/*
* Copyright (C) 2013-2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "a2dp_offload"
/*#define LOG_NDEBUG 0*/
#define LOG_NDDEBUG 0
#include <dlfcn.h>
#include <errno.h>
#include <pthread.h>
#include <stdlib.h>
#include <cutils/log.h>
#include <cutils/str_parms.h>
#include <cutils/properties.h>
#include <hardware/audio.h>
#include "audio_hw.h"
#include "audio_extn.h"
#include "platform_api.h"
#ifdef A2DP_OFFLOAD_ENABLED
#define BT_IPC_LIB_NAME "libbthost_if.so"
// Media format definitions
#define ENC_MEDIA_FMT_AAC 0x00010DA6
#define ENC_MEDIA_FMT_APTX 0x000131ff
#define ENC_MEDIA_FMT_APTX_HD 0x00013200
#define ENC_MEDIA_FMT_LDAC 0x00013224
#define ENC_MEDIA_FMT_SBC 0x00010BF2
#define ENC_MEDIA_FMT_NONE 0
#define MEDIA_FMT_SBC_ALLOCATION_METHOD_LOUDNESS 0
#define MEDIA_FMT_SBC_ALLOCATION_METHOD_SNR 1
#define MEDIA_FMT_AAC_AOT_LC 2
#define MEDIA_FMT_AAC_AOT_SBR 5
#define MEDIA_FMT_AAC_AOT_PS 29
#define MEDIA_FMT_SBC_CHANNEL_MODE_MONO 1
#define MEDIA_FMT_SBC_CHANNEL_MODE_STEREO 2
#define MEDIA_FMT_SBC_CHANNEL_MODE_DUAL_MONO 8
#define MEDIA_FMT_SBC_CHANNEL_MODE_JOINT_STEREO 9
// PCM channels
#define PCM_CHANNEL_L 1
#define PCM_CHANNEL_R 2
#define PCM_CHANNEL_C 3
// Mixer controls sent to ALSA
#define MIXER_ENC_CONFIG_BLOCK "SLIM_7_RX Encoder Config"
#define MIXER_DEC_CONFIG_BLOCK "SLIM_7_TX Decoder Config"
#define MIXER_ENC_BIT_FORMAT "AFE Input Bit Format"
#define MIXER_SCRAMBLER_MODE "AFE Scrambler Mode"
#define MIXER_SAMPLE_RATE_RX "BT SampleRate RX"
#define MIXER_SAMPLE_RATE_TX "BT SampleRate TX"
#define MIXER_AFE_IN_CHANNELS "AFE Input Channels"
#define MIXER_ABR_TX_FEEDBACK_PATH "A2DP_SLIM7_UL_HL Switch"
#define MIXER_SET_FEEDBACK_CHANNEL "BT set feedback channel"
// Encoder format strings
#define ENC_FMT_AAC "aac"
#define ENC_FMT_APTX "aptx"
#define ENC_FMT_APTXHD "aptxhd"
#define ENC_FMT_LDAC "ldac"
#define ENC_FMT_SBC "sbc"
// System properties used for A2DP Offload
#define SYSPROP_A2DP_OFFLOAD_SUPPORTED "ro.bluetooth.a2dp_offload.supported"
#define SYSPROP_A2DP_OFFLOAD_DISABLED "persist.bluetooth.a2dp_offload.disabled"
#define SYSPROP_A2DP_CODEC_LATENCIES "vendor.audio.a2dp.codec.latency"
// Default encoder bit width
#define DEFAULT_ENCODER_BIT_FORMAT 16
// Default encoder latency
#define DEFAULT_ENCODER_LATENCY 200
// Encoder latency offset for codecs supported
#define ENCODER_LATENCY_AAC 70
#define ENCODER_LATENCY_APTX 40
#define ENCODER_LATENCY_APTX_HD 20
#define ENCODER_LATENCY_LDAC 40
#define ENCODER_LATENCY_SBC 10
#define ENCODER_LATENCY_PCM 50
// Default A2DP sink latency offset
#define DEFAULT_SINK_LATENCY_AAC 180
#define DEFAULT_SINK_LATENCY_APTX 160
#define DEFAULT_SINK_LATENCY_APTX_HD 180
#define DEFAULT_SINK_LATENCY_LDAC 180
#define DEFAULT_SINK_LATENCY_SBC 140
#define DEFAULT_SINK_LATENCY_PCM 140
// Slimbus Tx sample rate for ABR feedback channel
#define ABR_TX_SAMPLE_RATE "KHZ_8"
// Purpose ID for Inter Module Communication (IMC) in AFE
#define IMC_PURPOSE_ID_BT_INFO 0x000132E2
// Maximum quality levels for ABR
#define MAX_ABR_QUALITY_LEVELS 5
// Instance identifier for A2DP
#define MAX_INSTANCE_ID (UINT32_MAX / 2)
/*
* Below enum values are extended from audio-base.h to
* keep encoder codec type local to bthost_ipc
* and audio_hal as these are intended only for handshake
* between IPC lib and Audio HAL.
*/
typedef enum {
ENC_CODEC_TYPE_INVALID = AUDIO_FORMAT_INVALID, // 0xFFFFFFFFUL
ENC_CODEC_TYPE_AAC = AUDIO_FORMAT_AAC, // 0x04000000UL
ENC_CODEC_TYPE_SBC = AUDIO_FORMAT_SBC, // 0x1F000000UL
ENC_CODEC_TYPE_APTX = AUDIO_FORMAT_APTX, // 0x20000000UL
ENC_CODEC_TYPE_APTX_HD = AUDIO_FORMAT_APTX_HD, // 0x21000000UL
ENC_CODEC_TYPE_LDAC = AUDIO_FORMAT_LDAC, // 0x23000000UL
ENC_CODEC_TYPE_PCM = AUDIO_FORMAT_PCM_16_BIT, // 0x1u
} enc_codec_t;
typedef int (*audio_stream_open_t)(void);
typedef int (*audio_stream_close_t)(void);
typedef int (*audio_stream_start_t)(void);
typedef int (*audio_stream_stop_t)(void);
typedef int (*audio_stream_suspend_t)(void);
typedef void (*audio_handoff_triggered_t)(void);
typedef void (*clear_a2dp_suspend_flag_t)(void);
typedef void * (*audio_get_codec_config_t)(uint8_t *multicast_status, uint8_t *num_dev,
enc_codec_t *codec_type);
typedef int (*audio_check_a2dp_ready_t)(void);
typedef int (*audio_is_scrambling_enabled_t)(void);
enum A2DP_STATE {
A2DP_STATE_CONNECTED,
A2DP_STATE_STARTED,
A2DP_STATE_STOPPED,
A2DP_STATE_DISCONNECTED,
};
typedef enum {
IMC_TRANSMIT,
IMC_RECEIVE,
} imc_direction_t;
typedef enum {
IMC_DISABLE,
IMC_ENABLE,
} imc_status_t;
/* PCM config for ABR Feedback hostless front end */
static struct pcm_config pcm_config_abr = {
.channels = 1,
.rate = 8000,
.period_size = 240,
.period_count = 2,
.format = PCM_FORMAT_S16_LE,
.start_threshold = 0,
.stop_threshold = INT_MAX,
.avail_min = 0,
};
/* Adaptive bitrate config for A2DP codecs */
struct a2dp_abr_config {
/* Flag to denote whether Adaptive bitrate is enabled for codec */
bool is_abr_enabled;
/* Flag to denote whether front end has been opened for ABR */
bool abr_started;
/* ABR Tx path pcm handle */
struct pcm *abr_tx_handle;
/* ABR Inter Module Communication (IMC) instance ID */
uint32_t imc_instance;
};
static uint32_t instance_id = MAX_INSTANCE_ID;
/* Data structure used to:
* - Update the A2DP state machine
* - Communicate with the libbthost_if.so IPC library
* - Store DSP encoder configuration information
*/
struct a2dp_data {
/* Audio device handle */
struct audio_device *adev;
/* Bluetooth IPC library handle */
void *bt_lib_handle;
/* Open A2DP audio stream. Initialize audio datapath */
audio_stream_open_t audio_stream_open;
/* Close A2DP audio stream */
audio_stream_close_t audio_stream_close;
/* Start A2DP audio stream. Start audio datapath */
audio_stream_start_t audio_stream_start;
/* Stop A2DP audio stream */
audio_stream_stop_t audio_stream_stop;
/* Suspend A2DP audio stream */
audio_stream_suspend_t audio_stream_suspend;
/* Notify Bluetooth IPC library of handoff being triggered */
audio_handoff_triggered_t audio_handoff_triggered;
/* Clear A2DP suspend flag in Bluetooth IPC library */
clear_a2dp_suspend_flag_t clear_a2dp_suspend_flag;
/* Get codec configuration from Bluetooth stack via
* Bluetooth IPC library */
audio_get_codec_config_t audio_get_codec_config;
/* Check if A2DP is ready */
audio_check_a2dp_ready_t audio_check_a2dp_ready;
/* Check if scrambling is enabled on BTSoC */
audio_is_scrambling_enabled_t audio_is_scrambling_enabled;
/* Internal A2DP state identifier */
enum A2DP_STATE bt_state;
/* A2DP codec type configured */
enc_codec_t bt_encoder_format;
/* Sampling rate configured with A2DP encoder on DSP */
uint32_t enc_sampling_rate;
/* Channel configuration of A2DP on DSP */
uint32_t enc_channels;
/* Flag to denote whether A2DP audio datapath has started */
bool a2dp_started;
/* Flag to denote whether A2DP audio datapath is suspended */
bool a2dp_suspended;
/* Number of active sessions on A2DP output */
int a2dp_total_active_session_request;
/* Flag to denote whether A2DP offload is enabled */
bool is_a2dp_offload_enabled;
/* Flag to denote whether codec reconfiguration/soft handoff is in progress */
bool is_handoff_in_progress;
/* Flag to denote whether APTX Dual Mono encoder is supported */
bool is_aptx_dual_mono_supported;
/* Adaptive bitrate config for A2DP codecs */
struct a2dp_abr_config abr_config;
};
struct a2dp_data a2dp;
/* Adaptive bitrate (ABR) is supported by certain Bluetooth codecs.
