/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <fstream>
#include <iostream>
#include <memory>
#include <gtest/gtest.h>
#include <openssl/bn.h>
#include <openssl/evp.h>
#include <openssl/x509.h>
#define LOG_TAG "keymaster_test"
#include <utils/Log.h>
#include <hardware/keymaster0.h>
namespace android {
class UniqueBlob : public std::unique_ptr<uint8_t[]> {
public:
explicit UniqueBlob(size_t length) :
mLength(length) {
}
UniqueBlob(uint8_t* bytes, size_t length) :
std::unique_ptr<uint8_t[]>(bytes), mLength(length) {
}
bool operator==(const UniqueBlob &other) const {
if (other.length() != mLength) {
return false;
}
const uint8_t* mine = get();
const uint8_t* theirs = other.get();
for (size_t i = 0; i < mLength; i++) {
if (mine[i] != theirs[i]) {
return false;
}
}
return true;
}
size_t length() const {
return mLength;
}
friend std::ostream &operator<<(std::ostream &stream, const UniqueBlob& blob);
private:
size_t mLength;
};
std::ostream &operator<<(std::ostream &stream, const UniqueBlob& blob) {
const size_t length = blob.mLength;
stream << "Blob length=" << length << " < ";
const uint8_t* data = blob.get();
for (size_t i = 0; i < length; i++) {
stream << std::hex << std::setw(2) << std::setfill('0')
<< static_cast<unsigned int>(data[i]) << ' ';
}
stream << '>' << std::endl;
return stream;
}
class UniqueKey : public UniqueBlob {
public:
UniqueKey(keymaster0_device_t** dev, uint8_t* bytes, size_t length) :
UniqueBlob(bytes, length), mDevice(dev) {
}
~UniqueKey() {
if (mDevice != NULL && *mDevice != NULL) {
keymaster0_device_t* dev = *mDevice;
if (dev->delete_keypair != NULL) {
dev->delete_keypair(dev, get(), length());
}
}
}
private:
keymaster0_device_t** mDevice;
};
class UniqueReadOnlyBlob {
public:
UniqueReadOnlyBlob(uint8_t* data, size_t dataSize) :
mDataSize(dataSize) {
int pageSize = sysconf(_SC_PAGE_SIZE);
if (pageSize == -1) {
return;
}
int fd = open("/dev/zero", O_RDONLY);
if (fd == -1) {
return;
}
mBufferSize = (dataSize + pageSize - 1) & ~(pageSize - 1);
uint8_t* buffer = (uint8_t*) mmap(NULL, mBufferSize, PROT_READ | PROT_WRITE,
MAP_PRIVATE, fd, 0);
close(fd);
if (buffer == NULL) {
return;
}
memcpy(buffer, data, dataSize);
if (mprotect(buffer, mBufferSize, PROT_READ) == -1) {
munmap(buffer, mBufferSize);
return;
}
mBuffer = buffer;
}
~UniqueReadOnlyBlob() {
munmap(mBuffer, mBufferSize);
}
uint8_t* get() const {
return mBuffer;
}
size_t length() const {
return mDataSize;
}
private:
uint8_t* mBuffer;
size_t mBufferSize;
size_t mDataSize;
};
struct BIGNUM_Delete {
void operator()(BIGNUM* p) const {
BN_free(p);
}
};
typedef std::unique_ptr<BIGNUM, BIGNUM_Delete> Unique_BIGNUM;
struct EVP_PKEY_Delete {
void operator()(EVP_PKEY* p) const {
EVP_PKEY_free(p);
}
};
typedef std::unique_ptr<EVP_PKEY, EVP_PKEY_Delete> Unique_EVP_PKEY;
struct PKCS8_PRIV_KEY_INFO_Delete {
void operator()(PKCS8_PRIV_KEY_INFO* p) const {
PKCS8_PRIV_KEY_INFO_free(p);
}
};
typedef std::unique_ptr<PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO_Delete> Unique_PKCS8_PRIV_KEY_INFO;
struct RSA_Delete {
void operator()(RSA* p) const {
RSA_free(p);
}
};
typedef std::unique_ptr<RSA, RSA_Delete> Unique_RSA;
struct EC_KEY_Delete {
void operator()(EC_KEY* p) const {
EC_KEY_free(p);
}
};
typedef std::unique_ptr<EC_KEY, EC_KEY_Delete> Unique_EC_KEY;
/*
* DER-encoded PKCS#8 format RSA key. Generated using:
*
* openssl genrsa 2048 | openssl pkcs8 -topk8 -nocrypt -outform der | recode ../x1
*/
static uint8_t TEST_RSA_KEY_1[] = {
0x30, 0x82, 0x04, 0xBE, 0x02, 0x01, 0x00, 0x30, 0x0D, 0x06, 0x09, 0x2A,
0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01, 0x05, 0x00, 0x04, 0x82,
0x04, 0xA8, 0x30, 0x82, 0x04, 0xA4, 0x02, 0x01, 0x00, 0x02, 0x82, 0x01,
0x01, 0x00, 0xD8, 0x58, 0xD4, 0x9F, 0xC0, 0xE8, 0xF0, 0xFF, 0x87, 0x27,
0x43, 0xE6, 0x2E, 0xE6, 0x9A, 0x42, 0x3B, 0x39, 0x94, 0x84, 0x43, 0x55,
0x8D, 0x20, 0x5B, 0x71, 0x88, 0xE6, 0xD1, 0x62, 0xC8, 0xF2, 0x20, 0xD0,
0x75, 0x13, 0x83, 0xA3, 0x5D, 0x19, 0xA8, 0x62, 0xD0, 0x5F, 0x3E, 0x8A,
