/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "android.hardware.neuralnetworks@1.0-impl-hvx"
#include "HexagonUtils.h"
#include <hidlmemory/mapping.h>
#include <algorithm>
#include <numeric>
#include <vector>
#include "OperationsUtils.h"
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_0 {
namespace implementation {
namespace hexagon {
bool isHexagonAvailable() {
int version = -1;
Controller::getInstance().version(&version);
if (version != 92) {
LOG(INFO) << "ATTEMPTING TO RESTART NNLIB";
Controller::getInstance().resetNnlib();
Controller::getInstance().version(&version);
}
return version == 92;
}
hexagon_nn_padding_type getPadding(uint32_t pad) {
switch (pad) {
case ::android::nn::kPaddingSame:
return NN_PAD_SAME;
case ::android::nn::kPaddingValid:
return NN_PAD_VALID;
case ::android::nn::kPaddingUnknown:
default:
return NN_PAD_NA;
};
}
hexagon_nn_padding_type getPadding(int32_t inWidth, int32_t inHeight, int32_t strideWidth,
int32_t strideHeight, int32_t filterWidth, int32_t filterHeight,
int32_t paddingLeft, int32_t paddingRight, int32_t paddingTop,
int32_t paddingBottom) {
return getPadding(::android::nn::getPaddingScheme(inWidth, inHeight, strideWidth, strideHeight,
filterWidth, filterHeight, paddingLeft,
paddingRight, paddingTop, paddingBottom));
}
op_type getFloatActivationFunction(FusedActivationFunc act) {
switch (act) {
case FusedActivationFunc::RELU:
return OP_Relu_f;
case FusedActivationFunc::RELU1:
return OP_Clamp_f;
case FusedActivationFunc::RELU6:
return OP_ReluX_f;
case FusedActivationFunc::NONE:
FALLTHROUGH_INTENDED;
default:
return OP_Nop;
};
}
op_type getQuantizedActivationFunction(FusedActivationFunc act) {
switch (act) {
case FusedActivationFunc::RELU:
return OP_QuantizedRelu_8;
case FusedActivationFunc::RELU1:
return OP_QuantizedClamp_8;
case FusedActivationFunc::RELU6:
return OP_QuantizedReluX_8;
case FusedActivationFunc::NONE:
FALLTHROUGH_INTENDED;
default:
return OP_Nop;
};
}
uint32_t getSize(OperandType type) {
static const uint32_t sizes[] = {
4, // FLOAT32
4, // INT32
4, // UINT32
4, // TENSOR_FLOAT32
4, // TENSOR_INT32
1, // TENSOR_SYMMETRICAL_QUANT8
};
HEXAGON_SOFT_ASSERT(static_cast<uint32_t>(type) < sizeof(sizes) / sizeof(*sizes),
"Error: type exceeds max enum value");
return sizes[static_cast<uint32_t>(type)];
}
std::vector<uint32_t> getAlignedDimensions(const std::vector<uint32_t>& dims, uint32_t N) {
HEXAGON_SOFT_ASSERT_GE(
N, dims.size(),
"Error: constant data dimensions " << dims.size() << " exceeds alignment of " << N);
std::vector<uint32_t> dimensions(N - dims.size(), 1);
dimensions.insert(dimensions.end(), dims.begin(), dims.end());
return dimensions;
}
std::vector<RunTimePoolInfo> mapPools(const hidl_vec<hidl_memory>& pools) {
std::vector<RunTimePoolInfo> poolInfos;
poolInfos.reserve(pools.size());
bool fail = false;
for (const auto& pool : pools) {
poolInfos.emplace_back(pool, &fail);
}
HEXAGON_SOFT_ASSERT(!fail, "Error setting pools");
return poolInfos;
}
std::unordered_set<uint32_t> getPoolIndexes(const std::vector<RequestArgument>& inputsOutputs) {
std::unordered_set<uint32_t> indexes;
for (const RequestArgument& inputOutput : inputsOutputs) {
indexes.insert(inputOutput.location.poolIndex);
}
return indexes;
}
namespace {
const uint8_t* getDataFromBlock(const hidl_vec<uint8_t>& block, uint32_t offset, uint32_t length) {
HEXAGON_SOFT_ASSERT_LE(offset + length, block.size(),
"Error: trying to copy data from outside of block bounds");
return block.data() + offset;
}
const uint8_t* getDataFromPool(const RunTimePoolInfo& pool, uint32_t offset,
[[maybe_unused]] uint32_t length) {
// HEXAGON_SOFT_ASSERT_LE(offset + length, pool->getSize(),
// "Error: trying to copy data from outside of pool bounds");
return pool.getBuffer() + offset;
}
} // anonymous namespace
const uint8_t* getData(const Operand& operand, const hidl_vec<uint8_t>& block,
const std::vector<RunTimePoolInfo>& pools) {
switch (operand.lifetime) {
case OperandLifeTime::TEMPORARY_VARIABLE:
return nullptr;
case OperandLifeTime::MODEL_INPUT:
case OperandLifeTime::MODEL_OUTPUT:
HEXAGON_SOFT_ASSERT(false,
"Error: trying to retrieve data that is only known at runtime");
case OperandLifeTime::CONSTANT_COPY:
return getDataFromBlock(block, operand.location.offset, operand.location.length);
case OperandLifeTime::CONSTANT_REFERENCE:
return getDataFromPool(pools[operand.location.poolIndex], operand.location.offset,
operand.location.length);
default:
HEXAGON_SOFT_ASSERT(false, "Error: unrecognized operand lifetime");
}
}
bool operator==(const hexagon_nn_input& lhs, const hexagon_nn_input& rhs) {
return lhs.src_id == rhs.src_id && lhs.output_idx == rhs.output_idx;
}
bool operator!=(const hexagon_nn_input& lhs, const hexagon_nn_input& rhs) {
return !(lhs == rhs);
}
bool operator==(const hexagon_nn_output& lhs, const hexagon_nn_output& rhs) {
return lhs.rank == rhs.rank && lhs.max_sizes[0] == rhs.max_sizes[0] &&
lhs.max_sizes[1] == rhs.max_sizes[1] && lhs.max_sizes[2] == rhs.max_sizes[2] &&
lhs.max_sizes[3] == rhs.max_sizes[3] && lhs.max_sizes[4] == rhs.max_sizes[4] &&
lhs.max_sizes[5] == rhs.max_sizes[5] && lhs.max_sizes[6] == rhs.max_sizes[6] &&
lhs.max_sizes[7] == rhs.max_sizes[7] && lhs.elementsize == rhs.elementsize &&
lhs.zero_offset == rhs.zero_offset && lhs.stepsize == rhs.stepsize;
}
bool operator!=(const hexagon_nn_output& lhs, const hexagon_nn_output& rhs) {
return !(lhs == rhs);
}
hexagon_nn_output make_hexagon_nn_output(const std::vector<uint32_t>& dims, uint32_t size) {
std::vector<uint32_t> alignedDims = getAlignedDimensions(dims, 4);
hexagon_nn_output output = {
.rank = std::min(8u, static_cast<uint32_t>(alignedDims.size())),
.max_sizes = {0, 0, 0, 0, 0, 0, 0, 0},
.elementsize = size,
.zero_offset = 0,
.stepsize = 0.0f,
};
for (size_t i = 0; i < alignedDims.size() && i < 8; ++i) {
output.max_sizes[i] = alignedDims[i];
}
return output;
}
// printers
std::string toString(uint32_t val) {
return std::to_string(val);
}
std::string toString(float val) {
return std::to_string(val);
}
std::string toString(hexagon_nn_nn_id id) {
return std::to_string(static_cast<int32_t>(id));
}
std::string toString(op_type op) {
static const char* opText[] = {
#define DEF_OP(NAME, ...) "OP_" #NAME,
#include "hexagon_nn_controller/ops.def"
#undef DEF_OP
};
return static_cast<size_t>(op) < sizeof(opText) / sizeof(char*)
? opText[static_cast<size_t>(op)]
: "<invalid op_type>";
}
std::string toString(hexagon_nn_padding_type padding) {
static const char* paddingText[] = {
"NN_PAD_NA",
"NN_PAD_SAME",
"NN_PAD_VALID",
"NN_PAD_MIRROR_REFLECT",
"NN_PAD_MIRROR_SYMMETRIC",
"NN_PAD_SAME_CAFFE",
};
return static_cast<size_t>(padding) < sizeof(paddingText) / sizeof(char*)
? paddingText[static_cast<size_t>(padding)]
: "<invalid hexagon_nn_padding_type>";
}
std::string toString(const hexagon_nn_input& input) {
return "hexagon_nn_input{.src_id: " + std::to_string(input.src_id) +
", .output_idx: " + std::to_string(input.output_idx) + "}";
}
std::string toString(const hexagon_nn_output& output) {
return "hexagon_nn_output{.rank: " + std::to_string(output.rank) + ", .max_sizes: [" +
std::to_string(output.max_sizes[0]) + ", " + std::to_string(output.max_sizes[1]) + ", " +
std::to_string(output.max_sizes[2]) + ", " + std::to_string(output.max_sizes[3]) + ", " +
std::to_string(output.max_sizes[4]) + ", " + std::to_string(output.max_sizes[5]) + ", " +
std::to_string(output.max_sizes[6]) + ", " + std::to_string(output.max_sizes[7]) + "]" +
", .elementsize: " + std::to_string(output.elementsize) +
", .zero_offset: " + std::to_string(output.zero_offset) +
", .stepsize: " + std::to_string(output.stepsize) + "}";
}
std::string toString(const hexagon_nn_tensordef& tensordef) {
return "hexagon_nn_tensordef{.batches: " + std::to_string(tensordef.batches) +
", .height: " + std::to_string(tensordef.height) +
", .width: " + std::to_string(tensordef.width) +
", .depth: " + std::to_string(tensordef.depth) +
", .data: " + std::to_string(reinterpret_cast<uintptr_t>(tensordef.data)) +
", .dataLen: " + std::to_string(tensordef.dataLen) +
", .data_valid_len: " + std::to_string(tensordef.data_valid_len) +
", .unused: " + std::to_string(tensordef.unused) + "}";
}
std::string toString(const hexagon_nn_perfinfo& perfinfo) {
return "hexagon_nn_perfinfo{.node_id: " + std::to_string(perfinfo.node_id) +
", .executions: " + std::to_string(perfinfo.executions) +
", .counter_lo: " + std::to_string(perfinfo.counter_lo) +
", .counter_hi: " + std::to_string(perfinfo.counter_hi) + "}";
}
std::string toString(const ::android::nn::Shape& shape) {
return "Shape{.type: " + toString(shape.type) +
", .dimensions: " + toString(shape.dimensions.data(), shape.dimensions.size()) +
", .scale: " + std::to_string(shape.scale) +
", .zeroPoint: " + std::to_string(shape.offset) + "}";
}
} // namespace hexagon
} // namespace implementation
} // namespace V1_0
} // namespace neuralnetworks
} // namespace hardware
} // namespace android