* Structures sent to configure DSP for ABR are defined below.
* This data helps DSP configure feedback path (BTSoC to LPASS)
* for link quality levels and mapping quality levels to codec
* specific bitrate.
*/
/* Key value pair for link quality level to bitrate mapping. */
struct bit_rate_level_map_t {
uint32_t link_quality_level;
uint32_t bitrate;
};
/* Link quality level to bitrate mapping info sent to DSP. */
struct quality_level_to_bitrate_info {
/* Number of quality levels being mapped.
* This will be equal to the size of mapping table.
*/
uint32_t num_levels;
/* Quality level to bitrate mapping table */
struct bit_rate_level_map_t bit_rate_level_map[MAX_ABR_QUALITY_LEVELS];
};
/* Structure to set up Inter Module Communication (IMC) between
* AFE Decoder and Encoder.
*/
struct imc_dec_enc_info {
/* Decoder to encoder communication direction.
* Transmit = 0 / Receive = 1
*/
uint32_t direction;
/* Enable / disable IMC between decoder and encoder */
uint32_t enable;
/* Purpose of IMC being set up between decoder and encoder.
* IMC_PURPOSE_ID_BT_INFO defined for link quality feedback
* is the default value to be sent as purpose.
*/
uint32_t purpose;
/* Unique communication instance ID.
* purpose and comm_instance together form the actual key
* used in IMC registration, which must be the same for
* encoder and decoder for which IMC is being set up.
*/
uint32_t comm_instance;
};
/* Structure used for ABR config of AFE encoder and decoder. */
struct abr_enc_cfg_t {
/* Link quality level to bitrate mapping info sent to DSP. */
struct quality_level_to_bitrate_info mapping_info;
/* Information to set up IMC between decoder and encoder */
struct imc_dec_enc_info imc_info;
} __attribute__ ((packed));
/* Structure to send configuration for decoder introduced
* on AFE Tx path for ABR link quality feedback to BT encoder.
*/
struct abr_dec_cfg_t {
/* Decoder media format */
uint32_t dec_format;
/* Information to set up IMC between decoder and encoder */
struct imc_dec_enc_info imc_info;
} __attribute__ ((packed));
/* START of DSP configurable structures
* These values should match with DSP interface defintion
*/
/* AAC encoder configuration structure. */
typedef struct aac_enc_cfg_t aac_enc_cfg_t;
struct aac_enc_cfg_t {
/* Encoder media format for AAC */
uint32_t enc_format;
/* Encoding rate in bits per second */
uint32_t bit_rate;
/* supported enc_mode are AAC_LC, AAC_SBR, AAC_PS */
uint32_t enc_mode;
/* supported aac_fmt_flag are ADTS/RAW */
uint16_t aac_fmt_flag;
/* supported channel_cfg are Native mode, Mono , Stereo */
uint16_t channel_cfg;
/* Number of samples per second */
uint32_t sample_rate;
} __attribute__ ((packed));
/* SBC encoder configuration structure. */
typedef struct sbc_enc_cfg_t sbc_enc_cfg_t;
struct sbc_enc_cfg_t {
/* Encoder media format for SBC */
uint32_t enc_format;
/* supported num_subbands are 4/8 */
uint32_t num_subbands;
/* supported blk_len are 4, 8, 12, 16 */
uint32_t blk_len;
/* supported channel_mode are MONO, STEREO, DUAL_MONO, JOINT_STEREO */
uint32_t channel_mode;
/* supported alloc_method are LOUNDNESS/SNR */
uint32_t alloc_method;
/* supported bit_rate for mono channel is max 320kbps
* supported bit rate for stereo channel is max 512 kbps */
uint32_t bit_rate;
/* Number of samples per second */
uint32_t sample_rate;
} __attribute__ ((packed));
struct custom_enc_cfg_t {
/* Custom encoder media format */
uint32_t enc_format;
/* Number of samples per second */
uint32_t sample_rate;
/* supported num_channels are Mono/Stereo */
uint16_t num_channels;
/* Reserved for future enhancement */
uint16_t reserved;
/* supported channel_mapping for mono is CHANNEL_C
* supported channel mapping for stereo is CHANNEL_L and CHANNEL_R */
uint8_t channel_mapping[8];
/* Reserved for future enhancement */
uint32_t custom_size;
} __attribute__ ((packed));
struct aptx_v2_enc_cfg_ext_t {
/* sync_mode introduced with APTX V2 libraries
* sync mode: 0x0 = stereo sync mode
* 0x01 = dual mono sync mode
* 0x02 = dual mono with no sync on either L or R codewords
*/
uint32_t sync_mode;
} __attribute__ ((packed));
/* APTX struct for combining custom enc and V2 members */
struct aptx_enc_cfg_t {
struct custom_enc_cfg_t custom_cfg;
struct aptx_v2_enc_cfg_ext_t aptx_v2_cfg;
} __attribute__ ((packed));
struct ldac_specific_enc_cfg_t {
/*
* This is used to calculate the encoder output
* bytes per frame (i.e. bytes per packet).
* Bit rate also configures the EQMID.
* The min bit rate 303000 bps is calculated for
* 44.1 kHz and 88.2 KHz sampling frequencies with
* Mobile use Quality.
* The max bit rate of 990000 bps is calculated for
* 96kHz and 48 KHz with High Quality
* @Range(in bits per second)
* 303000 for Mobile use Quality
* 606000 for standard Quality
* 909000 for High Quality
*/
uint32_t bit_rate;
/*
* The channel setting information for LDAC specification
* of Bluetooth A2DP which is determined by SRC and SNK
* devices in Bluetooth transmission.
* @Range:
* 0 for native mode
* 4 for mono
* 2 for dual channel
* 1 for stereo
*/
uint16_t channel_mode;
/*
* Maximum Transmission Unit (MTU).
* The minimum MTU that a L2CAP implementation for LDAC shall
* support is 679 bytes, because LDAC is optimized with 2-DH5
* packet as its target.