0x7C, 0x0E, 0x26, 0xA9, 0xFF, 0xB2, 0x5E, 0x63, 0xAA, 0x3C, 0x8D, 0x13,
0x41, 0xAA, 0xD5, 0x03, 0x01, 0x01, 0x53, 0xC9, 0x02, 0x1C, 0xEC, 0xE8,
0xC4, 0x70, 0x3F, 0x43, 0xE5, 0x51, 0xD0, 0x6E, 0x52, 0x0B, 0xC4, 0x0A,
0xA3, 0x61, 0xDE, 0xE3, 0x72, 0x0C, 0x94, 0xF1, 0x1C, 0x2D, 0x36, 0x77,
0xBB, 0x16, 0xA8, 0x63, 0x4B, 0xD1, 0x07, 0x00, 0x42, 0x2D, 0x2B, 0x10,
0x80, 0x45, 0xF3, 0x0C, 0xF9, 0xC5, 0xAC, 0xCC, 0x64, 0x87, 0xFD, 0x5D,
0xC8, 0x51, 0xD4, 0x1C, 0x9E, 0x6E, 0x9B, 0xC4, 0x27, 0x5E, 0x73, 0xA7,
0x2A, 0xF6, 0x90, 0x42, 0x0C, 0x34, 0x93, 0xB7, 0x02, 0x19, 0xA9, 0x64,
0x6C, 0x46, 0x3B, 0x40, 0x02, 0x2F, 0x54, 0x69, 0x79, 0x26, 0x7D, 0xF6,
0x85, 0x90, 0x01, 0xD0, 0x21, 0x07, 0xD0, 0x14, 0x00, 0x65, 0x9C, 0xAC,
0x24, 0xE8, 0x78, 0x42, 0x3B, 0x90, 0x75, 0x19, 0x55, 0x11, 0x4E, 0xD9,
0xE6, 0x97, 0x87, 0xBC, 0x8D, 0x2C, 0x9B, 0xF0, 0x1F, 0x14, 0xEB, 0x6A,
0x57, 0xCE, 0x78, 0xAD, 0xCE, 0xD9, 0xFB, 0xB9, 0xA1, 0xEF, 0x0C, 0x1F,
0xDD, 0xE3, 0x5B, 0x73, 0xA0, 0xEC, 0x37, 0x9C, 0xE1, 0xFD, 0x86, 0x28,
0xC3, 0x4A, 0x42, 0xD0, 0xA3, 0xFE, 0x57, 0x09, 0x29, 0xD8, 0xF6, 0xEC,
0xE3, 0xC0, 0x71, 0x7C, 0x29, 0x27, 0xC2, 0xD1, 0x3E, 0x22, 0xBC, 0xBD,
0x5A, 0x85, 0x41, 0xF6, 0x15, 0xDA, 0x0C, 0x58, 0x5A, 0x61, 0x5B, 0x78,
0xB8, 0xAA, 0xEC, 0x5C, 0x1C, 0x79, 0x02, 0x03, 0x01, 0x00, 0x01, 0x02,
0x82, 0x01, 0x00, 0x1D, 0x10, 0x31, 0xE0, 0x14, 0x26, 0x36, 0xD9, 0xDC,
0xEA, 0x25, 0x70, 0xF2, 0xB3, 0xFF, 0xDD, 0x0D, 0xDF, 0xBA, 0x57, 0xDA,
0x43, 0xCF, 0xE5, 0x9C, 0xE3, 0x2F, 0xA4, 0xF2, 0x53, 0xF6, 0xF2, 0xAF,
0xFD, 0xD0, 0xFC, 0x82, 0x1E, 0x9C, 0x0F, 0x2A, 0x53, 0xBB, 0xF2, 0x4F,
0x90, 0x83, 0x01, 0xD3, 0xA7, 0xDA, 0xB5, 0xB7, 0x80, 0x64, 0x0A, 0x26,
0x59, 0x83, 0xE4, 0xD3, 0x20, 0xC8, 0x2D, 0xC9, 0x77, 0xA3, 0x55, 0x07,
0x6E, 0x6D, 0x95, 0x36, 0xAA, 0x84, 0x4F, 0xED, 0x54, 0x24, 0xA9, 0x77,
0xF8, 0x85, 0xE2, 0x4B, 0xF2, 0xFA, 0x0B, 0x3E, 0xA6, 0xF5, 0x46, 0x0D,
0x9F, 0x1F, 0xFE, 0xF7, 0x37, 0xFF, 0xA3, 0x60, 0xF1, 0x63, 0xF2, 0x75,
0x6A, 0x8E, 0x10, 0xD7, 0x89, 0xD2, 0xB3, 0xFF, 0x76, 0xA5, 0xBA, 0xAF,
0x0A, 0xBE, 0x32, 0x5F, 0xF0, 0x48, 0x48, 0x4B, 0x9C, 0x9A, 0x3D, 0x12,
0xA7, 0xD2, 0x07, 0xC7, 0x59, 0x32, 0x94, 0x95, 0x65, 0x2F, 0x87, 0x34,
0x76, 0xBA, 0x7C, 0x08, 0x4B, 0xAB, 0xA6, 0x24, 0xDF, 0x64, 0xDB, 0x48,
0x63, 0x42, 0x06, 0xE2, 0x2C, 0x3D, 0xFB, 0xE5, 0x47, 0x81, 0x94, 0x98,
0xF7, 0x32, 0x4B, 0x28, 0xEB, 0x42, 0xB8, 0xE9, 0x8E, 0xFC, 0xC9, 0x43,
0xC9, 0x47, 0xE6, 0xE7, 0x1C, 0xDC, 0x71, 0xEF, 0x4D, 0x8A, 0xB1, 0xFC,
0x45, 0x37, 0xEC, 0xB3, 0x16, 0x88, 0x5B, 0xE2, 0xEC, 0x8B, 0x6B, 0x75,
0x16, 0xBE, 0x6B, 0xF8, 0x2C, 0xF8, 0xC9, 0xD1, 0xF7, 0x55, 0x87, 0x57,
0x5F, 0xDE, 0xF4, 0x7E, 0x72, 0x13, 0x06, 0x2A, 0x21, 0xB7, 0x78, 0x21,
0x05, 0xFD, 0xE2, 0x5F, 0x7B, 0x7C, 0xF0, 0x26, 0x2B, 0x75, 0x7F, 0x68,
0xF9, 0xA6, 0x98, 0xFD, 0x54, 0x0E, 0xCC, 0x22, 0x41, 0x7F, 0x29, 0x81,
0x2F, 0xA3, 0x3C, 0x3D, 0x64, 0xC8, 0x41, 0x02, 0x81, 0x81, 0x00, 0xFA,
0xFA, 0xE4, 0x2E, 0x30, 0xF0, 0x7A, 0x8D, 0x95, 0xB8, 0x39, 0x58, 0x27,
0x0F, 0x89, 0x0C, 0xDF, 0xFE, 0x2F, 0x55, 0x3B, 0x6F, 0xDD, 0x5F, 0x12,
0xB3, 0xD1, 0xCF, 0x5B, 0x8D, 0xB6, 0x10, 0x1C, 0x87, 0x0C, 0x30, 0x89,
0x2D, 0xBB, 0xB8, 0xA1, 0x78, 0x0F, 0x54, 0xA6, 0x36, 0x46, 0x05, 0x8B,
0x5A, 0xFF, 0x48, 0x03, 0x13, 0xAE, 0x95, 0x96, 0x5D, 0x6C, 0xDA, 0x5D,
0xF7, 0xAD, 0x1D, 0x33, 0xED, 0x23, 0xF5, 0x4B, 0x03, 0x78, 0xE7, 0x50,
0xD1, 0x2D, 0x95, 0x22, 0x35, 0x02, 0x5B, 0x4A, 0x4E, 0x73, 0xC9, 0xB7,
0x05, 0xC4, 0x21, 0x86, 0x1F, 0x1E, 0x40, 0x83, 0xBC, 0x8A, 0x3A, 0x95,
0x24, 0x62, 0xF4, 0x58, 0x38, 0x64, 0x4A, 0x89, 0x8A, 0x27, 0x59, 0x12,
0x9D, 0x21, 0xC3, 0xA6, 0x42, 0x1E, 0x2A, 0x3F, 0xD8, 0x65, 0x1F, 0x6E,
0x3E, 0x4D, 0x5C, 0xCC, 0xEA, 0x8E, 0x15, 0x02, 0x81, 0x81, 0x00, 0xDC,
0xAC, 0x9B, 0x00, 0xDB, 0xF9, 0xB2, 0xBF, 0xC4, 0x5E, 0xB6, 0xB7, 0x63,
0xEB, 0x13, 0x4B, 0xE2, 0xA6, 0xC8, 0x72, 0x90, 0xD8, 0xC2, 0x33, 0x33,
0xF0, 0x66, 0x75, 0xBD, 0x50, 0x7C, 0xA4, 0x8F, 0x82, 0xFB, 0xFF, 0x44,
0x3B, 0xE7, 0x15, 0x3A, 0x0C, 0x7A, 0xF8, 0x92, 0x86, 0x4A, 0x79, 0x32,
