- 根目录:
- drivers
- staging
- vt6656
- main_usb.c
/*
* Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* File: main_usb.c
*
* Purpose: driver entry for initial, open, close, tx and rx.
*
* Author: Lyndon Chen
*
* Date: Dec 8, 2005
*
* Functions:
*
* vt6656_probe - module initial (insmod) driver entry
* device_remove1 - module remove entry
* device_open - allocate dma/descripter resource & initial mac/bbp function
* device_xmit - asynchronous data tx function
* device_set_multi - set mac filter
* device_ioctl - ioctl entry
* device_close - shutdown mac/bbp & free dma/descriptor resource
* device_alloc_frag_buf - rx fragement pre-allocated function
* device_free_tx_bufs - free tx buffer function
* device_dma0_tx_80211- tx 802.11 frame via dma0
* device_dma0_xmit- tx PS buffered frame via dma0
* device_init_registers- initial MAC & BBP & RF internal registers.
* device_init_rings- initial tx/rx ring buffer
* device_init_defrag_cb- initial & allocate de-fragement buffer.
* device_tx_srv- tx interrupt service function
*
* Revision History:
*/
#undef __NO_VERSION__
#include <linux/file.h>
#include "device.h"
#include "card.h"
#include "baseband.h"
#include "mac.h"
#include "tether.h"
#include "wmgr.h"
#include "wctl.h"
#include "power.h"
#include "wcmd.h"
#include "iocmd.h"
#include "tcrc.h"
#include "rxtx.h"
#include "bssdb.h"
#include "hostap.h"
#include "wpactl.h"
#include "iwctl.h"
#include "dpc.h"
#include "datarate.h"
#include "rf.h"
#include "firmware.h"
#include "control.h"
#include "channel.h"
#include "int.h"
#include "iowpa.h"
/* static int msglevel = MSG_LEVEL_DEBUG; */
static int msglevel =MSG_LEVEL_INFO;
/*
* define module options
*/
/* version information */
#define DRIVER_AUTHOR \
"VIA Networking Technologies, Inc., <lyndonchen@vntek.com.tw>"
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION(DEVICE_FULL_DRV_NAM);
#define DEVICE_PARAM(N,D) \
static int N[MAX_UINTS]=OPTION_DEFAULT;\
module_param_array(N, int, NULL, 0);\
MODULE_PARM_DESC(N, D);
#define RX_DESC_DEF0 64
DEVICE_PARAM(RxDescriptors0,"Number of receive usb desc buffer");
#define TX_DESC_DEF0 64
DEVICE_PARAM(TxDescriptors0,"Number of transmit usb desc buffer");
#define CHANNEL_DEF 6
DEVICE_PARAM(Channel, "Channel number");
/* PreambleType[] is the preamble length used for transmit.
0: indicate allows long preamble type
1: indicate allows short preamble type
*/
#define PREAMBLE_TYPE_DEF 1
DEVICE_PARAM(PreambleType, "Preamble Type");
#define RTS_THRESH_DEF 2347
DEVICE_PARAM(RTSThreshold, "RTS threshold");
#define FRAG_THRESH_DEF 2346
DEVICE_PARAM(FragThreshold, "Fragmentation threshold");
#define DATA_RATE_DEF 13
/* datarate[] index
0: indicate 1 Mbps 0x02
1: indicate 2 Mbps 0x04
2: indicate 5.5 Mbps 0x0B
3: indicate 11 Mbps 0x16
4: indicate 6 Mbps 0x0c
5: indicate 9 Mbps 0x12
6: indicate 12 Mbps 0x18
7: indicate 18 Mbps 0x24
8: indicate 24 Mbps 0x30
9: indicate 36 Mbps 0x48
10: indicate 48 Mbps 0x60
11: indicate 54 Mbps 0x6c
12: indicate 72 Mbps 0x90
13: indicate auto rate
*/
DEVICE_PARAM(ConnectionRate, "Connection data rate");
#define OP_MODE_DEF 0
DEVICE_PARAM(OPMode, "Infrastruct, adhoc, AP mode ");
/* OpMode[] is used for transmit.