* @Range : 679
* @Default: 679 for LDACBT_MTU_2DH5
*/
uint16_t mtu;
} __attribute__ ((packed));
/* LDAC struct for combining custom enc and standard members */
struct ldac_enc_cfg_t {
struct custom_enc_cfg_t custom_cfg;
struct ldac_specific_enc_cfg_t ldac_cfg;
struct abr_enc_cfg_t abr_cfg;
} __attribute__ ((packed));
/* Information about Bluetooth SBC encoder configuration
* This data is used between audio HAL module and
* Bluetooth IPC library to configure DSP encoder
*/
typedef struct {
uint32_t subband; /* 4, 8 */
uint32_t blk_len; /* 4, 8, 12, 16 */
uint16_t sampling_rate; /* 44.1khz, 48khz */
uint8_t channels; /* 0(Mono), 1(Dual_mono), 2(Stereo), 3(JS) */
uint8_t alloc; /* 0(Loudness), 1(SNR) */
uint8_t min_bitpool; /* 2 */
uint8_t max_bitpool; /* 53(44.1khz), 51 (48khz) */
uint32_t bitrate; /* 320kbps to 512kbps */
uint32_t bits_per_sample; /* 16 bit */
} audio_sbc_encoder_config;
/* Information about Bluetooth APTX encoder configuration
* This data is used between audio HAL module and
* Bluetooth IPC library to configure DSP encoder
*/
typedef struct {
uint16_t sampling_rate;
uint8_t channels;
uint32_t bitrate;
uint32_t bits_per_sample;
} audio_aptx_default_config;
typedef struct {
uint16_t sampling_rate;
uint8_t channels;
uint32_t bitrate;
uint32_t sync_mode;
} audio_aptx_dual_mono_config;
typedef union {
audio_aptx_default_config *default_cfg;
audio_aptx_dual_mono_config *dual_mono_cfg;
} audio_aptx_encoder_config;
/* Information about Bluetooth AAC encoder configuration
* This data is used between audio HAL module and
* Bluetooth IPC library to configure DSP encoder
*/
typedef struct {
uint32_t enc_mode; /* LC, SBR, PS */
uint16_t format_flag; /* RAW, ADTS */
uint16_t channels; /* 1-Mono, 2-Stereo */
uint32_t sampling_rate;
uint32_t bitrate;
uint32_t bits_per_sample;
} audio_aac_encoder_config;
/* Information about Bluetooth LDAC encoder configuration
* This data is used between audio HAL module and
* Bluetooth IPC library to configure DSP encoder
*/
typedef struct {
uint32_t sampling_rate; /* 44100, 48000, 88200, 96000 */
uint32_t bit_rate; /* 303000, 606000, 909000 (in bits per second) */
uint16_t channel_mode; /* 0, 4, 2, 1 */
uint16_t mtu;
uint32_t bits_per_sample; /* 16, 24, 32 (bits) */
bool is_abr_enabled;
struct quality_level_to_bitrate_info level_to_bitrate_map;
} audio_ldac_encoder_config;
/*********** END of DSP configurable structures ********************/
static void a2dp_common_init()
{
a2dp.a2dp_started = false;
a2dp.a2dp_total_active_session_request = 0;
a2dp.a2dp_suspended = false;
a2dp.bt_encoder_format = ENC_CODEC_TYPE_INVALID;
a2dp.bt_state = A2DP_STATE_DISCONNECTED;
a2dp.abr_config.is_abr_enabled = false;
a2dp.abr_config.abr_started = false;
a2dp.abr_config.imc_instance = 0;
a2dp.abr_config.abr_tx_handle = NULL;
}
static void update_offload_codec_support()
{
a2dp.is_a2dp_offload_enabled =
property_get_bool(SYSPROP_A2DP_OFFLOAD_SUPPORTED, false) &&
!property_get_bool(SYSPROP_A2DP_OFFLOAD_DISABLED, false);
ALOGD("%s: A2DP offload enabled = %d", __func__,
a2dp.is_a2dp_offload_enabled);
}
static int stop_abr()
{
struct mixer_ctl *ctl_abr_tx_path = NULL;
struct mixer_ctl *ctl_set_bt_feedback_channel = NULL;
/* This function can be used if !abr_started for clean up */
ALOGV("%s: enter", __func__);
// Close hostless front end
if (a2dp.abr_config.abr_tx_handle != NULL) {
pcm_close(a2dp.abr_config.abr_tx_handle);
a2dp.abr_config.abr_tx_handle = NULL;
}
a2dp.abr_config.abr_started = false;
a2dp.abr_config.imc_instance = 0;
// Reset BT driver mixer control for ABR usecase
ctl_set_bt_feedback_channel = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_SET_FEEDBACK_CHANNEL);
if (!ctl_set_bt_feedback_channel) {
ALOGE("%s: ERROR Set usecase mixer control not identifed", __func__);
return -ENOSYS;
}
if (mixer_ctl_set_value(ctl_set_bt_feedback_channel, 0, 0) != 0) {
ALOGE("%s: Failed to set BT usecase", __func__);
return -ENOSYS;
}
// Reset ABR Tx feedback path
ALOGV("%s: Disable ABR Tx feedback path", __func__);
ctl_abr_tx_path = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_ABR_TX_FEEDBACK_PATH);
if (!ctl_abr_tx_path) {
ALOGE("%s: ERROR ABR Tx feedback path mixer control not identifed", __func__);
return -ENOSYS;
}
if (mixer_ctl_set_value(ctl_abr_tx_path, 0, 0) != 0) {
ALOGE("%s: Failed to set ABR Tx feedback path", __func__);
return -ENOSYS;
}
return 0;
}
static int start_abr()
{
struct mixer_ctl *ctl_abr_tx_path = NULL;
struct mixer_ctl *ctl_set_bt_feedback_channel = NULL;
int abr_device_id;
int ret = 0;
if (!a2dp.abr_config.is_abr_enabled) {
ALOGE("%s: Cannot start if ABR is not enabled", __func__);
return -ENOSYS;
}
if (a2dp.abr_config.abr_started) {
ALOGI("%s: ABR has already started", __func__);
return ret;
}
// Enable Slimbus 7 Tx feedback path
ALOGV("%s: Enable ABR Tx feedback path", __func__);
ctl_abr_tx_path = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_ABR_TX_FEEDBACK_PATH);
if (!ctl_abr_tx_path) {
ALOGE("%s: ERROR ABR Tx feedback path mixer control not identifed", __func__);
return -ENOSYS;
}
if (mixer_ctl_set_value(ctl_abr_tx_path, 0, 1) != 0) {
ALOGE("%s: Failed to set ABR Tx feedback path", __func__);
return -ENOSYS;
}
// Notify ABR usecase information to BT driver to distinguish
// between SCO and feedback usecase
ctl_set_bt_feedback_channel = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_SET_FEEDBACK_CHANNEL);
if (!ctl_set_bt_feedback_channel) {
ALOGE("%s: ERROR Set usecase mixer control not identifed", __func__);
return -ENOSYS;
}
if (mixer_ctl_set_value(ctl_set_bt_feedback_channel, 0, 1) != 0) {
ALOGE("%s: Failed to set BT usecase", __func__);
return -ENOSYS;
}
// Open hostless front end and prepare ABR Tx path
abr_device_id = platform_get_pcm_device_id(USECASE_AUDIO_A2DP_ABR_FEEDBACK,
PCM_CAPTURE);
if (!a2dp.abr_config.abr_tx_handle) {
a2dp.abr_config.abr_tx_handle = pcm_open(a2dp.adev->snd_card,
abr_device_id, PCM_IN,
&pcm_config_abr);
if (a2dp.abr_config.abr_tx_handle == NULL ||
!pcm_is_ready(a2dp.abr_config.abr_tx_handle))
goto fail;
}
ret = pcm_start(a2dp.abr_config.abr_tx_handle);
if (ret < 0)
goto fail;
a2dp.abr_config.abr_started = true;
return ret;
fail:
ALOGE("%s: %s", __func__, pcm_get_error(a2dp.abr_config.abr_tx_handle));
stop_abr();
return -ENOSYS;
}
/* API to open Bluetooth IPC library to start IPC communication */
static int open_a2dp_output()
{
int ret = 0;
ALOGD("%s: Open A2DP output start", __func__);
if (a2dp.bt_state != A2DP_STATE_DISCONNECTED) {
ALOGD("%s: Called A2DP open with improper state, Ignoring request state %d",
__func__, a2dp.bt_state);
return -ENOSYS;
}
if (a2dp.bt_lib_handle == NULL) {
ALOGD("%s: Requesting for Bluetooth IPC lib handle", __func__);
a2dp.bt_lib_handle = dlopen(BT_IPC_LIB_NAME, RTLD_NOW);
if (a2dp.bt_lib_handle == NULL) {
ret = -errno;