0x08, 0x82, 0x1D, 0x6A, 0xBA, 0xAD, 0x8A, 0xB3, 0x3D, 0x7F, 0xA5, 0xB4,
0x6F, 0x67, 0x86, 0x7E, 0xB2, 0x9C, 0x2A, 0xF6, 0x7C, 0x49, 0x21, 0xC5,
0x3F, 0x00, 0x3F, 0x9B, 0xF7, 0x0F, 0x6C, 0x35, 0x80, 0x75, 0x73, 0xC0,
0xF8, 0x3E, 0x30, 0x5F, 0x74, 0x2F, 0x15, 0x41, 0xEA, 0x0F, 0xCE, 0x0E,
0x18, 0x17, 0x68, 0xBA, 0xC4, 0x29, 0xF2, 0xE2, 0x2C, 0x1D, 0x55, 0x83,
0xB6, 0x64, 0x2E, 0x03, 0x12, 0xA4, 0x0D, 0xBF, 0x4F, 0x2E, 0xBE, 0x7C,
0x41, 0xD9, 0xCD, 0xD0, 0x52, 0x91, 0xD5, 0x02, 0x81, 0x81, 0x00, 0xD4,
0x55, 0xEB, 0x32, 0xC1, 0x28, 0xD3, 0x26, 0x72, 0x22, 0xB8, 0x31, 0x42,
0x6A, 0xBC, 0x52, 0x6E, 0x37, 0x48, 0xA8, 0x5D, 0x6E, 0xD8, 0xE5, 0x14,
0x97, 0x99, 0xCC, 0x4A, 0xF2, 0xEB, 0xB3, 0x59, 0xCF, 0x4F, 0x9A, 0xC8,
0x94, 0x2E, 0x9B, 0x97, 0xD0, 0x51, 0x78, 0x16, 0x5F, 0x18, 0x82, 0x9C,
0x51, 0xD2, 0x64, 0x84, 0x65, 0xE4, 0x70, 0x9E, 0x14, 0x50, 0x81, 0xB6,
0xBA, 0x52, 0x75, 0xC0, 0x76, 0xC2, 0xD3, 0x46, 0x31, 0x9B, 0xDA, 0x67,
0xDF, 0x71, 0x27, 0x19, 0x17, 0xAB, 0xF4, 0xBC, 0x3A, 0xFF, 0x6F, 0x0B,
0x2F, 0x0F, 0xAE, 0x25, 0x20, 0xB2, 0xA1, 0x76, 0x52, 0xCE, 0xC7, 0x9D,
0x62, 0x79, 0x6D, 0xAC, 0x2D, 0x99, 0x7C, 0x0E, 0x3D, 0x19, 0xE9, 0x1B,
0xFC, 0x60, 0x92, 0x7C, 0x58, 0xB7, 0xD8, 0x9A, 0xC7, 0x63, 0x56, 0x62,
0x18, 0xC7, 0xAE, 0xD9, 0x97, 0x1F, 0xB9, 0x02, 0x81, 0x81, 0x00, 0x91,
0x40, 0xC4, 0x1E, 0x82, 0xAD, 0x0F, 0x6D, 0x8E, 0xD2, 0x51, 0x2E, 0xD1,
0x84, 0x30, 0x85, 0x68, 0xC1, 0x23, 0x7B, 0xD5, 0xBF, 0xF7, 0xC4, 0x40,
0x51, 0xE2, 0xFF, 0x69, 0x07, 0x8B, 0xA3, 0xBE, 0x1B, 0x17, 0xC8, 0x64,
0x9F, 0x91, 0x71, 0xB5, 0x6D, 0xF5, 0x9B, 0x9C, 0xC6, 0xEC, 0x4A, 0x6E,
0x16, 0x8F, 0x9E, 0xD1, 0x5B, 0xE3, 0x53, 0x42, 0xBC, 0x1E, 0x43, 0x72,
0x4B, 0x4A, 0x37, 0x8B, 0x3A, 0x01, 0xF5, 0x7D, 0x9D, 0x3D, 0x7E, 0x0F,
0x19, 0x73, 0x0E, 0x6B, 0x98, 0xE9, 0xFB, 0xEE, 0x13, 0x8A, 0x3C, 0x11,
0x2E, 0xD5, 0xB0, 0x7D, 0x84, 0x3A, 0x61, 0xA1, 0xAB, 0x71, 0x8F, 0xCE,
0x53, 0x29, 0x45, 0x74, 0x7A, 0x1E, 0xAA, 0x93, 0x19, 0x3A, 0x8D, 0xC9,
0x4E, 0xCB, 0x0E, 0x46, 0x53, 0x84, 0xCC, 0xCF, 0xBA, 0x4D, 0x28, 0x71,
0x1D, 0xDF, 0x41, 0xCB, 0xF8, 0x2D, 0xA9, 0x02, 0x81, 0x80, 0x04, 0x8B,
0x4A, 0xEA, 0xBD, 0x39, 0x0B, 0x96, 0xC5, 0x1D, 0xA4, 0x47, 0xFD, 0x46,
0xD2, 0x8A, 0xEA, 0x2A, 0xF3, 0x9D, 0x3A, 0x7E, 0x16, 0x74, 0xFC, 0x13,
0xDE, 0x4D, 0xA9, 0x85, 0x42, 0x33, 0x02, 0x92, 0x0B, 0xB6, 0xDB, 0x7E,
0xEA, 0x85, 0xC2, 0x94, 0x43, 0x52, 0x37, 0x5A, 0x77, 0xAB, 0xCB, 0x61,
0x88, 0xDE, 0xF8, 0xFA, 0xDB, 0xE8, 0x0B, 0x95, 0x7D, 0x39, 0x19, 0xA2,
0x89, 0xB9, 0x32, 0xB2, 0x50, 0x38, 0xF7, 0x88, 0x69, 0xFD, 0xA4, 0x63,
0x1F, 0x9B, 0x03, 0xD8, 0xA6, 0x7A, 0x05, 0x76, 0x02, 0x28, 0x93, 0x82,
0x73, 0x7F, 0x14, 0xCC, 0xBE, 0x29, 0x10, 0xAD, 0x8A, 0x2E, 0xAC, 0xED,
0x11, 0xA7, 0x72, 0x7C, 0x60, 0x78, 0x72, 0xFB, 0x78, 0x20, 0x18, 0xC9,
0x7E, 0x63, 0xAD, 0x55, 0x54, 0x51, 0xDB, 0x9F, 0x7B, 0xD4, 0x8F, 0xB2,
0xDE, 0x3B, 0xF1, 0x70, 0x23, 0xE5,
};
/*
* DER-encoded PKCS#8 format EC key. Generated using:
*
* openssl ecparam -name prime256v1 -genkey -noout | openssl pkcs8 -topk8 -nocrypt -outform der | recode ../x1
*/
static uint8_t TEST_EC_KEY_1[] = {
0x30, 0x81, 0x87, 0x02, 0x01, 0x00, 0x30, 0x13, 0x06, 0x07, 0x2A, 0x86,
0x48, 0xCE, 0x3D, 0x02, 0x01, 0x06, 0x08, 0x2A, 0x86, 0x48, 0xCE, 0x3D,
0x03, 0x01, 0x07, 0x04, 0x6D, 0x30, 0x6B, 0x02, 0x01, 0x01, 0x04, 0x20,
0x25, 0xAC, 0x77, 0x2B, 0x04, 0x33, 0xC8, 0x16, 0x59, 0xA3, 0xC7, 0xE7,
0x11, 0x42, 0xD0, 0x11, 0x71, 0x30, 0x7B, 0xB8, 0xD2, 0x67, 0xFF, 0x9C,
0x5F, 0x50, 0x2E, 0xAB, 0x67, 0xD4, 0x17, 0x51, 0xA1, 0x44, 0x03, 0x42,
0x00, 0x04, 0xCF, 0xCE, 0xB8, 0x7F, 0x88, 0x36, 0xC4, 0xF8, 0x51, 0x29,
0xE2, 0xA7, 0x21, 0xC3, 0x3B, 0xFF, 0x88, 0xE3, 0x87, 0x98, 0xD1, 0xA6,
0x4B, 0xB3, 0x4B, 0xD5, 0x44, 0xF8, 0xE0, 0x43, 0x6B, 0x50, 0x74, 0xFB,
0xB0, 0xAD, 0x41, 0x1C, 0x11, 0x9D, 0xC6, 0x1E, 0x83, 0x8C, 0x49, 0xCA,
0xBE, 0xC6, 0xCE, 0xB6, 0xC9, 0xA1, 0xBF, 0x69, 0xA9, 0xA0, 0xA3, 0x80,
0x14, 0x39, 0x57, 0x94, 0xDA, 0x5D
};
/*
* Generated using keys on the keyboard and lack of imagination.