0: indicate infrastruct mode used
1: indicate adhoc mode used
2: indicate AP mode used
*/
/* PSMode[]
0: indicate disable power saving mode
1: indicate enable power saving mode
*/
#define PS_MODE_DEF 0
DEVICE_PARAM(PSMode, "Power saving mode");
#define SHORT_RETRY_DEF 8
DEVICE_PARAM(ShortRetryLimit, "Short frame retry limits");
#define LONG_RETRY_DEF 4
DEVICE_PARAM(LongRetryLimit, "long frame retry limits");
/* BasebandType[] baseband type selected
0: indicate 802.11a type
1: indicate 802.11b type
2: indicate 802.11g type
*/
#define BBP_TYPE_DEF 2
DEVICE_PARAM(BasebandType, "baseband type");
/* 80211hEnable[]
0: indicate disable 802.11h
1: indicate enable 802.11h
*/
#define X80211h_MODE_DEF 0
DEVICE_PARAM(b80211hEnable, "802.11h mode");
/*
* Static vars definitions
*/
static struct usb_device_id vt6656_table[] = {
{USB_DEVICE(VNT_USB_VENDOR_ID, VNT_USB_PRODUCT_ID)},
{}
};
/* frequency list (map channels to frequencies) */
/*
static const long frequency_list[] = {
2412, 2417, 2422, 2427, 2432, 2437, 2442, 2447, 2452, 2457, 2462, 2467, 2472, 2484,
4915, 4920, 4925, 4935, 4940, 4945, 4960, 4980,
5035, 5040, 5045, 5055, 5060, 5080, 5170, 5180, 5190, 5200, 5210, 5220, 5230, 5240,
5260, 5280, 5300, 5320, 5500, 5520, 5540, 5560, 5580, 5600, 5620, 5640, 5660, 5680,
5700, 5745, 5765, 5785, 5805, 5825
};
static const struct iw_handler_def iwctl_handler_def;
*/
static int vt6656_probe(struct usb_interface *intf,
const struct usb_device_id *id);
static void vt6656_disconnect(struct usb_interface *intf);
#ifdef CONFIG_PM /* Minimal support for suspend and resume */
static int vt6656_suspend(struct usb_interface *intf, pm_message_t message);
static int vt6656_resume(struct usb_interface *intf);
#endif /* CONFIG_PM */
static struct net_device_stats *device_get_stats(struct net_device *dev);
static int device_open(struct net_device *dev);
static int device_xmit(struct sk_buff *skb, struct net_device *dev);
static void device_set_multi(struct net_device *dev);
static int device_close(struct net_device *dev);
static int device_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static int device_init_registers(struct vnt_private *pDevice);
static bool device_init_defrag_cb(struct vnt_private *pDevice);
static void device_init_diversity_timer(struct vnt_private *pDevice);
static int device_dma0_tx_80211(struct sk_buff *skb, struct net_device *dev);
static int ethtool_ioctl(struct net_device *dev, struct ifreq *);
static void device_free_tx_bufs(struct vnt_private *pDevice);
static void device_free_rx_bufs(struct vnt_private *pDevice);
static void device_free_int_bufs(struct vnt_private *pDevice);
static void device_free_frag_bufs(struct vnt_private *pDevice);
static bool device_alloc_bufs(struct vnt_private *pDevice);
static int Read_config_file(struct vnt_private *pDevice);
