/*
* Copyright 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_INTERPOLATOR_H
#define ANDROID_INTERPOLATOR_H
#include <map>
#include <sstream>
#include <unordered_map>
#include <binder/Parcel.h>
#include <utils/RefBase.h>
#pragma push_macro("LOG_TAG")
#undef LOG_TAG
#define LOG_TAG "Interpolator"
namespace android {
/*
* A general purpose spline interpolator class which takes a set of points
* and performs interpolation. This is used for the VolumeShaper class.
*/
template <typename S, typename T>
class Interpolator : public std::map<S, T> {
public:
// Polynomial spline interpolators
// Extend only at the end of enum, as this must match order in VolumeShapers.java.
enum InterpolatorType : int32_t {
INTERPOLATOR_TYPE_STEP, // Not continuous
INTERPOLATOR_TYPE_LINEAR, // C0
INTERPOLATOR_TYPE_CUBIC, // C1
INTERPOLATOR_TYPE_CUBIC_MONOTONIC, // C1 (to provide locally monotonic curves)
// INTERPOLATOR_TYPE_CUBIC_C2, // TODO - requires global computation / cache
};
explicit Interpolator(
InterpolatorType interpolatorType = INTERPOLATOR_TYPE_LINEAR,
bool cache = true)
: mCache(cache)
, mFirstSlope(0)
, mLastSlope(0) {
setInterpolatorType(interpolatorType);
}
std::pair<S, T> first() const {
return *this->begin();
}
std::pair<S, T> last() const {
return *this->rbegin();
}
// find the corresponding Y point from a X point.
T findY(S x) { // logically const, but modifies cache
auto high = this->lower_bound(x);
// greater than last point
if (high == this->end()) {
return this->rbegin()->second;
}
// at or before first point
if (high == this->begin()) {
return high->second;
}
// go lower.
auto low = high;
--low;
// now that we have two adjacent points:
switch (mInterpolatorType) {
case INTERPOLATOR_TYPE_STEP:
return high->first == x ? high->second : low->second;
case INTERPOLATOR_TYPE_LINEAR:
return ((high->first - x) * low->second + (x - low->first) * high->second)
/ (high->first - low->first);
case INTERPOLATOR_TYPE_CUBIC:
case INTERPOLATOR_TYPE_CUBIC_MONOTONIC:
default: {
// See https://en.wikipedia.org/wiki/Cubic_Hermite_spline
const S interval = high->first - low->first;
// check to see if we've cached the polynomial coefficients
if (mMemo.count(low->first) != 0) {
const S t = (x - low->first) / interval;
const S t2 = t * t;
const auto &memo = mMemo[low->first];
return low->second + std::get<0>(memo) * t
+ (std::get<1>(memo) + std::get<2>(memo) * t) * t2;
}
// find the neighboring points (low2 < low < high < high2)
auto low2 = this->end();
if (low != this->begin()) {
low2 = low;
--low2; // decrementing this->begin() is undefined
}
auto high2 = high;
++high2;
// you could have catmullRom with monotonic or
// non catmullRom (finite difference) with regular cubic;
// the choices here minimize computation.
bool monotonic, catmullRom;
if (mInterpolatorType == INTERPOLATOR_TYPE_CUBIC_MONOTONIC) {
monotonic = true;
catmullRom = false;
} else {
monotonic = false;
catmullRom = true;
}
// secants are only needed for finite difference splines or
// monotonic computation.
// we use lazy computation here - if we precompute in
// a single pass, duplicate secant computations may be avoided.
S sec, sec0, sec1;
if (!catmullRom || monotonic) {
sec = (high->second - low->second) / interval;
sec0 = low2 != this->end()
? (low->second - low2->second) / (low->first - low2->first)
: mFirstSlope;
sec1 = high2 != this->end()
? (high2->second - high->second) / (high2->first - high->first)
: mLastSlope;
}
// compute the tangent slopes at the control points
S m0, m1;
if (catmullRom) {
// Catmull-Rom spline
m0 = low2 != this->end()
? (high->second - low2->second) / (high->first - low2->first)
: mFirstSlope;
m1 = high2 != this->end()
? (high2->second - low->second) / (high2->first - low->first)
: mLastSlope;
} else {
// finite difference spline
m0 = (sec0 + sec) * 0.5f;
m1 = (sec1 + sec) * 0.5f;
}
if (monotonic) {
// https://en.wikipedia.org/wiki/Monotone_cubic_interpolation
// A sufficient condition for Fritsch–Carlson monotonicity is constraining
// (1) the normalized slopes to be within the circle of radius 3, or
// (2) the normalized slopes to be within the square of radius 3.