*/
static unsigned char BOGUS_KEY_1[] = { 0xFF, 0xFF, 0xFF, 0xFF };
class KeymasterBaseTest : public ::testing::Test {
public:
static void SetUpTestCase() {
const hw_module_t* mod;
ASSERT_EQ(0, hw_get_module_by_class(KEYSTORE_HARDWARE_MODULE_ID, NULL, &mod))
<< "Should be able to find a keymaster hardware module";
std::cout << "Using keymaster module: " << mod->name << std::endl;
ASSERT_EQ(0, keymaster0_open(mod, &sDevice))
<< "Should be able to open the keymaster device";
ASSERT_EQ(KEYMASTER_MODULE_API_VERSION_0_2, mod->module_api_version)
<< "Keymaster should implement API version 2";
ASSERT_TRUE(sDevice->generate_keypair != NULL)
<< "Should implement generate_keypair";
ASSERT_TRUE(sDevice->import_keypair != NULL)
<< "Should implement import_keypair";
ASSERT_TRUE(sDevice->get_keypair_public != NULL)
<< "Should implement get_keypair_public";
ASSERT_TRUE(sDevice->sign_data != NULL)
<< "Should implement sign_data";
ASSERT_TRUE(sDevice->verify_data != NULL)
<< "Should implement verify_data";
}
static void TearDownTestCase() {
ASSERT_EQ(0, keymaster0_close(sDevice));
}
protected:
static keymaster0_device_t* sDevice;
};
keymaster0_device_t* KeymasterBaseTest::sDevice = NULL;
class KeymasterTest : public KeymasterBaseTest {
};
class KeymasterAllTypesTest : public KeymasterBaseTest,
public ::testing::WithParamInterface<keymaster_keypair_t> {
};
class KeymasterGenerateRSATest : public KeymasterBaseTest,
public ::testing::WithParamInterface<uint32_t> {
};
class KeymasterGenerateDSATest : public KeymasterBaseTest,
public ::testing::WithParamInterface<uint32_t> {
};
class KeymasterGenerateECTest : public KeymasterBaseTest,
public ::testing::WithParamInterface<uint32_t> {
};
TEST_P(KeymasterGenerateRSATest, GenerateKeyPair_RSA_Success) {
keymaster_keypair_t key_type = TYPE_RSA;
keymaster_rsa_keygen_params_t params = {
.modulus_size = GetParam(),
.public_exponent = RSA_F4,
};
uint8_t* key_blob;
size_t key_blob_length;
ASSERT_EQ(0,
sDevice->generate_keypair(sDevice, key_type, ¶ms, &key_blob, &key_blob_length))
<< "Should generate an RSA key with " << GetParam() << " bit modulus size";
UniqueKey key(&sDevice, key_blob, key_blob_length);
uint8_t* x509_data = NULL;
size_t x509_data_length;
ASSERT_EQ(0,
sDevice->get_keypair_public(sDevice, key_blob, key_blob_length,
&x509_data, &x509_data_length))
<< "Should be able to retrieve RSA public key successfully";
UniqueBlob x509_blob(x509_data, x509_data_length);
ASSERT_FALSE(x509_blob.get() == NULL)
<< "X509 data should be allocated";
const unsigned char *tmp = static_cast<const unsigned char*>(x509_blob.get());
Unique_EVP_PKEY actual(d2i_PUBKEY((EVP_PKEY**) NULL, &tmp,
static_cast<long>(x509_blob.length())));
ASSERT_EQ(EVP_PKEY_RSA, EVP_PKEY_type(actual.get()->type))
<< "Generated key type should be of type RSA";
Unique_RSA rsa(EVP_PKEY_get1_RSA(actual.get()));
ASSERT_FALSE(rsa.get() == NULL)
<< "Should be able to extract RSA key from EVP_PKEY";
ASSERT_EQ(static_cast<unsigned long>(RSA_F4), BN_get_word(rsa.get()->e))
<< "Exponent should be RSA_F4";
ASSERT_EQ((GetParam() + 7) / 8, static_cast<uint32_t>(RSA_size(rsa.get())))
<< "Modulus size should be the specified parameter";
}
INSTANTIATE_TEST_CASE_P(RSA,
KeymasterGenerateRSATest,
::testing::Values(512U, 1024U, 2048U, 3072U, 4096U));
TEST_P(KeymasterGenerateECTest, GenerateKeyPair_EC_Success) {
keymaster_keypair_t key_type = TYPE_EC;
keymaster_ec_keygen_params_t params = {
.field_size = GetParam(),
};
uint8_t* key_blob;
size_t key_blob_length;
ASSERT_EQ(0,
sDevice->generate_keypair(sDevice, key_type, ¶ms, &key_blob, &key_blob_length))
<< "Should generate an EC key with " << GetParam() << " field size";
UniqueKey key(&sDevice, key_blob, key_blob_length);
uint8_t* x509_data = NULL;
size_t x509_data_length;
ASSERT_EQ(0,
sDevice->get_keypair_public(sDevice, key_blob, key_blob_length,
&x509_data, &x509_data_length))
<< "Should be able to retrieve EC public key successfully";
UniqueBlob x509_blob(x509_data, x509_data_length);
ASSERT_FALSE(x509_blob.get() == NULL)
<< "X509 data should be allocated";
const unsigned char *tmp = static_cast<const unsigned char*>(x509_blob.get());
Unique_EVP_PKEY actual(d2i_PUBKEY((EVP_PKEY**) NULL, &tmp,
static_cast<long>(x509_blob.length())));
ASSERT_EQ(EVP_PKEY_EC, EVP_PKEY_type(actual.get()->type))
<< "Generated key type should be of type EC";
Unique_EC_KEY ecKey(EVP_PKEY_get1_EC_KEY(actual.get()));
ASSERT_FALSE(ecKey.get() == NULL)
<< "Should be able to extract EC key from EVP_PKEY";
ASSERT_FALSE(EC_KEY_get0_group(ecKey.get()) == NULL)
<< "EC key should have a EC_GROUP";
ASSERT_TRUE(EC_KEY_check_key(ecKey.get()))
<< "EC key should check correctly";
}
INSTANTIATE_TEST_CASE_P(EC,
KeymasterGenerateECTest,
::testing::Values(192U, 224U, 256U, 384U, 521U));
TEST_P(KeymasterAllTypesTest, GenerateKeyPair_NullParams_Failure) {
keymaster_keypair_t key_type = GetParam();
uint8_t* key_blob;
size_t key_blob_length;
ASSERT_EQ(-1,
sDevice->generate_keypair(sDevice, key_type, NULL, &key_blob, &key_blob_length))
<< "Should not be able to generate a key with null params";
}
INSTANTIATE_TEST_CASE_P(Types,
KeymasterAllTypesTest,
::testing::Values(TYPE_RSA, TYPE_DSA, TYPE_EC));
TEST_F(KeymasterTest, GenerateKeyPair_UnknownType_Failure) {
keymaster_keypair_t key_type = static_cast<keymaster_keypair_t>(0xFFFF);
uint8_t* key_blob;
size_t key_blob_length;
ASSERT_EQ(-1,
sDevice->generate_keypair(sDevice, key_type, NULL, &key_blob, &key_blob_length))
<< "Should not generate an unknown key type";
}
TEST_F(KeymasterTest, ImportKeyPair_RSA_Success) {
uint8_t* key_blob;
size_t key_blob_length;
ASSERT_EQ(0,
sDevice->import_keypair(sDevice, TEST_RSA_KEY_1, sizeof(TEST_RSA_KEY_1),
&key_blob, &key_blob_length))
<< "Should successfully import an RSA key";
UniqueKey key(&sDevice, key_blob, key_blob_length);
uint8_t* x509_data;
size_t x509_data_length;
ASSERT_EQ(0,
sDevice->get_keypair_public(sDevice, key_blob, key_blob_length,
&x509_data, &x509_data_length))
<< "Should be able to retrieve RSA public key successfully";
UniqueBlob x509_blob(x509_data, x509_data_length);
const unsigned char *tmp = static_cast<const unsigned char*>(x509_blob.get());
Unique_EVP_PKEY actual(d2i_PUBKEY((EVP_PKEY**) NULL, &tmp,
static_cast<long>(x509_blob.length())));
ASSERT_EQ(EVP_PKEY_type(actual.get()->type), EVP_PKEY_RSA)
