptr<tflite::Interpreter> interpreter)
: model_(std::move(model)),
quantization_bits_(quantization_bits),
num_buckets_(num_buckets),
bytes_per_embedding_(bytes_per_embedding),
output_embedding_size_(output_embedding_size),
scales_(scales),
embeddings_(embeddings),
interpreter_(std::move(interpreter)) {}
bool TFLiteEmbeddingExecutor::AddEmbedding(
const TensorView<int>& sparse_features, float* dest, int dest_size) const {
if (dest_size != output_embedding_size_) {
TC_LOG(ERROR) << "Mismatching dest_size and output_embedding_size: "
<< dest_size << " " << output_embedding_size_;
return false;
}
const int num_sparse_features = sparse_features.size();
for (int i = 0; i < num_sparse_features; ++i) {
const int bucket_id = sparse_features.data()[i];
if (bucket_id >= num_buckets_) {
return false;
}
if (!DequantizeAdd(scales_->data.f, embeddings_->data.uint8,
bytes_per_embedding_, num_sparse_features,
quantization_bits_, bucket_id, dest, dest_size)) {
return false;
}
}
return true;
}
TensorView<float> ComputeLogitsHelper(const int input_index_features,
const int output_index_logits,
const TensorView<float>& features,
tflite::Interpreter* interpreter) {
if (!interpreter) {
return TensorView<float>::Invalid();
}
interpreter->ResizeInputTensor(input_index_features, features.shape());
if (interpreter->AllocateTensors() != kTfLiteOk) {
TC_VLOG(1) << "Allocation failed.";
return TensorView<float>::Invalid();
}
TfLiteTensor* features_tensor =
interpreter->tensor(interpreter->inputs()[input_index_features]);
int size = 1;
for (int i = 0; i < features_tensor->dims->size; ++i) {
size *= features_tensor->dims->data[i];
}
features.copy_to(features_tensor->data.f, size);
if (interpreter->Invoke() != kTfLiteOk) {
TC_VLOG(1) << "Interpreter failed.";
return TensorView<float>::Invalid();
}
TfLiteTensor* logits_tensor =
interpreter->tensor(interpreter->outputs()[output_index_logits]);
std::vector<int> output_shape(logits_tensor->dims->size);
for (int i = 0; i < logits_tensor->dims->size; ++i) {
output_shape[i] = logits_tensor->dims->data[i];
}
return TensorView<float>(logits_tensor->data.f, output_shape);
}
} // namespace libtextclassifier2