ALOGE("%s: DLOPEN failed for %s errno %d strerror %s", __func__,
BT_IPC_LIB_NAME, errno, strerror(errno));
a2dp.bt_state = A2DP_STATE_DISCONNECTED;
return ret;
} else {
a2dp.audio_stream_open = (audio_stream_open_t)
dlsym(a2dp.bt_lib_handle, "audio_stream_open");
a2dp.audio_stream_start = (audio_stream_start_t)
dlsym(a2dp.bt_lib_handle, "audio_stream_start");
a2dp.audio_get_codec_config = (audio_get_codec_config_t)
dlsym(a2dp.bt_lib_handle, "audio_get_codec_config");
a2dp.audio_stream_suspend = (audio_stream_suspend_t)
dlsym(a2dp.bt_lib_handle, "audio_stream_suspend");
a2dp.audio_handoff_triggered = (audio_handoff_triggered_t)
dlsym(a2dp.bt_lib_handle, "audio_handoff_triggered");
a2dp.clear_a2dp_suspend_flag = (clear_a2dp_suspend_flag_t)
dlsym(a2dp.bt_lib_handle, "clear_a2dp_suspend_flag");
a2dp.audio_stream_stop = (audio_stream_stop_t)
dlsym(a2dp.bt_lib_handle, "audio_stream_stop");
a2dp.audio_stream_close = (audio_stream_close_t)
dlsym(a2dp.bt_lib_handle, "audio_stream_close");
a2dp.audio_check_a2dp_ready = (audio_check_a2dp_ready_t)
dlsym(a2dp.bt_lib_handle,"audio_check_a2dp_ready");
a2dp.audio_is_scrambling_enabled = (audio_is_scrambling_enabled_t)
dlsym(a2dp.bt_lib_handle,"audio_is_scrambling_enabled");
}
}
if (a2dp.bt_lib_handle && a2dp.audio_stream_open) {
ALOGD("%s: calling Bluetooth stream open", __func__);
ret = a2dp.audio_stream_open();
if (ret != 0) {
ALOGE("%s: Failed to open output stream for A2DP: status %d", __func__, ret);
dlclose(a2dp.bt_lib_handle);
a2dp.bt_lib_handle = NULL;
a2dp.bt_state = A2DP_STATE_DISCONNECTED;
return ret;
}
a2dp.bt_state = A2DP_STATE_CONNECTED;
} else {
ALOGE("%s: A2DP handle is not identified, Ignoring open request", __func__);
a2dp.bt_state = A2DP_STATE_DISCONNECTED;
return -ENOSYS;
}
return ret;
}
static int close_a2dp_output()
{
ALOGV("%s\n",__func__);
if (!(a2dp.bt_lib_handle && a2dp.audio_stream_close)) {
ALOGE("%s: A2DP handle is not identified, Ignoring close request", __func__);
return -ENOSYS;
}
if (a2dp.bt_state != A2DP_STATE_DISCONNECTED) {
ALOGD("%s: calling Bluetooth stream close", __func__);
if (a2dp.audio_stream_close() == false)
ALOGE("%s: failed close A2DP control path from Bluetooth IPC library", __func__);
}
if (a2dp.abr_config.is_abr_enabled && a2dp.abr_config.abr_started)
stop_abr();
a2dp_common_init();
a2dp.enc_sampling_rate = 0;
a2dp.enc_channels = 0;
return 0;
}
static int a2dp_check_and_set_scrambler()
{
bool scrambler_mode = false;
struct mixer_ctl *ctrl_scrambler_mode = NULL;
int ret = 0;
if (a2dp.audio_is_scrambling_enabled && (a2dp.bt_state != A2DP_STATE_DISCONNECTED))
scrambler_mode = a2dp.audio_is_scrambling_enabled();
// Scrambling needs to be enabled in DSP if scrambler mode is set
// disable scrambling not required
if (scrambler_mode) {
// enable scrambler in dsp
ctrl_scrambler_mode = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_SCRAMBLER_MODE);
if (!ctrl_scrambler_mode) {
ALOGE("%s: ERROR scrambler mode mixer control not identifed", __func__);
return -ENOSYS;
} else {
ret = mixer_ctl_set_value(ctrl_scrambler_mode, 0, true);
if (ret != 0) {
ALOGE("%s: Could not set scrambler mode", __func__);
return ret;
}
}
}
return 0;
}
static int a2dp_set_backend_cfg()
{
const char *rate_str = NULL, *in_channels = NULL;
uint32_t sampling_rate_rx = a2dp.enc_sampling_rate;
struct mixer_ctl *ctl_sample_rate = NULL, *ctrl_in_channels = NULL;
// For LDAC encoder open slimbus port at 96Khz for 48Khz input
// and 88.2Khz for 44.1Khz input.
if ((a2dp.bt_encoder_format == ENC_CODEC_TYPE_LDAC) &&
(sampling_rate_rx == 48000 || sampling_rate_rx == 44100 )) {
sampling_rate_rx *= 2;
}
// No need to configure backend for PCM format.
if (a2dp.bt_encoder_format == ENC_CODEC_TYPE_PCM) {
return 0;
}
// Set Rx backend sample rate
switch (sampling_rate_rx) {
case 44100:
rate_str = "KHZ_44P1";
break;
case 88200:
rate_str = "KHZ_88P2";
break;
case 96000:
rate_str = "KHZ_96";
break;
case 48000:
default:
rate_str = "KHZ_48";
break;
}
ALOGV("%s: set backend rx sample rate = %s", __func__, rate_str);
ctl_sample_rate = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_SAMPLE_RATE_RX);
if (!ctl_sample_rate) {
ALOGE("%s: ERROR backend sample rate mixer control not identifed", __func__);
return -ENOSYS;
}
if (mixer_ctl_set_enum_by_string(ctl_sample_rate, rate_str) != 0) {
ALOGE("%s: Failed to set backend sample rate = %s", __func__, rate_str);
return -ENOSYS;
}
// Set Tx backend sample rate
if (a2dp.abr_config.is_abr_enabled)
rate_str = ABR_TX_SAMPLE_RATE;
ALOGV("%s: set backend tx sample rate = %s", __func__, rate_str);
ctl_sample_rate = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_SAMPLE_RATE_TX);
if (!ctl_sample_rate) {
ALOGE("%s: ERROR backend sample rate mixer control not identifed", __func__);
return -ENOSYS;
}
if (mixer_ctl_set_enum_by_string(ctl_sample_rate, rate_str) != 0) {
ALOGE("%s: Failed to set backend sample rate = %s",
__func__, rate_str);
return -ENOSYS;
}
// Configure AFE input channels
switch (a2dp.enc_channels) {
case 1:
in_channels = "One";
break;
case 2:
default:
in_channels = "Two";
break;
}
ALOGV("%s: set AFE input channels = %d", __func__, a2dp.enc_channels);
ctrl_in_channels = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_AFE_IN_CHANNELS);
if (!ctrl_in_channels) {
ALOGE("%s: ERROR AFE input channels mixer control not identifed", __func__);
return -ENOSYS;
}
if (mixer_ctl_set_enum_by_string(ctrl_in_channels, in_channels) != 0) {
ALOGE("%s: Failed to set AFE in channels = %d", __func__, a2dp.enc_channels);
return -ENOSYS;
}
return 0;
}
static int a2dp_set_bit_format(uint32_t enc_bit_format)
{
const char *bit_format = NULL;
struct mixer_ctl *ctrl_bit_format = NULL;
// Configure AFE Input Bit Format
switch (enc_bit_format) {
case 32:
bit_format = "S32_LE";
break;
case 24:
bit_format = "S24_LE";
break;
case 16:
default:
bit_format = "S16_LE";
break;
}
ALOGD("%s: set AFE input bit format = %d", __func__, enc_bit_format);
ctrl_bit_format = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_ENC_BIT_FORMAT);
if (!ctrl_bit_format) {
ALOGE("%s: ERROR AFE input bit format mixer control not identifed", __func__);
return -ENOSYS;
}
if (mixer_ctl_set_enum_by_string(ctrl_bit_format, bit_format) != 0) {
ALOGE("%s: Failed to set AFE input bit format = %d", __func__, enc_bit_format);
return -ENOSYS;
}
return 0;
}
static int a2dp_reset_backend_cfg()
{
const char *rate_str = "KHZ_8", *in_channels = "Zero";
struct mixer_ctl *ctl_sample_rate_rx = NULL, *ctl_sample_rate_tx = NULL;
struct mixer_ctl *ctrl_in_channels = NULL;
// Reset backend sampling rate
ALOGV("%s: reset backend sample rate = %s", __func__, rate_str);
ctl_sample_rate_rx = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_SAMPLE_RATE_RX);
if (!ctl_sample_rate_rx) {
ALOGE("%s: ERROR Rx backend sample rate mixer control not identifed", __func__);