<< "Generated key type should be of type RSA";
const unsigned char *expectedTmp = static_cast<const unsigned char*>(TEST_RSA_KEY_1);
Unique_PKCS8_PRIV_KEY_INFO expectedPkcs8(
d2i_PKCS8_PRIV_KEY_INFO((PKCS8_PRIV_KEY_INFO**) NULL, &expectedTmp,
sizeof(TEST_RSA_KEY_1)));
Unique_EVP_PKEY expected(EVP_PKCS82PKEY(expectedPkcs8.get()));
ASSERT_EQ(1, EVP_PKEY_cmp(expected.get(), actual.get()))
<< "Expected and actual keys should match";
}
TEST_F(KeymasterTest, ImportKeyPair_EC_Success) {
uint8_t* key_blob;
size_t key_blob_length;
ASSERT_EQ(0,
sDevice->import_keypair(sDevice, TEST_EC_KEY_1, sizeof(TEST_EC_KEY_1),
&key_blob, &key_blob_length))
<< "Should successfully import an EC key";
UniqueKey key(&sDevice, key_blob, key_blob_length);
uint8_t* x509_data;
size_t x509_data_length;
ASSERT_EQ(0,
sDevice->get_keypair_public(sDevice, key_blob, key_blob_length,
&x509_data, &x509_data_length))
<< "Should be able to retrieve EC public key successfully";
UniqueBlob x509_blob(x509_data, x509_data_length);
const unsigned char *tmp = static_cast<const unsigned char*>(x509_blob.get());
Unique_EVP_PKEY actual(d2i_PUBKEY((EVP_PKEY**) NULL, &tmp,
static_cast<long>(x509_blob.length())));
ASSERT_EQ(EVP_PKEY_type(actual.get()->type), EVP_PKEY_EC)
<< "Generated key type should be of type EC";
const unsigned char *expectedTmp = static_cast<const unsigned char*>(TEST_EC_KEY_1);
Unique_PKCS8_PRIV_KEY_INFO expectedPkcs8(
d2i_PKCS8_PRIV_KEY_INFO((PKCS8_PRIV_KEY_INFO**) NULL, &expectedTmp,
sizeof(TEST_EC_KEY_1)));
Unique_EVP_PKEY expected(EVP_PKCS82PKEY(expectedPkcs8.get()));
ASSERT_EQ(1, EVP_PKEY_cmp(expected.get(), actual.get()))
<< "Expected and actual keys should match";
}
TEST_F(KeymasterTest, ImportKeyPair_BogusKey_Failure) {
uint8_t* key_blob;
size_t key_blob_length;
ASSERT_EQ(-1,
sDevice->import_keypair(sDevice, BOGUS_KEY_1, sizeof(BOGUS_KEY_1),
&key_blob, &key_blob_length))
<< "Should not import an unknown key type";
}
TEST_F(KeymasterTest, ImportKeyPair_NullKey_Failure) {
uint8_t* key_blob;
size_t key_blob_length;
ASSERT_EQ(-1,
sDevice->import_keypair(sDevice, NULL, 0,
&key_blob, &key_blob_length))
<< "Should not import a null key";
}
TEST_F(KeymasterTest, GetKeypairPublic_RSA_Success) {
uint8_t* key_blob;
size_t key_blob_length;
UniqueReadOnlyBlob testKey(TEST_RSA_KEY_1, sizeof(TEST_RSA_KEY_1));
ASSERT_TRUE(testKey.get() != NULL);
ASSERT_EQ(0,
sDevice->import_keypair(sDevice, testKey.get(), testKey.length(),
&key_blob, &key_blob_length))
<< "Should successfully import an RSA key";
UniqueKey key(&sDevice, key_blob, key_blob_length);
uint8_t* x509_data;
size_t x509_data_length;
ASSERT_EQ(0,
sDevice->get_keypair_public(sDevice, key_blob, key_blob_length,
&x509_data, &x509_data_length))
<< "Should be able to retrieve RSA public key successfully";
UniqueBlob x509_blob(x509_data, x509_data_length);
}
TEST_F(KeymasterTest, GetKeypairPublic_EC_Success) {
uint8_t* key_blob;
size_t key_blob_length;
UniqueReadOnlyBlob testKey(TEST_EC_KEY_1, sizeof(TEST_EC_KEY_1));
ASSERT_TRUE(testKey.get() != NULL);
ASSERT_EQ(0,
sDevice->import_keypair(sDevice, testKey.get(), testKey.length(),
&key_blob, &key_blob_length))
<< "Should successfully import an EC key";
UniqueKey key(&sDevice, key_blob, key_blob_length);
uint8_t* x509_data;
size_t x509_data_length;
ASSERT_EQ(0,
sDevice->get_keypair_public(sDevice, key_blob, key_blob_length,
&x509_data, &x509_data_length))
<< "Should be able to retrieve EC public key successfully";
UniqueBlob x509_blob(x509_data, x509_data_length);
}
TEST_F(KeymasterTest, GetKeypairPublic_NullKey_Failure) {
uint8_t* x509_data = NULL;
size_t x509_data_length;
ASSERT_EQ(-1,
sDevice->get_keypair_public(sDevice, NULL, 0,
&x509_data, &x509_data_length))
<< "Should not be able to retrieve public key from null key";
UniqueBlob x509_blob(x509_data, x509_data_length);
}
TEST_F(KeymasterTest, GetKeypairPublic_RSA_NullDestination_Failure) {
uint8_t* key_blob;
size_t key_blob_length;
UniqueReadOnlyBlob testKey(TEST_RSA_KEY_1, sizeof(TEST_RSA_KEY_1));
ASSERT_TRUE(testKey.get() != NULL);
ASSERT_EQ(0,
sDevice->import_keypair(sDevice, testKey.get(), testKey.length(),
&key_blob, &key_blob_length))
<< "Should successfully import an RSA key";
UniqueKey key(&sDevice, key_blob, key_blob_length);
ASSERT_EQ(-1,
sDevice->get_keypair_public(sDevice, key.get(), key.length(),
NULL, NULL))
<< "Should not be able to succeed with NULL destination blob";
}
TEST_F(KeymasterTest, GetKeypairPublic_EC_NullDestination_Failure) {
uint8_t* key_blob;
size_t key_blob_length;
UniqueReadOnlyBlob testKey(TEST_EC_KEY_1, sizeof(TEST_EC_KEY_1));
ASSERT_TRUE(testKey.get() != NULL);
ASSERT_EQ(0,
sDevice->import_keypair(sDevice, testKey.get(), testKey.length(),
&key_blob, &key_blob_length))
<< "Should successfully import an RSA key";
UniqueKey key(&sDevice, key_blob, key_blob_length);
ASSERT_EQ(-1,
sDevice->get_keypair_public(sDevice, key.get(), key.length(),
NULL, NULL))
<< "Should not be able to succeed with NULL destination blob";
}
TEST_F(KeymasterTest, DeleteKeyPair_RSA_Success) {
uint8_t* key_blob;
size_t key_blob_length;
UniqueReadOnlyBlob testKey(TEST_RSA_KEY_1, sizeof(TEST_RSA_KEY_1));
ASSERT_TRUE(testKey.get() != NULL);
ASSERT_EQ(0,
sDevice->import_keypair(sDevice, testKey.get(), testKey.length(),
&key_blob, &key_blob_length))
<< "Should successfully import an RSA key";
UniqueKey key(&sDevice, key_blob, key_blob_length);
}
TEST_F(KeymasterTest, DeleteKeyPair_RSA_DoubleDelete_Failure) {
uint8_t* key_blob;
size_t key_blob_length;
UniqueReadOnlyBlob testKey(TEST_RSA_KEY_1, sizeof(TEST_RSA_KEY_1));
ASSERT_TRUE(testKey.get() != NULL);
/*
* This is only run if the module indicates it implements key deletion
* by implementing delete_keypair.
*/
if (sDevice->delete_keypair != NULL) {
ASSERT_EQ(0,
sDevice->import_keypair(sDevice, testKey.get(), testKey.length(),
&key_blob, &key_blob_length))
<< "Should successfully import an RSA key";
UniqueBlob blob(key_blob, key_blob_length);
ASSERT_EQ(0, sDevice->delete_keypair(sDevice, key_blob, key_blob_length))
<< "Should delete key after import";
ASSERT_EQ(-1, sDevice->delete_keypair(sDevice, key_blob, key_blob_length))
<< "Should not be able to delete key twice";
}
}
TEST_F(KeymasterTest, DeleteKeyPair_RSA_NullKey_Failure) {
/*
* This is only run if the module indicates it implements key deletion
* by implementing delete_keypair.