static unsigned char *Config_FileOperation(struct vnt_private *pDevice);
static int Config_FileGetParameter(unsigned char *string,
unsigned char *dest,
unsigned char *source);
static void usb_device_reset(struct vnt_private *pDevice);
static void
device_set_options(struct vnt_private *pDevice) {
u8 abyBroadcastAddr[ETH_ALEN] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
u8 abySNAP_RFC1042[ETH_ALEN] = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0x00};
u8 abySNAP_Bridgetunnel[ETH_ALEN] = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0xF8};
memcpy(pDevice->abyBroadcastAddr, abyBroadcastAddr, ETH_ALEN);
memcpy(pDevice->abySNAP_RFC1042, abySNAP_RFC1042, ETH_ALEN);
memcpy(pDevice->abySNAP_Bridgetunnel, abySNAP_Bridgetunnel, ETH_ALEN);
pDevice->cbTD = TX_DESC_DEF0;
pDevice->cbRD = RX_DESC_DEF0;
pDevice->uChannel = CHANNEL_DEF;
pDevice->wRTSThreshold = RTS_THRESH_DEF;
pDevice->wFragmentationThreshold = FRAG_THRESH_DEF;
pDevice->byShortRetryLimit = SHORT_RETRY_DEF;
pDevice->byLongRetryLimit = LONG_RETRY_DEF;
pDevice->wMaxTransmitMSDULifetime = DEFAULT_MSDU_LIFETIME;
pDevice->byShortPreamble = PREAMBLE_TYPE_DEF;
pDevice->ePSMode = PS_MODE_DEF;
pDevice->b11hEnable = X80211h_MODE_DEF;
pDevice->eOPMode = OP_MODE_DEF;
pDevice->uConnectionRate = DATA_RATE_DEF;
if (pDevice->uConnectionRate < RATE_AUTO) pDevice->bFixRate = true;
pDevice->byBBType = BBP_TYPE_DEF;
pDevice->byPacketType = pDevice->byBBType;
pDevice->byAutoFBCtrl = AUTO_FB_0;
pDevice->bUpdateBBVGA = true;
pDevice->byFOETuning = 0;
pDevice->byAutoPwrTunning = 0;
pDevice->byPreambleType = 0;
pDevice->bExistSWNetAddr = false;
/* pDevice->bDiversityRegCtlON = true; */
pDevice->bDiversityRegCtlON = false;
}
static void device_init_diversity_timer(struct vnt_private *pDevice)
{
init_timer(&pDevice->TimerSQ3Tmax1);
pDevice->TimerSQ3Tmax1.data = (unsigned long)pDevice;
pDevice->TimerSQ3Tmax1.function = (TimerFunction)TimerSQ3CallBack;
pDevice->TimerSQ3Tmax1.expires = RUN_AT(HZ);
init_timer(&pDevice->TimerSQ3Tmax2);
pDevice->TimerSQ3Tmax2.data = (unsigned long)pDevice;
pDevice->TimerSQ3Tmax2.function = (TimerFunction)TimerSQ3CallBack;
pDevice->TimerSQ3Tmax2.expires = RUN_AT(HZ);
init_timer(&pDevice->TimerSQ3Tmax3);
pDevice->TimerSQ3Tmax3.data = (unsigned long)pDevice;
pDevice->TimerSQ3Tmax3.function = (TimerFunction)TimerSQ3Tmax3CallBack;
pDevice->TimerSQ3Tmax3.expires = RUN_AT(HZ);
return;
}
/*
* initialization of MAC & BBP registers
*/
static int device_init_registers(struct vnt_private *pDevice)
{
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
struct vnt_cmd_card_init *init_cmd = &pDevice->init_command;
struct vnt_rsp_card_init *init_rsp = &pDevice->init_response;
u8 abyBroadcastAddr[ETH_ALEN] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
u8 abySNAP_RFC1042[ETH_ALEN] = {0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00};