return -ENOSYS;
}
if (mixer_ctl_set_enum_by_string(ctl_sample_rate_rx, rate_str) != 0) {
ALOGE("%s: Failed to reset Rx backend sample rate = %s", __func__, rate_str);
return -ENOSYS;
}
ctl_sample_rate_tx = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_SAMPLE_RATE_TX);
if (!ctl_sample_rate_tx) {
ALOGE("%s: ERROR Tx backend sample rate mixer control not identifed", __func__);
return -ENOSYS;
}
if (mixer_ctl_set_enum_by_string(ctl_sample_rate_tx, rate_str) != 0) {
ALOGE("%s: Failed to reset Tx backend sample rate = %s", __func__, rate_str);
return -ENOSYS;
}
// Reset AFE input channels
ALOGV("%s: reset AFE input channels = %s", __func__, in_channels);
ctrl_in_channels = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_AFE_IN_CHANNELS);
if (!ctrl_in_channels) {
ALOGE("%s: ERROR AFE input channels mixer control not identifed", __func__);
return -ENOSYS;
}
if (mixer_ctl_set_enum_by_string(ctrl_in_channels, in_channels) != 0) {
ALOGE("%s: Failed to reset AFE in channels = %d", __func__, a2dp.enc_channels);
return -ENOSYS;
}
return 0;
}
/* API to configure AFE decoder in DSP */
static bool configure_a2dp_decoder_format(int dec_format)
{
struct mixer_ctl *ctl_dec_data = NULL;
struct abr_dec_cfg_t dec_cfg;
int ret = 0;
if (a2dp.abr_config.is_abr_enabled) {
ctl_dec_data = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_DEC_CONFIG_BLOCK);
if (!ctl_dec_data) {
ALOGE("%s: ERROR A2DP codec config data mixer control not identifed", __func__);
return false;
}
memset(&dec_cfg, 0x0, sizeof(dec_cfg));
dec_cfg.dec_format = dec_format;
dec_cfg.imc_info.direction = IMC_TRANSMIT;
dec_cfg.imc_info.enable = IMC_ENABLE;
dec_cfg.imc_info.purpose = IMC_PURPOSE_ID_BT_INFO;
dec_cfg.imc_info.comm_instance = a2dp.abr_config.imc_instance;
ret = mixer_ctl_set_array(ctl_dec_data, (void *)&dec_cfg,
sizeof(dec_cfg));
if (ret != 0) {
ALOGE("%s: Failed to set decoder config", __func__);
return false;
}
}
return true;
}
/* API to configure SBC DSP encoder */
static bool configure_sbc_enc_format(audio_sbc_encoder_config *sbc_bt_cfg)
{
struct mixer_ctl *ctl_enc_data = NULL, *ctrl_bit_format = NULL;
struct sbc_enc_cfg_t sbc_dsp_cfg;
bool is_configured = false;
int ret = 0;
if (sbc_bt_cfg == NULL) {
ALOGE("%s: Failed to get SBC encoder config from BT", __func__);
return false;
}
ctl_enc_data = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_ENC_CONFIG_BLOCK);
if (!ctl_enc_data) {
ALOGE("%s: ERROR A2DP encoder config data mixer control not identifed", __func__);
is_configured = false;
goto exit;
}
memset(&sbc_dsp_cfg, 0x0, sizeof(sbc_dsp_cfg));
sbc_dsp_cfg.enc_format = ENC_MEDIA_FMT_SBC;
sbc_dsp_cfg.num_subbands = sbc_bt_cfg->subband;
sbc_dsp_cfg.blk_len = sbc_bt_cfg->blk_len;
switch (sbc_bt_cfg->channels) {
case 0:
sbc_dsp_cfg.channel_mode = MEDIA_FMT_SBC_CHANNEL_MODE_MONO;
break;
case 1:
sbc_dsp_cfg.channel_mode = MEDIA_FMT_SBC_CHANNEL_MODE_DUAL_MONO;
break;
case 3:
sbc_dsp_cfg.channel_mode = MEDIA_FMT_SBC_CHANNEL_MODE_JOINT_STEREO;
break;
case 2:
default:
sbc_dsp_cfg.channel_mode = MEDIA_FMT_SBC_CHANNEL_MODE_STEREO;
break;
}
if (sbc_bt_cfg->alloc)
sbc_dsp_cfg.alloc_method = MEDIA_FMT_SBC_ALLOCATION_METHOD_LOUDNESS;
else
sbc_dsp_cfg.alloc_method = MEDIA_FMT_SBC_ALLOCATION_METHOD_SNR;
sbc_dsp_cfg.bit_rate = sbc_bt_cfg->bitrate;
sbc_dsp_cfg.sample_rate = sbc_bt_cfg->sampling_rate;
ret = mixer_ctl_set_array(ctl_enc_data, (void *)&sbc_dsp_cfg,
sizeof(sbc_dsp_cfg));
if (ret != 0) {
ALOGE("%s: failed to set SBC encoder config", __func__);
is_configured = false;
goto exit;
}
ret = a2dp_set_bit_format(sbc_bt_cfg->bits_per_sample);
if (ret != 0) {
is_configured = false;
goto exit;
}
is_configured = true;
a2dp.bt_encoder_format = ENC_CODEC_TYPE_SBC;
a2dp.enc_sampling_rate = sbc_bt_cfg->sampling_rate;
if (sbc_dsp_cfg.channel_mode == MEDIA_FMT_SBC_CHANNEL_MODE_MONO)
a2dp.enc_channels = 1;
else
a2dp.enc_channels = 2;
ALOGV("%s: Successfully updated SBC enc format with sampling rate: %d channel mode:%d",
__func__, sbc_dsp_cfg.sample_rate, sbc_dsp_cfg.channel_mode);
exit:
return is_configured;
}
/* API to configure APTX DSP encoder */
static bool configure_aptx_enc_format(audio_aptx_encoder_config *aptx_bt_cfg)
{
struct mixer_ctl *ctl_enc_data = NULL, *ctrl_bit_format = NULL;
int mixer_size;
bool is_configured = false;
int ret = 0;
struct aptx_enc_cfg_t aptx_dsp_cfg;
mixer_size = sizeof(aptx_dsp_cfg);
if (aptx_bt_cfg == NULL) {
ALOGE("%s: Failed to get APTX encoder config from BT", __func__);
return false;
}
ctl_enc_data = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_ENC_CONFIG_BLOCK);
if (!ctl_enc_data) {
ALOGE("%s: ERROR A2DP encoder config data mixer control not identifed", __func__);
is_configured = false;
goto exit;
}
memset(&aptx_dsp_cfg, 0x0, sizeof(aptx_dsp_cfg));
aptx_dsp_cfg.custom_cfg.enc_format = ENC_MEDIA_FMT_APTX;
if (!a2dp.is_aptx_dual_mono_supported) {
aptx_dsp_cfg.custom_cfg.sample_rate = aptx_bt_cfg->default_cfg->sampling_rate;
aptx_dsp_cfg.custom_cfg.num_channels = aptx_bt_cfg->default_cfg->channels;
} else {
aptx_dsp_cfg.custom_cfg.sample_rate = aptx_bt_cfg->dual_mono_cfg->sampling_rate;
aptx_dsp_cfg.custom_cfg.num_channels = aptx_bt_cfg->dual_mono_cfg->channels;
aptx_dsp_cfg.aptx_v2_cfg.sync_mode = aptx_bt_cfg->dual_mono_cfg->sync_mode;
}
switch (aptx_dsp_cfg.custom_cfg.num_channels) {
case 1:
aptx_dsp_cfg.custom_cfg.channel_mapping[0] = PCM_CHANNEL_C;
break;
case 2:
default:
aptx_dsp_cfg.custom_cfg.channel_mapping[0] = PCM_CHANNEL_L;
aptx_dsp_cfg.custom_cfg.channel_mapping[1] = PCM_CHANNEL_R;
break;
}
ret = mixer_ctl_set_array(ctl_enc_data, (void *)&aptx_dsp_cfg,
mixer_size);
if (ret != 0) {
ALOGE("%s: Failed to set APTX encoder config", __func__);
is_configured = false;
goto exit;
}
ret = a2dp_set_bit_format(aptx_bt_cfg->default_cfg->bits_per_sample);
if (ret != 0) {
is_configured = false;
goto exit;
}
is_configured = true;
a2dp.bt_encoder_format = ENC_CODEC_TYPE_APTX;
a2dp.enc_channels = aptx_dsp_cfg.custom_cfg.num_channels;
if (!a2dp.is_aptx_dual_mono_supported) {
a2dp.enc_sampling_rate = aptx_bt_cfg->default_cfg->sampling_rate;
ALOGV("%s: Successfully updated APTX enc format with sampling rate: %d \
channels:%d", __func__, aptx_dsp_cfg.custom_cfg.sample_rate,
aptx_dsp_cfg.custom_cfg.num_channels);
} else {
a2dp.enc_sampling_rate = aptx_bt_cfg->dual_mono_cfg->sampling_rate;
ALOGV("%s: Successfully updated APTX dual mono enc format with \
sampling rate: %d channels:%d sync mode %d", __func__,
aptx_dsp_cfg.custom_cfg.sample_rate,
aptx_dsp_cfg.custom_cfg.num_channels,
aptx_dsp_cfg.aptx_v2_cfg.sync_mode);
}
exit:
return is_configured;
}
/* API to configure APTX HD DSP encoder
*/
static bool configure_aptx_hd_enc_format(audio_aptx_default_config *aptx_bt_cfg)
{
struct mixer_ctl *ctl_enc_data = NULL, *ctrl_bit_format = NULL;