*/
if (sDevice->delete_keypair != NULL) {
ASSERT_EQ(-1, sDevice->delete_keypair(sDevice, NULL, 0))
<< "Should not be able to delete null key";
}
}
/*
* DER-encoded PKCS#8 format RSA key. Generated using:
*
* openssl genrsa 512 | openssl pkcs8 -topk8 -nocrypt -outform der | recode ../x1
*/
static uint8_t TEST_SIGN_RSA_KEY_1[] = {
0x30, 0x82, 0x01, 0x56, 0x02, 0x01, 0x00, 0x30, 0x0D, 0x06, 0x09, 0x2A,
0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01, 0x05, 0x00, 0x04, 0x82,
0x01, 0x40, 0x30, 0x82, 0x01, 0x3C, 0x02, 0x01, 0x00, 0x02, 0x41, 0x00,
0xBD, 0xC0, 0x7F, 0xEF, 0x75, 0x1D, 0x63, 0x2A, 0xD0, 0x9A, 0x26, 0xE5,
0x5B, 0xB9, 0x84, 0x7C, 0xE5, 0xC7, 0xE7, 0xDE, 0xFE, 0xB6, 0x54, 0xD9,
0xF0, 0x9B, 0xC2, 0xCF, 0x36, 0xDA, 0xE5, 0x4D, 0xC5, 0xD9, 0x25, 0x78,
0xBD, 0x55, 0x05, 0xBD, 0x86, 0xFB, 0x37, 0x15, 0x33, 0x42, 0x52, 0xED,
0xE5, 0xCD, 0xCB, 0xB7, 0xA2, 0x51, 0xFA, 0x36, 0xE9, 0x9C, 0x2E, 0x5D,
0xE3, 0xA5, 0x1F, 0x01, 0x02, 0x03, 0x01, 0x00, 0x01, 0x02, 0x41, 0x00,
0x96, 0x71, 0xDE, 0xBD, 0x83, 0x94, 0x96, 0x40, 0xA6, 0xFD, 0xE1, 0xA2,
0xED, 0xD3, 0xAC, 0x28, 0xBE, 0xA2, 0x7D, 0xC3, 0xFF, 0x1D, 0x9F, 0x2E,
0xE0, 0xA7, 0x0E, 0x90, 0xEE, 0x44, 0x25, 0x92, 0xE3, 0x54, 0xDD, 0x55,
0xA3, 0xEF, 0x42, 0xF5, 0x52, 0x55, 0x41, 0x47, 0x5E, 0x00, 0xFB, 0x8B,
0x47, 0x5E, 0x45, 0x49, 0xEA, 0x3D, 0x2C, 0xFD, 0x9F, 0xEC, 0xC8, 0x4E,
0x4E, 0x86, 0x90, 0x31, 0x02, 0x21, 0x00, 0xE6, 0xA5, 0x55, 0xB3, 0x64,
0xAB, 0x90, 0x5E, 0xA2, 0xF5, 0x6B, 0x21, 0x4B, 0x15, 0xD6, 0x4A, 0xB6,
0x60, 0x24, 0x95, 0x65, 0xA2, 0xBE, 0xBA, 0x2A, 0x73, 0xFB, 0xFF, 0x2C,
0x61, 0x88, 0x9D, 0x02, 0x21, 0x00, 0xD2, 0x9C, 0x5B, 0xFE, 0x82, 0xA5,
0xFC, 0x52, 0x6A, 0x29, 0x38, 0xDB, 0x22, 0x3B, 0xEB, 0x74, 0x3B, 0xCA,
0xB4, 0xDD, 0x1D, 0xE4, 0x48, 0x60, 0x70, 0x19, 0x9B, 0x81, 0xC1, 0x83,
0x28, 0xB5, 0x02, 0x21, 0x00, 0x89, 0x2D, 0xFE, 0xF9, 0xF2, 0xBF, 0x43,
0xDF, 0xB5, 0xA6, 0xA8, 0x30, 0x26, 0x1B, 0x77, 0xD7, 0xF9, 0xFE, 0xD6,
0xE3, 0x70, 0x8E, 0xCA, 0x47, 0xA9, 0xA6, 0x50, 0x54, 0x25, 0xCE, 0x60,
0xD5, 0x02, 0x21, 0x00, 0xBE, 0x5A, 0xF8, 0x82, 0xE6, 0xCE, 0xE3, 0x6A,
0x11, 0xED, 0xC4, 0x27, 0xBB, 0x9F, 0x70, 0xC6, 0x93, 0xAC, 0x39, 0x20,
0x89, 0x7D, 0xE5, 0x34, 0xD4, 0xDD, 0x30, 0x42, 0x6D, 0x07, 0x00, 0xE9,
0x02, 0x20, 0x05, 0x91, 0xEF, 0x12, 0xD2, 0xD3, 0x6A, 0xD2, 0x96, 0x6B,
0x10, 0x62, 0xF9, 0xBA, 0xA4, 0x91, 0x48, 0x84, 0x40, 0x61, 0x67, 0x80,
0x68, 0x68, 0xC8, 0x60, 0xB3, 0x66, 0xC8, 0xF9, 0x08, 0x9A,
};
/*
* DER-encoded PKCS#8 format EC key. Generated using:
*
* openssl ecparam -name prime256v1 -genkey -noout | openssl pkcs8 -topk8 -nocrypt -outform der | recode ../x1
*/
static uint8_t TEST_SIGN_EC_KEY_1[] = {
0x30, 0x81, 0x87, 0x02, 0x01, 0x00, 0x30, 0x13, 0x06, 0x07, 0x2A, 0x86,
0x48, 0xCE, 0x3D, 0x02, 0x01, 0x06, 0x08, 0x2A, 0x86, 0x48, 0xCE, 0x3D,
0x03, 0x01, 0x07, 0x04, 0x6D, 0x30, 0x6B, 0x02, 0x01, 0x01, 0x04, 0x20,
0x9E, 0x66, 0x11, 0x6A, 0x89, 0xF5, 0x78, 0x57, 0xF3, 0x35, 0xA2, 0x46,
0x09, 0x06, 0x4B, 0x4D, 0x81, 0xEC, 0xD3, 0x9B, 0x0A, 0xC4, 0x68, 0x06,
0xB8, 0x42, 0x24, 0x5E, 0x74, 0x2C, 0x62, 0x79, 0xA1, 0x44, 0x03, 0x42,
0x00, 0x04, 0x35, 0xB5, 0x9A, 0x5C, 0xE5, 0x52, 0x35, 0xF2, 0x10, 0x6C,
0xD9, 0x98, 0x67, 0xED, 0x5E, 0xCB, 0x6B, 0xB8, 0x96, 0x5E, 0x54, 0x7C,
0x34, 0x2A, 0xA3, 0x3B, 0xF3, 0xD1, 0x39, 0x48, 0x36, 0x7A, 0xEA, 0xD8,
0xCA, 0xDD, 0x40, 0x8F, 0xE9, 0xE0, 0x95, 0x2E, 0x3F, 0x95, 0x0F, 0x14,
0xD6, 0x14, 0x78, 0xB5, 0xAD, 0x17, 0xD2, 0x5A, 0x41, 0x96, 0x99, 0x20,
0xC7, 0x5B, 0x0F, 0x60, 0xFD, 0xBA
};
/*
* PKCS#1 v1.5 padded raw "Hello, world" Can be generated be generated by verifying
* the signature below in no padding mode:
*
* openssl rsautl -keyform der -inkey rsa.der -raw -verify -in test.sig
*/
static uint8_t TEST_SIGN_DATA_1[] = {
0x00, 0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0x00, 0x48, 0x65, 0x6C, 0x6C, 0x6F, 0x2C, 0x20, 0x77,
0x6F, 0x72, 0x6C, 0x64,
};
/*
* Signature of TEST_SIGN_DATA_1 using TEST_SIGN_RSA_KEY_1. Generated using:
*
* echo 'Hello, world' | openssl rsautl -keyform der -inkey rsa.der -sign | recode ../x1
*/
static uint8_t TEST_SIGN_RSA_SIGNATURE_1[] = {
0xA4, 0xBB, 0x76, 0x87, 0xFE, 0x61, 0x0C, 0x9D, 0xD6, 0xFF, 0x4B, 0x76,
0x96, 0x08, 0x36, 0x23, 0x11, 0xC6, 0x44, 0x3F, 0x88, 0x77, 0x97, 0xB2,
0xA8, 0x3B, 0xFB, 0x9C, 0x3C, 0xD3, 0x20, 0x65, 0xFD, 0x26, 0x3B, 0x2A,
0xB8, 0xB6, 0xD4, 0xDC, 0x91, 0xF7, 0xE2, 0xDE, 0x4D, 0xF7, 0x0E, 0xB9,
0x72, 0xA7, 0x29, 0x72, 0x82, 0x12, 0x7C, 0x53, 0x23, 0x21, 0xC4, 0xFF,
0x79, 0xE4, 0x91, 0x40,
};
/*
* Identical to TEST_SIGN_RSA_SIGNATURE_1 except the last octet is '1' instead of '0'
* This should fail any test.
*/
static uint8_t TEST_SIGN_SIGNATURE_BOGUS_1[] = {
0xA4, 0xBB, 0x76, 0x87, 0xFE, 0x61, 0x0C, 0x9D, 0xD6, 0xFF, 0x4B, 0x76,
0x96, 0x08, 0x36, 0x23, 0x11, 0xC6, 0x44, 0x3F, 0x88, 0x77, 0x97, 0xB2,
0xA8, 0x3B, 0xFB, 0x9C, 0x3C, 0xD3, 0x20, 0x65, 0xFD, 0x26, 0x3B, 0x2A,
0xB8, 0xB6, 0xD4, 0xDC, 0x91, 0xF7, 0xE2, 0xDE, 0x4D, 0xF7, 0x0E, 0xB9,
0x72, 0xA7, 0x29, 0x72, 0x82, 0x12, 0x7C, 0x53, 0x23, 0x21, 0xC4, 0xFF,
0x79, 0xE4, 0x91, 0x41,
};
TEST_F(KeymasterTest, SignData_RSA_Raw_Success) {
uint8_t* key_blob;
size_t key_blob_length;
UniqueReadOnlyBlob testKey(TEST_SIGN_RSA_KEY_1, sizeof(TEST_SIGN_RSA_KEY_1));
ASSERT_TRUE(testKey.get() != NULL);
ASSERT_EQ(0,
sDevice->import_keypair(sDevice, testKey.get(), testKey.length(),
&key_blob, &key_blob_length))
<< "Should successfully import an RSA key";
UniqueKey key(&sDevice, key_blob, key_blob_length);
keymaster_rsa_sign_params_t params = {
.digest_type = DIGEST_NONE,
.padding_type = PADDING_NONE,
};
uint8_t* sig;
size_t sig_length;
UniqueReadOnlyBlob testData(TEST_SIGN_DATA_1, sizeof(TEST_SIGN_DATA_1));
ASSERT_TRUE(testData.get() != NULL);
ASSERT_EQ(0,
sDevice->sign_data(sDevice, ¶ms, key_blob, key_blob_length,
testData.get(), testData.length(),
&sig, &sig_length))
<< "Should sign data successfully";
UniqueBlob sig_blob(sig, sig_length);
UniqueBlob expected_sig(TEST_SIGN_RSA_SIGNATURE_1, sizeof(TEST_SIGN_RSA_SIGNATURE_1));
ASSERT_EQ(expected_sig, sig_blob)
<< "Generated signature should match expected signature";
// The expected signature is actually stack data, so don't let it try to free.