u8 abySNAP_Bridgetunnel[ETH_ALEN]
= {0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8};
u8 byAntenna;
int ii;
int ntStatus = STATUS_SUCCESS;
u8 byTmp;
u8 byCalibTXIQ = 0, byCalibTXDC = 0, byCalibRXIQ = 0;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "---->INIbInitAdapter. [%d][%d]\n",
DEVICE_INIT_COLD, pDevice->byPacketType);
spin_lock_irq(&pDevice->lock);
memcpy(pDevice->abyBroadcastAddr, abyBroadcastAddr, ETH_ALEN);
memcpy(pDevice->abySNAP_RFC1042, abySNAP_RFC1042, ETH_ALEN);
memcpy(pDevice->abySNAP_Bridgetunnel, abySNAP_Bridgetunnel, ETH_ALEN);
if (!FIRMWAREbCheckVersion(pDevice)) {
if (FIRMWAREbDownload(pDevice) == true) {
if (FIRMWAREbBrach2Sram(pDevice) == false) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
" FIRMWAREbBrach2Sram fail\n");
spin_unlock_irq(&pDevice->lock);
return false;
}
} else {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
" FIRMWAREbDownload fail\n");
spin_unlock_irq(&pDevice->lock);
return false;
}
}
if (!BBbVT3184Init(pDevice)) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO" BBbVT3184Init fail\n");
spin_unlock_irq(&pDevice->lock);
return false;
}
init_cmd->init_class = DEVICE_INIT_COLD;
init_cmd->exist_sw_net_addr = (u8) pDevice->bExistSWNetAddr;
for (ii = 0; ii < 6; ii++)
init_cmd->sw_net_addr[ii] = pDevice->abyCurrentNetAddr[ii];
init_cmd->short_retry_limit = pDevice->byShortRetryLimit;
init_cmd->long_retry_limit = pDevice->byLongRetryLimit;
/* issue card_init command to device */
ntStatus = CONTROLnsRequestOut(pDevice,
MESSAGE_TYPE_CARDINIT, 0, 0,
sizeof(struct vnt_cmd_card_init), (u8 *)init_cmd);
if (ntStatus != STATUS_SUCCESS) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO" Issue Card init fail\n");
spin_unlock_irq(&pDevice->lock);
return false;
}
ntStatus = CONTROLnsRequestIn(pDevice, MESSAGE_TYPE_INIT_RSP, 0, 0,
sizeof(struct vnt_rsp_card_init), (u8 *)init_rsp);
if (ntStatus != STATUS_SUCCESS) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
"Cardinit request in status fail!\n");
spin_unlock_irq(&pDevice->lock);
return false;
}
/* local ID for AES functions */
ntStatus = CONTROLnsRequestIn(pDevice, MESSAGE_TYPE_READ,
MAC_REG_LOCALID, MESSAGE_REQUEST_MACREG, 1,
&pDevice->byLocalID);
if (ntStatus != STATUS_SUCCESS) {
spin_unlock_irq(&pDevice->lock);
return false;
}
/* do MACbSoftwareReset in MACvInitialize */
/* force CCK */
pDevice->bCCK = true;
pDevice->bProtectMode = false;
/* only used in 11g type, sync with ERP IE */
pDevice->bNonERPPresent = false;
pDevice->bBarkerPreambleMd = false;
if (pDevice->bFixRate) {
pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
} else {
if (pDevice->byBBType == BB_TYPE_11B)
pDevice->wCurrentRate = RATE_11M;
else
pDevice->wCurrentRate = RATE_54M;
}
CHvInitChannelTable(pDevice);
pDevice->byTopOFDMBasicRate = RATE_24M;
