/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include "chre/core/sensor_request.h"
#include "chre/platform/assert.h"
#include "chre/platform/fatal_error.h"
namespace chre {
namespace {
Nanoseconds getBatchInterval(const SensorRequest& request) {
// With capping in SensorRequest constructor, interval + latency < UINT64_MAX.
// When the return value is default, request latency (instead of batch
// interval) will be used to compute the merged latency.
if (request.getInterval() == Nanoseconds(CHRE_SENSOR_INTERVAL_DEFAULT)
|| request.getLatency() == Nanoseconds(CHRE_SENSOR_LATENCY_DEFAULT)) {
return Nanoseconds(CHRE_SENSOR_BATCH_INTERVAL_DEFAULT);
} else {
return request.getInterval() + request.getLatency();
}
}
} // namespace
SensorRequest::SensorRequest()
: SensorRequest(SensorMode::Off,
Nanoseconds(CHRE_SENSOR_INTERVAL_DEFAULT),
Nanoseconds(CHRE_SENSOR_LATENCY_DEFAULT)) {}
SensorRequest::SensorRequest(SensorMode mode, Nanoseconds interval,
Nanoseconds latency)
: SensorRequest(nullptr /* nanoapp */, mode, interval, latency) {}
SensorRequest::SensorRequest(Nanoapp *nanoapp, SensorMode mode,
Nanoseconds interval, Nanoseconds latency)
: mNanoapp(nanoapp), mInterval(interval), mLatency(latency), mMode(mode) {
// cap non-default interval/latency to ensure no overflow in CHRE internal
// operations.
if (interval != Nanoseconds(CHRE_SENSOR_INTERVAL_DEFAULT)) {
mInterval = std::min(interval, Nanoseconds(kMaxIntervalLatencyNs));
}
if (latency != Nanoseconds(CHRE_SENSOR_LATENCY_DEFAULT)) {
mLatency = std::min(latency, Nanoseconds(kMaxIntervalLatencyNs));
}
}
bool SensorRequest::isEquivalentTo(const SensorRequest& request) const {
return (mMode == request.mMode
&& mInterval == request.mInterval
&& mLatency == request.mLatency);
}
bool SensorRequest::mergeWith(const SensorRequest& request) {
bool attributesChanged = false;
if (request.mMode != SensorMode::Off) {
// Calculate minimum batch interval before mInterval is modified.
Nanoseconds batchInterval = std::min(getBatchInterval(*this),
getBatchInterval(request));
if (request.mInterval < mInterval) {
mInterval = request.mInterval;
attributesChanged = true;
}
if (batchInterval == Nanoseconds(CHRE_SENSOR_BATCH_INTERVAL_DEFAULT)) {
// If batchInterval is default, it can't be effectively calculated.
// Use request.mLatency for more aggressive latency merging in this case.
Nanoseconds latency = request.mLatency;
if (latency < mLatency) {
mLatency = latency;
attributesChanged = true;
}
} else {
Nanoseconds latency = (batchInterval - mInterval);
// Note that while batchInterval can only shrink after merging, latency
// can grow if the merged interval is lower.
// Also, it's guaranteed that latency <= kMaxIntervalLatencyNs.
if (latency != mLatency) {
mLatency = latency;
attributesChanged = true;
}
}
// Compute the highest priority mode. Active continuous is the highest
// priority and passive one-shot is the lowest.
SensorMode maximalSensorMode = SensorMode::Off;
if (mMode == SensorMode::ActiveContinuous
|| request.mMode == SensorMode::ActiveContinuous) {
maximalSensorMode = SensorMode::ActiveContinuous;
} else if (mMode == SensorMode::ActiveOneShot
|| request.mMode == SensorMode::ActiveOneShot) {
maximalSensorMode = SensorMode::ActiveOneShot;
} else if (mMode == SensorMode::PassiveContinuous
|| request.mMode == SensorMode::PassiveContinuous) {
maximalSensorMode = SensorMode::PassiveContinuous;
} else if (mMode == SensorMode::PassiveOneShot
|| request.mMode == SensorMode::PassiveOneShot) {
maximalSensorMode = SensorMode::PassiveOneShot;
} else {
CHRE_ASSERT(false);
}
if (mMode != maximalSensorMode) {
mMode = maximalSensorMode;
attributesChanged = true;
}
}
return attributesChanged;
}
} // namespace chre