uint8_t* unused __attribute__((unused)) = expected_sig.release();
}
TEST_F(KeymasterTest, SignData_EC_Success) {
uint8_t* key_blob;
size_t key_blob_length;
UniqueReadOnlyBlob testKey(TEST_SIGN_EC_KEY_1, sizeof(TEST_SIGN_EC_KEY_1));
ASSERT_TRUE(testKey.get() != NULL);
ASSERT_EQ(0,
sDevice->import_keypair(sDevice, testKey.get(), testKey.length(),
&key_blob, &key_blob_length))
<< "Should successfully import an EC key";
UniqueKey key(&sDevice, key_blob, key_blob_length);
keymaster_ec_sign_params_t params = {
.digest_type = DIGEST_NONE,
};
uint8_t* sig;
size_t sig_length;
UniqueReadOnlyBlob testData(TEST_SIGN_DATA_1, sizeof(TEST_SIGN_DATA_1));
ASSERT_TRUE(testData.get() != NULL);
ASSERT_EQ(0,
sDevice->sign_data(sDevice, ¶ms, key_blob, key_blob_length,
testData.get(), testData.length(),
&sig, &sig_length))
<< "Should sign data successfully";
UniqueBlob sig_blob(sig, sig_length);
uint8_t* x509_data;
size_t x509_data_length;
ASSERT_EQ(0,
sDevice->get_keypair_public(sDevice, key_blob, key_blob_length,
&x509_data, &x509_data_length))
<< "Should be able to retrieve RSA public key successfully";
UniqueBlob x509_blob(x509_data, x509_data_length);
const unsigned char *tmp = static_cast<const unsigned char*>(x509_blob.get());
Unique_EVP_PKEY expected(d2i_PUBKEY((EVP_PKEY**) NULL, &tmp,
static_cast<long>(x509_blob.length())));
Unique_EC_KEY ecKey(EVP_PKEY_get1_EC_KEY(expected.get()));
ASSERT_EQ(1, ECDSA_verify(0, testData.get(), testData.length(), sig_blob.get(), sig_blob.length(), ecKey.get()))
<< "Signature should verify";
}
TEST_F(KeymasterTest, SignData_RSA_Raw_InvalidSizeInput_Failure) {
uint8_t* key_blob;
size_t key_blob_length;
UniqueReadOnlyBlob testKey(TEST_SIGN_RSA_KEY_1, sizeof(TEST_SIGN_RSA_KEY_1));
ASSERT_TRUE(testKey.get() != NULL);
ASSERT_EQ(0,
sDevice->import_keypair(sDevice, testKey.get(), testKey.length(),
&key_blob, &key_blob_length))
<< "Should successfully import an RSA key";
UniqueKey key(&sDevice, key_blob, key_blob_length);
keymaster_rsa_sign_params_t params = {
.digest_type = DIGEST_NONE,
.padding_type = PADDING_NONE,
};
uint8_t* sig;
size_t sig_length;
UniqueReadOnlyBlob testData(TEST_RSA_KEY_1, sizeof(TEST_RSA_KEY_1));
ASSERT_TRUE(testData.get() != NULL);
ASSERT_EQ(-1,
sDevice->sign_data(sDevice, ¶ms, key_blob, key_blob_length,
testData.get(), testData.length(),
&sig, &sig_length))
<< "Should not be able to do raw signature on incorrect size data";
}
TEST_F(KeymasterTest, SignData_RSA_Raw_NullKey_Failure) {
keymaster_rsa_sign_params_t params = {
.digest_type = DIGEST_NONE,
.padding_type = PADDING_NONE,
};
uint8_t* sig;
size_t sig_length;
UniqueReadOnlyBlob testData(TEST_RSA_KEY_1, sizeof(TEST_RSA_KEY_1));
ASSERT_TRUE(testData.get() != NULL);
ASSERT_EQ(-1,
sDevice->sign_data(sDevice, ¶ms, NULL, 0,
testData.get(), testData.length(),
&sig, &sig_length))
<< "Should not be able to do raw signature on incorrect size data";
}
TEST_F(KeymasterTest, SignData_RSA_Raw_NullInput_Failure) {
uint8_t* key_blob;
size_t key_blob_length;
UniqueReadOnlyBlob testKey(TEST_SIGN_RSA_KEY_1, sizeof(TEST_SIGN_RSA_KEY_1));
ASSERT_TRUE(testKey.get() != NULL);
ASSERT_EQ(0,
sDevice->import_keypair(sDevice, testKey.get(), testKey.length(),
&key_blob, &key_blob_length))
<< "Should successfully import an RSA key";
UniqueKey key(&sDevice, key_blob, key_blob_length);
keymaster_rsa_sign_params_t params = {
.digest_type = DIGEST_NONE,
.padding_type = PADDING_NONE,
};
uint8_t* sig;
size_t sig_length;
ASSERT_EQ(-1,
sDevice->sign_data(sDevice, ¶ms, key_blob, key_blob_length,
NULL, 0,
&sig, &sig_length))
<< "Should error when input data is null";
}
TEST_F(KeymasterTest, SignData_RSA_Raw_NullOutput_Failure) {
uint8_t* key_blob;
size_t key_blob_length;
UniqueReadOnlyBlob testKey(TEST_SIGN_RSA_KEY_1, sizeof(TEST_SIGN_RSA_KEY_1));
ASSERT_TRUE(testKey.get() != NULL);
ASSERT_EQ(0,
sDevice->import_keypair(sDevice, testKey.get(), testKey.length(),
&key_blob, &key_blob_length))
<< "Should successfully import an RSA key";
UniqueKey key(&sDevice, key_blob, key_blob_length);
keymaster_rsa_sign_params_t params = {
.digest_type = DIGEST_NONE,
.padding_type = PADDING_NONE,
};
UniqueReadOnlyBlob testData(TEST_RSA_KEY_1, sizeof(TEST_RSA_KEY_1));
ASSERT_TRUE(testData.get() != NULL);
ASSERT_EQ(-1,
sDevice->sign_data(sDevice, ¶ms, key_blob, key_blob_length,
testData.get(), testData.length(),
NULL, NULL))
<< "Should error when output is null";
}
TEST_F(KeymasterTest, VerifyData_RSA_Raw_Success) {
uint8_t* key_blob;
size_t key_blob_length;
UniqueReadOnlyBlob testKey(TEST_SIGN_RSA_KEY_1, sizeof(TEST_SIGN_RSA_KEY_1));
ASSERT_TRUE(testKey.get() != NULL);
ASSERT_EQ(0,
sDevice->import_keypair(sDevice, testKey.get(), testKey.length(),
&key_blob, &key_blob_length))
<< "Should successfully import an RSA key";
UniqueKey key(&sDevice, key_blob, key_blob_length);
keymaster_rsa_sign_params_t params = {
.digest_type = DIGEST_NONE,
.padding_type = PADDING_NONE,
};
UniqueReadOnlyBlob testData(TEST_SIGN_DATA_1, sizeof(TEST_SIGN_DATA_1));
ASSERT_TRUE(testData.get() != NULL);
UniqueReadOnlyBlob testSig(TEST_SIGN_RSA_SIGNATURE_1, sizeof(TEST_SIGN_RSA_SIGNATURE_1));
ASSERT_TRUE(testSig.get() != NULL);
ASSERT_EQ(0,
sDevice->verify_data(sDevice, ¶ms, key_blob, key_blob_length,
testData.get(), testData.length(),
testSig.get(), testSig.length()))
<< "Should verify data successfully";
}
TEST_F(KeymasterTest, VerifyData_EC_Raw_Success) {
uint8_t* key_blob;
size_t key_blob_length;
UniqueReadOnlyBlob testKey(TEST_SIGN_EC_KEY_1, sizeof(TEST_SIGN_EC_KEY_1));
ASSERT_TRUE(testKey.get() != NULL);
ASSERT_EQ(0,
sDevice->import_keypair(sDevice, testKey.get(), testKey.length(),