struct custom_enc_cfg_t aptx_dsp_cfg;
bool is_configured = false;
int ret = 0;
if (aptx_bt_cfg == NULL) {
ALOGE("%s: Failed to get APTX HD encoder config from BT", __func__);
return false;
}
ctl_enc_data = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_ENC_CONFIG_BLOCK);
if (!ctl_enc_data) {
ALOGE("%s: ERROR A2DP encoder config data mixer control not identifed", __func__);
is_configured = false;
goto exit;
}
memset(&aptx_dsp_cfg, 0x0, sizeof(aptx_dsp_cfg));
aptx_dsp_cfg.enc_format = ENC_MEDIA_FMT_APTX_HD;
aptx_dsp_cfg.sample_rate = aptx_bt_cfg->sampling_rate;
aptx_dsp_cfg.num_channels = aptx_bt_cfg->channels;
switch (aptx_dsp_cfg.num_channels) {
case 1:
aptx_dsp_cfg.channel_mapping[0] = PCM_CHANNEL_C;
break;
case 2:
default:
aptx_dsp_cfg.channel_mapping[0] = PCM_CHANNEL_L;
aptx_dsp_cfg.channel_mapping[1] = PCM_CHANNEL_R;
break;
}
ret = mixer_ctl_set_array(ctl_enc_data, (void *)&aptx_dsp_cfg,
sizeof(aptx_dsp_cfg));
if (ret != 0) {
ALOGE("%s: Failed to set APTX HD encoder config", __func__);
is_configured = false;
goto exit;
}
ret = a2dp_set_bit_format(aptx_bt_cfg->bits_per_sample);
if (ret != 0) {
is_configured = false;
goto exit;
}
is_configured = true;
a2dp.bt_encoder_format = ENC_CODEC_TYPE_APTX_HD;
a2dp.enc_sampling_rate = aptx_bt_cfg->sampling_rate;
a2dp.enc_channels = aptx_bt_cfg->channels;
ALOGV("%s: Successfully updated APTX HD encformat with sampling rate: %d channels:%d",
__func__, aptx_dsp_cfg.sample_rate, aptx_dsp_cfg.num_channels);
exit:
return is_configured;
}
/* API to configure AAC DSP encoder */
static bool configure_aac_enc_format(audio_aac_encoder_config *aac_bt_cfg)
{
struct mixer_ctl *ctl_enc_data = NULL, *ctrl_bit_format = NULL;
struct aac_enc_cfg_t aac_dsp_cfg;
bool is_configured = false;
int ret = 0;
if (aac_bt_cfg == NULL) {
ALOGE("%s: Failed to get AAC encoder config from BT", __func__);
return false;
}
ctl_enc_data = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_ENC_CONFIG_BLOCK);
if (!ctl_enc_data) {
ALOGE("%s: ERROR A2DP encoder config data mixer control not identifed", __func__);
is_configured = false;
goto exit;
}
memset(&aac_dsp_cfg, 0x0, sizeof(aac_dsp_cfg));
aac_dsp_cfg.enc_format = ENC_MEDIA_FMT_AAC;
aac_dsp_cfg.bit_rate = aac_bt_cfg->bitrate;
aac_dsp_cfg.sample_rate = aac_bt_cfg->sampling_rate;
switch (aac_bt_cfg->enc_mode) {
case 0:
aac_dsp_cfg.enc_mode = MEDIA_FMT_AAC_AOT_LC;
break;
case 2:
aac_dsp_cfg.enc_mode = MEDIA_FMT_AAC_AOT_PS;
break;
case 1:
default:
aac_dsp_cfg.enc_mode = MEDIA_FMT_AAC_AOT_SBR;
break;
}
aac_dsp_cfg.aac_fmt_flag = aac_bt_cfg->format_flag;
aac_dsp_cfg.channel_cfg = aac_bt_cfg->channels;
ret = mixer_ctl_set_array(ctl_enc_data, (void *)&aac_dsp_cfg,
sizeof(aac_dsp_cfg));
if (ret != 0) {
ALOGE("%s: failed to set AAC encoder config", __func__);
is_configured = false;
goto exit;
}
ret = a2dp_set_bit_format(aac_bt_cfg->bits_per_sample);
if (ret != 0) {
is_configured = false;
goto exit;
}
is_configured = true;
a2dp.bt_encoder_format = ENC_CODEC_TYPE_AAC;
a2dp.enc_sampling_rate = aac_bt_cfg->sampling_rate;
a2dp.enc_channels = aac_bt_cfg->channels;
ALOGV("%s: Successfully updated AAC enc format with sampling rate: %d channels:%d",
__func__, aac_dsp_cfg.sample_rate, aac_dsp_cfg.channel_cfg);
exit:
return is_configured;
}
static bool configure_ldac_enc_format(audio_ldac_encoder_config *ldac_bt_cfg)
{
struct mixer_ctl *ldac_enc_data = NULL, *ctrl_bit_format = NULL;
struct ldac_enc_cfg_t ldac_dsp_cfg;
bool is_configured = false;
int ret = 0;
if (ldac_bt_cfg == NULL) {
ALOGE("%s: Failed to get LDAC encoder config from BT", __func__);
return false;
}
ldac_enc_data = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_ENC_CONFIG_BLOCK);
if (!ldac_enc_data) {
ALOGE("%s: ERROR A2DP encoder config data mixer control not identifed", __func__);
is_configured = false;
goto exit;
}
memset(&ldac_dsp_cfg, 0x0, sizeof(ldac_dsp_cfg));
ldac_dsp_cfg.custom_cfg.enc_format = ENC_MEDIA_FMT_LDAC;
ldac_dsp_cfg.custom_cfg.sample_rate = ldac_bt_cfg->sampling_rate;
ldac_dsp_cfg.ldac_cfg.channel_mode = ldac_bt_cfg->channel_mode;
switch (ldac_dsp_cfg.ldac_cfg.channel_mode) {
case 4:
ldac_dsp_cfg.custom_cfg.channel_mapping[0] = PCM_CHANNEL_C;
ldac_dsp_cfg.custom_cfg.num_channels = 1;
break;
case 2:
case 1:
default:
ldac_dsp_cfg.custom_cfg.channel_mapping[0] = PCM_CHANNEL_L;
ldac_dsp_cfg.custom_cfg.channel_mapping[1] = PCM_CHANNEL_R;
ldac_dsp_cfg.custom_cfg.num_channels = 2;
break;
}
ldac_dsp_cfg.custom_cfg.custom_size = sizeof(ldac_dsp_cfg);
ldac_dsp_cfg.ldac_cfg.mtu = ldac_bt_cfg->mtu;
ldac_dsp_cfg.ldac_cfg.bit_rate = ldac_bt_cfg->bit_rate;
if (ldac_bt_cfg->is_abr_enabled) {
ldac_dsp_cfg.abr_cfg.mapping_info = ldac_bt_cfg->level_to_bitrate_map;
ldac_dsp_cfg.abr_cfg.imc_info.direction = IMC_RECEIVE;
ldac_dsp_cfg.abr_cfg.imc_info.enable = IMC_ENABLE;
ldac_dsp_cfg.abr_cfg.imc_info.purpose = IMC_PURPOSE_ID_BT_INFO;
ldac_dsp_cfg.abr_cfg.imc_info.comm_instance = a2dp.abr_config.imc_instance;
}
ret = mixer_ctl_set_array(ldac_enc_data, (void *)&ldac_dsp_cfg,
sizeof(ldac_dsp_cfg));
if (ret != 0) {
ALOGE("%s: Failed to set LDAC encoder config", __func__);
is_configured = false;
goto exit;
}
ret = a2dp_set_bit_format(ldac_bt_cfg->bits_per_sample);
if (ret != 0) {
is_configured = false;
goto exit;
}
is_configured = true;
a2dp.bt_encoder_format = ENC_CODEC_TYPE_LDAC;
a2dp.enc_sampling_rate = ldac_bt_cfg->sampling_rate;
a2dp.enc_channels = ldac_dsp_cfg.custom_cfg.num_channels;
a2dp.abr_config.is_abr_enabled = ldac_bt_cfg->is_abr_enabled;
ALOGV("%s: Successfully updated LDAC encformat with sampling rate: %d channels:%d",
__func__, ldac_dsp_cfg.custom_cfg.sample_rate,
ldac_dsp_cfg.custom_cfg.num_channels);
exit:
return is_configured;
}
bool configure_a2dp_encoder_format()
{
void *codec_info = NULL;
uint8_t multi_cast = 0, num_dev = 1;
enc_codec_t codec_type = ENC_CODEC_TYPE_INVALID;
bool is_configured = false;
audio_aptx_encoder_config aptx_encoder_cfg;
if (!a2dp.audio_get_codec_config) {
ALOGE("%s: A2DP handle is not identified, ignoring A2DP encoder config", __func__);
return false;
}
ALOGD("%s: start", __func__);
codec_info = a2dp.audio_get_codec_config(&multi_cast, &num_dev,
&codec_type);
// ABR disabled by default for all codecs
a2dp.abr_config.is_abr_enabled = false;
switch (codec_type) {
case ENC_CODEC_TYPE_SBC:
ALOGD("%s: Received SBC encoder supported Bluetooth device", __func__);
is_configured =
configure_sbc_enc_format((audio_sbc_encoder_config *)codec_info);
break;
case ENC_CODEC_TYPE_APTX:
ALOGD("%s: Received APTX encoder supported Bluetooth device", __func__);
a2dp.is_aptx_dual_mono_supported = false;
aptx_encoder_cfg.default_cfg = (audio_aptx_default_config *)codec_info;
is_configured =
configure_aptx_enc_format(&aptx_encoder_cfg);
break;
case ENC_CODEC_TYPE_APTX_HD:
ALOGD("%s: Received APTX HD encoder supported Bluetooth device", __func__);