pDevice->byTopCCKBasicRate = RATE_1M;
pDevice->byRevId = 0;
/* target to IF pin while programming to RF chip */
pDevice->byCurPwr = 0xFF;
pDevice->byCCKPwr = pDevice->abyEEPROM[EEP_OFS_PWR_CCK];
pDevice->byOFDMPwrG = pDevice->abyEEPROM[EEP_OFS_PWR_OFDMG];
/* load power table */
for (ii = 0; ii < 14; ii++) {
pDevice->abyCCKPwrTbl[ii] =
pDevice->abyEEPROM[ii + EEP_OFS_CCK_PWR_TBL];
if (pDevice->abyCCKPwrTbl[ii] == 0)
pDevice->abyCCKPwrTbl[ii] = pDevice->byCCKPwr;
pDevice->abyOFDMPwrTbl[ii] =
pDevice->abyEEPROM[ii + EEP_OFS_OFDM_PWR_TBL];
if (pDevice->abyOFDMPwrTbl[ii] == 0)
pDevice->abyOFDMPwrTbl[ii] = pDevice->byOFDMPwrG;
}
/*
* original zonetype is USA, but custom zonetype is Europe,
* then need to recover 12, 13, 14 channels with 11 channel
*/
if (((pDevice->abyEEPROM[EEP_OFS_ZONETYPE] == ZoneType_Japan) ||
(pDevice->abyEEPROM[EEP_OFS_ZONETYPE] == ZoneType_Europe)) &&
(pDevice->byOriginalZonetype == ZoneType_USA)) {
for (ii = 11; ii < 14; ii++) {
pDevice->abyCCKPwrTbl[ii] = pDevice->abyCCKPwrTbl[10];
pDevice->abyOFDMPwrTbl[ii] = pDevice->abyOFDMPwrTbl[10];
}
}
pDevice->byOFDMPwrA = 0x34; /* same as RFbMA2829SelectChannel */
/* load OFDM A power table */
for (ii = 0; ii < CB_MAX_CHANNEL_5G; ii++) {
pDevice->abyOFDMAPwrTbl[ii] =
pDevice->abyEEPROM[ii + EEP_OFS_OFDMA_PWR_TBL];
if (pDevice->abyOFDMAPwrTbl[ii] == 0)
pDevice->abyOFDMAPwrTbl[ii] = pDevice->byOFDMPwrA;
}
byAntenna = pDevice->abyEEPROM[EEP_OFS_ANTENNA];
if (byAntenna & EEP_ANTINV)
pDevice->bTxRxAntInv = true;
else
pDevice->bTxRxAntInv = false;
byAntenna &= (EEP_ANTENNA_AUX | EEP_ANTENNA_MAIN);
if (byAntenna == 0) /* if not set default is both */
byAntenna = (EEP_ANTENNA_AUX | EEP_ANTENNA_MAIN);
if (byAntenna == (EEP_ANTENNA_AUX | EEP_ANTENNA_MAIN)) {
pDevice->byAntennaCount = 2;
pDevice->byTxAntennaMode = ANT_B;
pDevice->dwTxAntennaSel = 1;
pDevice->dwRxAntennaSel = 1;
if (pDevice->bTxRxAntInv == true)
pDevice->byRxAntennaMode = ANT_A;
else
pDevice->byRxAntennaMode = ANT_B;
if (pDevice->bDiversityRegCtlON)
pDevice->bDiversityEnable = true;
else
pDevice->bDiversityEnable = false;
} else {
pDevice->bDiversityEnable = false;
pDevice->byAntennaCount = 1;
pDevice->dwTxAntennaSel = 0;
pDevice->dwRxAntennaSel = 0;
if (byAntenna & EEP_ANTENNA_AUX) {
pDevice->byTxAntennaMode = ANT_A;
if (pDevice->bTxRxAntInv == true)
pDevice->byRxAntennaMode = ANT_B;
else
pDevice->byRxAntennaMode = ANT_A;
} else {
pDevice->byTxAntennaMode = ANT_B;
if (pDevice->bTxRxAntInv == true)
pDevice->byRxAntennaMode = ANT_A;
else
pDevice->byRxAntennaMode = ANT_B;
}
}
pDevice->ulDiversityNValue = 100 * 255;
pDevice->ulDiversityMValue = 100 * 16;
pDevice->byTMax = 1;
pDevice->byTMax2 = 4;
pDevice->ulSQ3TH = 0;
pDevice->byTMax3 = 64;
/* get Auto Fall Back type */
pDevice->byAutoFBCtrl = AUTO_FB_0;
/* set SCAN Time */
pDevice->uScanTime = WLAN_SCAN_MINITIME;