&key_blob, &key_blob_length))
<< "Should successfully import an RSA key";
UniqueKey key(&sDevice, key_blob, key_blob_length);
keymaster_ec_sign_params_t params = {
.digest_type = DIGEST_NONE,
};
uint8_t* sig;
size_t sig_length;
UniqueReadOnlyBlob testData(TEST_SIGN_DATA_1, sizeof(TEST_SIGN_DATA_1));
ASSERT_TRUE(testData.get() != NULL);
ASSERT_EQ(0,
sDevice->sign_data(sDevice, ¶ms, key_blob, key_blob_length,
testData.get(), testData.length(),
&sig, &sig_length))
<< "Should sign data successfully";
UniqueBlob sig_blob(sig, sig_length);
ASSERT_EQ(0,
sDevice->verify_data(sDevice, ¶ms, key_blob, key_blob_length,
testData.get(), testData.length(),
sig_blob.get(), sig_blob.length()))
<< "Should verify data successfully";
}
TEST_F(KeymasterTest, VerifyData_RSA_Raw_BadSignature_Failure) {
uint8_t* key_blob;
size_t key_blob_length;
UniqueReadOnlyBlob testKey(TEST_SIGN_RSA_KEY_1, sizeof(TEST_SIGN_RSA_KEY_1));
ASSERT_TRUE(testKey.get() != NULL);
ASSERT_EQ(0,
sDevice->import_keypair(sDevice, testKey.get(), testKey.length(),
&key_blob, &key_blob_length))
<< "Should successfully import an RSA key";
UniqueKey key(&sDevice, key_blob, key_blob_length);
keymaster_rsa_sign_params_t params = {
.digest_type = DIGEST_NONE,
.padding_type = PADDING_NONE,
};
ASSERT_EQ(-1,
sDevice->verify_data(sDevice, ¶ms, key_blob, key_blob_length,
TEST_SIGN_DATA_1, sizeof(TEST_SIGN_DATA_1),
TEST_SIGN_SIGNATURE_BOGUS_1, sizeof(TEST_SIGN_SIGNATURE_BOGUS_1)))
<< "Should sign data successfully";
}
TEST_F(KeymasterTest, VerifyData_EC_Raw_BadSignature_Failure) {
uint8_t* key_blob;
size_t key_blob_length;
UniqueReadOnlyBlob testKey(TEST_SIGN_EC_KEY_1, sizeof(TEST_SIGN_EC_KEY_1));
ASSERT_TRUE(testKey.get() != NULL);
ASSERT_EQ(0,
sDevice->import_keypair(sDevice, testKey.get(), testKey.length(),
&key_blob, &key_blob_length))
<< "Should successfully import an RSA key";
UniqueKey key(&sDevice, key_blob, key_blob_length);
keymaster_ec_sign_params_t params = {
.digest_type = DIGEST_NONE,
};
ASSERT_EQ(-1,
sDevice->verify_data(sDevice, ¶ms, key_blob, key_blob_length,
TEST_SIGN_DATA_1, sizeof(TEST_SIGN_DATA_1),
TEST_SIGN_SIGNATURE_BOGUS_1, sizeof(TEST_SIGN_SIGNATURE_BOGUS_1)))
<< "Should sign data successfully";
}
TEST_F(KeymasterTest, VerifyData_RSA_Raw_NullKey_Failure) {
keymaster_rsa_sign_params_t params = {
.digest_type = DIGEST_NONE,
.padding_type = PADDING_NONE,
};
UniqueReadOnlyBlob testData(TEST_SIGN_DATA_1, sizeof(TEST_SIGN_DATA_1));
ASSERT_TRUE(testData.get() != NULL);
UniqueReadOnlyBlob testSig(TEST_SIGN_SIGNATURE_BOGUS_1, sizeof(TEST_SIGN_SIGNATURE_BOGUS_1));
ASSERT_TRUE(testSig.get() != NULL);
ASSERT_EQ(-1,
sDevice->verify_data(sDevice, ¶ms, NULL, 0,
testData.get(), testData.length(),
testSig.get(), testSig.length()))
<< "Should fail when key is null";
}
TEST_F(KeymasterTest, VerifyData_RSA_NullInput_Failure) {
uint8_t* key_blob;
size_t key_blob_length;
ASSERT_EQ(0,
sDevice->import_keypair(sDevice, TEST_SIGN_RSA_KEY_1, sizeof(TEST_SIGN_RSA_KEY_1),
&key_blob, &key_blob_length))
<< "Should successfully import an RSA key";
UniqueKey key(&sDevice, key_blob, key_blob_length);
keymaster_rsa_sign_params_t params = {
.digest_type = DIGEST_NONE,
.padding_type = PADDING_NONE,
};
UniqueReadOnlyBlob testSig(TEST_SIGN_RSA_SIGNATURE_1, sizeof(TEST_SIGN_RSA_SIGNATURE_1));
ASSERT_TRUE(testSig.get() != NULL);
ASSERT_EQ(-1,
sDevice->verify_data(sDevice, ¶ms, key_blob, key_blob_length,
NULL, 0,
testSig.get(), testSig.length()))
<< "Should fail on null input";
}
TEST_F(KeymasterTest, VerifyData_RSA_NullSignature_Failure) {
uint8_t* key_blob;
size_t key_blob_length;
UniqueReadOnlyBlob testKey(TEST_SIGN_RSA_KEY_1, sizeof(TEST_SIGN_RSA_KEY_1));
ASSERT_TRUE(testKey.get() != NULL);
ASSERT_EQ(0,
sDevice->import_keypair(sDevice, testKey.get(), testKey.length(),
&key_blob, &key_blob_length))
<< "Should successfully import an RSA key";
UniqueKey key(&sDevice, key_blob, key_blob_length);
keymaster_rsa_sign_params_t params = {
.digest_type = DIGEST_NONE,
.padding_type = PADDING_NONE,
};
UniqueReadOnlyBlob testData(TEST_SIGN_DATA_1, sizeof(TEST_SIGN_DATA_1));
ASSERT_TRUE(testData.get() != NULL);
ASSERT_EQ(-1,
sDevice->verify_data(sDevice, ¶ms, key.get(), key.length(),
testData.get(), testData.length(),
NULL, 0))
<< "Should fail on null signature";
}
TEST_F(KeymasterTest, EraseAll_Success) {
uint8_t *key1_blob, *key2_blob;
size_t key1_blob_length, key2_blob_length;
// Only test this if the device says it supports delete_all
if (sDevice->delete_all == NULL) {
return;
}
UniqueReadOnlyBlob testKey(TEST_SIGN_RSA_KEY_1, sizeof(TEST_SIGN_RSA_KEY_1));
ASSERT_TRUE(testKey.get() != NULL);
ASSERT_EQ(0,
sDevice->import_keypair(sDevice, testKey.get(), testKey.length(),
&key1_blob, &key1_blob_length))
<< "Should successfully import an RSA key";
UniqueKey key1(&sDevice, key1_blob, key1_blob_length);
UniqueReadOnlyBlob testKey2(TEST_SIGN_RSA_KEY_1, sizeof(TEST_SIGN_RSA_KEY_1));
ASSERT_TRUE(testKey2.get() != NULL);
ASSERT_EQ(0,
sDevice->import_keypair(sDevice, testKey2.get(), testKey2.length(),
&key2_blob, &key2_blob_length))
<< "Should successfully import an RSA key";
UniqueKey key2(&sDevice, key2_blob, key2_blob_length);
ASSERT_EQ(0, sDevice->delete_all(sDevice))
<< "Should erase all keys";
key1.reset();
uint8_t* x509_data;
size_t x509_data_length;
ASSERT_EQ(-1,
sDevice->get_keypair_public(sDevice, key1_blob, key1_blob_length,
&x509_data, &x509_data_length))
<< "Should be able to retrieve RSA public key 1 successfully";
ASSERT_EQ(-1,
sDevice->get_keypair_public(sDevice, key2_blob, key2_blob_length,
&x509_data, &x509_data_length))
<< "Should be able to retrieve RSA public key 2 successfully";
}
}