is_configured =
configure_aptx_hd_enc_format((audio_aptx_default_config *)codec_info);
break;
case ENC_CODEC_TYPE_AAC:
ALOGD("%s: Received AAC encoder supported Bluetooth device", __func__);
is_configured =
configure_aac_enc_format((audio_aac_encoder_config *)codec_info);
break;
case ENC_CODEC_TYPE_LDAC:
ALOGD("%s: Received LDAC encoder supported Bluetooth device", __func__);
if (!instance_id || instance_id > MAX_INSTANCE_ID)
instance_id = MAX_INSTANCE_ID;
a2dp.abr_config.imc_instance = instance_id--;
is_configured =
(configure_ldac_enc_format((audio_ldac_encoder_config *)codec_info) &&
configure_a2dp_decoder_format(ENC_CODEC_TYPE_LDAC));
break;
case ENC_CODEC_TYPE_PCM:
ALOGD("Received PCM format for BT device");
a2dp.bt_encoder_format = ENC_CODEC_TYPE_PCM;
is_configured = true;
break;
default:
ALOGD("%s: Received unsupported encoder format", __func__);
is_configured = false;
break;
}
return is_configured;
}
int audio_extn_a2dp_start_playback()
{
int ret = 0;
ALOGD("%s: start", __func__);
if (!(a2dp.bt_lib_handle && a2dp.audio_stream_start
&& a2dp.audio_get_codec_config)) {
ALOGE("%s: A2DP handle is not identified, Ignoring start request", __func__);
return -ENOSYS;
}
if (a2dp.a2dp_suspended) {
// session will be restarted after suspend completion
ALOGD("%s: A2DP start requested during suspend state", __func__);
return -ENOSYS;
}
if (!a2dp.a2dp_started && !a2dp.a2dp_total_active_session_request) {
ALOGD("%s: calling Bluetooth module stream start", __func__);
/* This call indicates Bluetooth IPC lib to start playback */
ret = a2dp.audio_stream_start();
if (ret != 0 ) {
ALOGE("%s: Bluetooth controller start failed", __func__);
a2dp.a2dp_started = false;
} else {
if (configure_a2dp_encoder_format() == true) {
a2dp.a2dp_started = true;
ret = 0;
ALOGD("%s: Start playback successful to Bluetooth IPC library", __func__);
} else {
ALOGD("%s: unable to configure DSP encoder", __func__);
a2dp.a2dp_started = false;
ret = -ETIMEDOUT;
}
}
}
if (a2dp.a2dp_started) {
a2dp.a2dp_total_active_session_request++;
a2dp_check_and_set_scrambler();
a2dp_set_backend_cfg();
if (a2dp.abr_config.is_abr_enabled)
start_abr();
}
ALOGD("%s: start A2DP playback total active sessions :%d", __func__,
a2dp.a2dp_total_active_session_request);
return ret;
}
static int reset_a2dp_enc_config_params()
{
int ret = 0;
struct mixer_ctl *ctl_enc_config, *ctrl_bit_format;
struct sbc_enc_cfg_t dummy_reset_config;
memset(&dummy_reset_config, 0x0, sizeof(dummy_reset_config));
ctl_enc_config = mixer_get_ctl_by_name(a2dp.adev->mixer,
MIXER_ENC_CONFIG_BLOCK);
if (!ctl_enc_config) {
ALOGE("%s: ERROR A2DP encoder format mixer control not identifed", __func__);
} else {
ret = mixer_ctl_set_array(ctl_enc_config, (void *)&dummy_reset_config,
sizeof(dummy_reset_config));
a2dp.bt_encoder_format = ENC_MEDIA_FMT_NONE;
}
ret = a2dp_set_bit_format(DEFAULT_ENCODER_BIT_FORMAT);
return ret;
}
static int reset_a2dp_dec_config_params()
{
struct mixer_ctl *ctl_dec_data = NULL;
struct abr_dec_cfg_t dummy_reset_cfg;
int ret = 0;
if (a2dp.abr_config.is_abr_enabled) {
ctl_dec_data = mixer_get_ctl_by_name(a2dp.adev->mixer, MIXER_DEC_CONFIG_BLOCK);
if (!ctl_dec_data) {
ALOGE("%s: ERROR A2DP decoder config mixer control not identifed", __func__);
return -EINVAL;
}
memset(&dummy_reset_cfg, 0x0, sizeof(dummy_reset_cfg));
ret = mixer_ctl_set_array(ctl_dec_data, (void *)&dummy_reset_cfg,
sizeof(dummy_reset_cfg));
if (ret != 0) {
ALOGE("%s: Failed to set dummy decoder config", __func__);
return ret;
}
}
return ret;
}
int audio_extn_a2dp_stop_playback()
{
int ret = 0;
ALOGV("%s: stop", __func__);
if (!(a2dp.bt_lib_handle && a2dp.audio_stream_stop)) {
ALOGE("%s: A2DP handle is not identified, Ignoring start request", __func__);
return -ENOSYS;
}
if (a2dp.a2dp_total_active_session_request > 0)
a2dp.a2dp_total_active_session_request--;
else
ALOGE("%s: No active playback session requests on A2DP", __func__);
if (a2dp.a2dp_started && !a2dp.a2dp_total_active_session_request) {
ALOGV("%s: calling Bluetooth module stream stop", __func__);
ret = a2dp.audio_stream_stop();
if (ret < 0)
ALOGE("%s: stop stream to Bluetooth IPC lib failed", __func__);
else
ALOGV("%s: stop steam to Bluetooth IPC lib successful", __func__);
reset_a2dp_enc_config_params();
reset_a2dp_dec_config_params();
a2dp_reset_backend_cfg();
if (a2dp.abr_config.is_abr_enabled && a2dp.abr_config.abr_started)
stop_abr();
a2dp.abr_config.is_abr_enabled = false;
a2dp.a2dp_started = false;
}
ALOGD("%s: Stop A2DP playback total active sessions :%d", __func__,
a2dp.a2dp_total_active_session_request);
return 0;
}
int audio_extn_a2dp_set_parameters(struct str_parms *parms, bool *reconfig)
{
int ret = 0, val;
char value[32] = {0};
struct audio_usecase *uc_info;
struct listnode *node;
if (a2dp.is_a2dp_offload_enabled == false) {
ALOGV("%s: No supported encoders identified,ignoring A2DP setparam", __func__);
ret = -EINVAL;
goto param_handled;
}
ret = str_parms_get_str(parms, AUDIO_PARAMETER_DEVICE_CONNECT, value,
sizeof(value));
if (ret >= 0) {
val = atoi(value);
if (audio_is_a2dp_out_device(val)) {
ALOGV("%s: Received device connect request for A2DP", __func__);
open_a2dp_output();
}
goto param_handled;
}
ret = str_parms_get_str(parms, AUDIO_PARAMETER_DEVICE_DISCONNECT, value,
sizeof(value));
if (ret >= 0) {
val = atoi(value);
if (audio_is_a2dp_out_device(val)) {
ALOGV("%s: Received device disconnect request", __func__);
reset_a2dp_enc_config_params();
reset_a2dp_dec_config_params();
close_a2dp_output();
}
goto param_handled;
}
ret = str_parms_get_str(parms, "A2dpSuspended", value, sizeof(value));
if (ret >= 0) {
if (a2dp.bt_lib_handle && (a2dp.bt_state != A2DP_STATE_DISCONNECTED)) {
if (strncmp(value, "true", sizeof(value)) == 0) {
if (a2dp.a2dp_suspended) {
ALOGD("%s: A2DP is already suspended", __func__);
goto param_handled;
}
ALOGD("%s: Setting A2DP to suspend state", __func__);
a2dp.a2dp_suspended = true;
list_for_each(node, &a2dp.adev->usecase_list) {
uc_info = node_to_item(node, struct audio_usecase, list);
if (uc_info->type == PCM_PLAYBACK &&
(uc_info->stream.out->devices & AUDIO_DEVICE_OUT_ALL_A2DP)) {
pthread_mutex_unlock(&a2dp.adev->lock);
check_a2dp_restore(a2dp.adev, uc_info->stream.out, false);
pthread_mutex_lock(&a2dp.adev->lock);
}
}
reset_a2dp_enc_config_params();
reset_a2dp_dec_config_params();
if (a2dp.audio_stream_suspend) {
a2dp.audio_stream_suspend();
}
} else {
if (!a2dp.a2dp_suspended) {
ALOGD("%s: A2DP is already unsuspended", __func__);
goto param_handled;
}
ALOGD("%s: Resetting A2DP suspend state", __func__);
struct audio_usecase *uc_info;
struct listnode *node;
if (a2dp.clear_a2dp_suspend_flag) {
a2dp.clear_a2dp_suspend_flag();
}
a2dp.a2dp_suspended = false;
/*
* It is possible that before suspend, A2DP sessions can be active.