// Condition (2) is more generous and easier to compute.
const S maxSlope = 3 * sec;
m0 = constrainSlope(m0, maxSlope);
m1 = constrainSlope(m1, maxSlope);
m0 = constrainSlope(m0, 3 * sec0);
m1 = constrainSlope(m1, 3 * sec1);
}
const S t = (x - low->first) / interval;
const S t2 = t * t;
if (mCache) {
// convert to cubic polynomial coefficients and compute
m0 *= interval;
m1 *= interval;
const T dy = high->second - low->second;
const S c0 = low->second;
const S c1 = m0;
const S c2 = 3 * dy - 2 * m0 - m1;
const S c3 = m0 + m1 - 2 * dy;
mMemo[low->first] = std::make_tuple(c1, c2, c3);
return c0 + c1 * t + (c2 + c3 * t) * t2;
} else {
// classic Hermite interpolation
const S t3 = t2 * t;
const S h00 = 2 * t3 - 3 * t2 + 1;
const S h10 = t3 - 2 * t2 + t ;
const S h01 = -2 * t3 + 3 * t2 ;
const S h11 = t3 - t2 ;
return h00 * low->second + (h10 * m0 + h11 * m1) * interval + h01 * high->second;
}
} // default
}
}
InterpolatorType getInterpolatorType() const {
return mInterpolatorType;
}
status_t setInterpolatorType(InterpolatorType interpolatorType) {
switch (interpolatorType) {
case INTERPOLATOR_TYPE_STEP: // Not continuous
case INTERPOLATOR_TYPE_LINEAR: // C0
case INTERPOLATOR_TYPE_CUBIC: // C1
case INTERPOLATOR_TYPE_CUBIC_MONOTONIC: // C1 + other constraints
// case INTERPOLATOR_TYPE_CUBIC_C2:
mInterpolatorType = interpolatorType;
return NO_ERROR;
default:
ALOGE("invalid interpolatorType: %d", interpolatorType);
return BAD_VALUE;
}
}
T getFirstSlope() const {
return mFirstSlope;
}
void setFirstSlope(T slope) {
mFirstSlope = slope;
}
T getLastSlope() const {
return mLastSlope;
}
void setLastSlope(T slope) {
mLastSlope = slope;
}
void clearCache() {
mMemo.clear();
}
status_t writeToParcel(Parcel *parcel) const {
if (parcel == nullptr) {
return BAD_VALUE;
}
status_t res = parcel->writeInt32(mInterpolatorType)
?: parcel->writeFloat(mFirstSlope)
?: parcel->writeFloat(mLastSlope)
?: parcel->writeUint32((uint32_t)this->size()); // silent truncation
if (res != NO_ERROR) {
return res;
}
for (const auto &pt : *this) {
res = parcel->writeFloat(pt.first)
?: parcel->writeFloat(pt.second);
if (res != NO_ERROR) {
return res;
}
}
return NO_ERROR;
}
status_t readFromParcel(const Parcel &parcel) {
this->clear();
int32_t type;
uint32_t size;
status_t res = parcel.readInt32(&type)
?: parcel.readFloat(&mFirstSlope)
?: parcel.readFloat(&mLastSlope)
?: parcel.readUint32(&size)
?: setInterpolatorType((InterpolatorType)type);
if (res != NO_ERROR) {
return res;
}
// Note: We don't need to check size is within some bounds as
// the Parcel read will fail if size is incorrectly specified too large.
float lastx;
for (uint32_t i = 0; i < size; ++i) {
float x, y;
res = parcel.readFloat(&x)
?: parcel.readFloat(&y);
if (res != NO_ERROR) {
return res;
}
if ((i > 0 && !(x > lastx)) /* handle nan */
|| y != y /* handle nan */) {
// This is a std::map object which imposes sorted order
// automatically on emplace.
// Nevertheless for reading from a Parcel,
// we require that the points be specified monotonic in x.
return BAD_VALUE;
}
this->emplace(x, y);
lastx = x;
}
return NO_ERROR;
}
std::string toString() const {
std::stringstream ss;
ss << "Interpolator{mInterpolatorType=" << static_cast<int32_t>(mInterpolatorType);
ss << ", mFirstSlope=" << mFirstSlope;
ss << ", mLastSlope=" << mLastSlope;
ss << ", {";
bool first = true;
for (const auto &pt : *this) {
if (first) {
first = false;
ss << "{";
} else {
ss << ", {";
}
ss << pt.first << ", " << pt.second << "}";
}
ss << "}}";
return ss.str();
}
private:
static S constrainSlope(S slope, S maxSlope) {
if (maxSlope > 0) {
slope = std::min(slope, maxSlope);
slope = std::max(slope, S(0)); // not globally monotonic
} else {
slope = std::max(slope, maxSlope);
slope = std::min(slope, S(0)); // not globally monotonic
}
return slope;
}
InterpolatorType mInterpolatorType;
bool mCache; // whether we cache spline coefficient computation
// for cubic interpolation, the boundary conditions in slope.
S mFirstSlope;
S mLastSlope;
// spline cubic polynomial coefficient cache
std::unordered_map<S, std::tuple<S /* c1 */, S /* c2 */, S /* c3 */>> mMemo;
}; // Interpolator
} // namespace android
#pragma pop_macro("LOG_TAG")
#endif // ANDROID_INTERPOLATOR_H