* For example, during music + voice activation concurrency,
* A2DP suspend will be called & Bluetooth will change to SCO mode.
* Though music is paused as a part of voice activation,
* compress session close happens only after pause timeout(10 secs).
* So, if resume request comes before pause timeout, as A2DP session
* is already active, IPC start will not be called from APM/audio_hw.
* Fix this by calling A2DP start for IPC library post suspend
* based on number of active session count.
*/
if (a2dp.a2dp_total_active_session_request > 0) {
ALOGD("%s: Calling Bluetooth IPC lib start post suspend state", __func__);
if (a2dp.audio_stream_start) {
ret = a2dp.audio_stream_start();
if (ret != 0) {
ALOGE("%s: Bluetooth controller start failed", __func__);
a2dp.a2dp_started = false;
}
}
}
list_for_each(node, &a2dp.adev->usecase_list) {
uc_info = node_to_item(node, struct audio_usecase, list);
if (uc_info->type == PCM_PLAYBACK &&
(uc_info->stream.out->devices & AUDIO_DEVICE_OUT_ALL_A2DP)) {
pthread_mutex_unlock(&a2dp.adev->lock);
check_a2dp_restore(a2dp.adev, uc_info->stream.out, true);
pthread_mutex_lock(&a2dp.adev->lock);
}
}
}
}
goto param_handled;
}
ret = str_parms_get_str(parms, AUDIO_PARAMETER_RECONFIG_A2DP, value,
sizeof(value));
if (ret >= 0) {
if (a2dp.is_a2dp_offload_enabled &&
a2dp.bt_state != A2DP_STATE_DISCONNECTED) {
*reconfig = true;
}
goto param_handled;
}
param_handled:
ALOGV("%s: end of A2DP setparam", __func__);
return ret;
}
void audio_extn_a2dp_set_handoff_mode(bool is_on)
{
a2dp.is_handoff_in_progress = is_on;
}
bool audio_extn_a2dp_is_force_device_switch()
{
// During encoder reconfiguration mode, force A2DP device switch
// Or if A2DP device is selected but earlier start failed as A2DP
// was suspended, force retry.
return a2dp.is_handoff_in_progress || !a2dp.a2dp_started;
}
void audio_extn_a2dp_get_sample_rate(int *sample_rate)
{
*sample_rate = a2dp.enc_sampling_rate;
}
bool audio_extn_a2dp_is_ready()
{
bool ret = false;
if (a2dp.a2dp_suspended)
goto exit;
if ((a2dp.bt_state != A2DP_STATE_DISCONNECTED) &&
(a2dp.is_a2dp_offload_enabled) &&
(a2dp.audio_check_a2dp_ready))
ret = a2dp.audio_check_a2dp_ready();
exit:
return ret;
}
bool audio_extn_a2dp_is_suspended()
{
return a2dp.a2dp_suspended;
}
void audio_extn_a2dp_init(void *adev)
{
a2dp.adev = (struct audio_device*)adev;
a2dp.bt_lib_handle = NULL;
a2dp_common_init();
a2dp.enc_sampling_rate = 48000;
a2dp.is_a2dp_offload_enabled = false;
a2dp.is_handoff_in_progress = false;
a2dp.is_aptx_dual_mono_supported = false;
reset_a2dp_enc_config_params();
reset_a2dp_dec_config_params();
update_offload_codec_support();
}
uint32_t audio_extn_a2dp_get_encoder_latency()
{
uint32_t latency = 0;
int avsync_runtime_prop = 0;
int sbc_offset = 0, aptx_offset = 0, aptxhd_offset = 0,
aac_offset = 0, ldac_offset = 0;
char value[PROPERTY_VALUE_MAX];
memset(value, '\0', sizeof(char) * PROPERTY_VALUE_MAX);
avsync_runtime_prop = property_get(SYSPROP_A2DP_CODEC_LATENCIES, value, NULL);
if (avsync_runtime_prop > 0) {
if (sscanf(value, "%d/%d/%d/%d/%d",
&sbc_offset, &aptx_offset, &aptxhd_offset, &aac_offset,
&ldac_offset) != 5) {
ALOGI("%s: Failed to parse avsync offset params from '%s'.", __func__, value);
avsync_runtime_prop = 0;
}
}
switch (a2dp.bt_encoder_format) {
case ENC_CODEC_TYPE_SBC:
latency = (avsync_runtime_prop > 0) ? sbc_offset : ENCODER_LATENCY_SBC;
latency += DEFAULT_SINK_LATENCY_SBC;
break;
case ENC_CODEC_TYPE_APTX:
latency = (avsync_runtime_prop > 0) ? aptx_offset : ENCODER_LATENCY_APTX;
latency += DEFAULT_SINK_LATENCY_APTX;
break;
case ENC_CODEC_TYPE_APTX_HD:
latency = (avsync_runtime_prop > 0) ? aptxhd_offset : ENCODER_LATENCY_APTX_HD;
latency += DEFAULT_SINK_LATENCY_APTX_HD;
break;
case ENC_CODEC_TYPE_AAC:
latency = (avsync_runtime_prop > 0) ? aac_offset : ENCODER_LATENCY_AAC;
latency += DEFAULT_SINK_LATENCY_AAC;
break;
case ENC_CODEC_TYPE_LDAC:
latency = (avsync_runtime_prop > 0) ? ldac_offset : ENCODER_LATENCY_LDAC;
latency += DEFAULT_SINK_LATENCY_LDAC;
break;
case ENC_CODEC_TYPE_PCM:
latency = ENCODER_LATENCY_PCM;
latency += DEFAULT_SINK_LATENCY_PCM;
break;
default:
latency = DEFAULT_ENCODER_LATENCY;
break;
}
return latency;
}
int audio_extn_a2dp_get_parameters(struct str_parms *query,
struct str_parms *reply)
{
int ret, val = 0;
char value[32]={0};
ret = str_parms_get_str(query, AUDIO_PARAMETER_A2DP_RECONFIG_SUPPORTED,
value, sizeof(value));
if (ret >= 0) {
val = a2dp.is_a2dp_offload_enabled;
str_parms_add_int(reply, AUDIO_PARAMETER_A2DP_RECONFIG_SUPPORTED, val);
ALOGV("%s: called ... isReconfigA2dpSupported %d", __func__, val);
}
return 0;
}
#endif // A2DP_OFFLOAD_ENABLED