/* default Auto Mode */
/* pDevice->NetworkType = Ndis802_11Automode; */
pDevice->eConfigPHYMode = PHY_TYPE_AUTO;
pDevice->byBBType = BB_TYPE_11G;
/* initialize BBP registers */
pDevice->ulTxPower = 25;
/* get channel range */
pDevice->byMinChannel = 1;
pDevice->byMaxChannel = CB_MAX_CHANNEL;
/* get RFType */
pDevice->byRFType = init_rsp->rf_type;
if ((pDevice->byRFType & RF_EMU) != 0) {
/* force change RevID for VT3253 emu */
pDevice->byRevId = 0x80;
}
/* load vt3266 calibration parameters in EEPROM */
if (pDevice->byRFType == RF_VT3226D0) {
if ((pDevice->abyEEPROM[EEP_OFS_MAJOR_VER] == 0x1) &&
(pDevice->abyEEPROM[EEP_OFS_MINOR_VER] >= 0x4)) {
byCalibTXIQ = pDevice->abyEEPROM[EEP_OFS_CALIB_TX_IQ];
byCalibTXDC = pDevice->abyEEPROM[EEP_OFS_CALIB_TX_DC];
byCalibRXIQ = pDevice->abyEEPROM[EEP_OFS_CALIB_RX_IQ];
if (byCalibTXIQ || byCalibTXDC || byCalibRXIQ) {
/* CR255, enable TX/RX IQ and DC compensation mode */
ControlvWriteByte(pDevice,
MESSAGE_REQUEST_BBREG,
0xff,
0x03);
/* CR251, TX I/Q Imbalance Calibration */
ControlvWriteByte(pDevice,
MESSAGE_REQUEST_BBREG,
0xfb,
byCalibTXIQ);
/* CR252, TX DC-Offset Calibration */
ControlvWriteByte(pDevice,
MESSAGE_REQUEST_BBREG,
0xfC,
byCalibTXDC);
/* CR253, RX I/Q Imbalance Calibration */
ControlvWriteByte(pDevice,
MESSAGE_REQUEST_BBREG,
0xfd,
byCalibRXIQ);
} else {
/* CR255, turn off BB Calibration compensation */
ControlvWriteByte(pDevice,
MESSAGE_REQUEST_BBREG,
0xff,
0x0);
}
}
}
pMgmt->eScanType = WMAC_SCAN_PASSIVE;
pMgmt->uCurrChannel = pDevice->uChannel;
pMgmt->uIBSSChannel = pDevice->uChannel;
CARDbSetMediaChannel(pDevice, pMgmt->uCurrChannel);
/* get permanent network address */
memcpy(pDevice->abyPermanentNetAddr, init_rsp->net_addr, 6);
memcpy(pDevice->abyCurrentNetAddr,
pDevice->abyPermanentNetAddr, ETH_ALEN);
/* if exist SW network address, use it */
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Network address = %pM\n",
pDevice->abyCurrentNetAddr);
/*
* set BB and packet type at the same time
* set Short Slot Time, xIFS, and RSPINF
*/
if (pDevice->byBBType == BB_TYPE_11A) {
CARDbAddBasicRate(pDevice, RATE_6M);
pDevice->bShortSlotTime = true;
} else {
CARDbAddBasicRate(pDevice, RATE_1M);
pDevice->bShortSlotTime = false;
}
BBvSetShortSlotTime(pDevice);
CARDvSetBSSMode(pDevice);
if (pDevice->bUpdateBBVGA) {
pDevice->byBBVGACurrent = pDevice->abyBBVGA[0];
pDevice->byBBVGANew = pDevice->byBBVGACurrent;
BBvSetVGAGainOffset(pDevice, pDevice->abyBBVGA[0]);
}
pDevice->byRadioCtl = pDevice->abyEEPROM[EEP_OFS_RADIOCTL];
pDevice->bHWRadioOff = false;
if ((pDevice->byRadioCtl & EEP_RADIOCTL_ENABLE) != 0) {
ntStatus = CONTROLnsRequestIn(pDevice, MESSAGE_TYPE_READ,
MAC_REG_GPIOCTL1, MESSAGE_REQUEST_MACREG, 1, &byTmp);
if (ntStatus != STATUS_SUCCESS) {
spin_unlock_irq(&pDevice->lock);
return false;
}
if ((byTmp & GPIO3_DATA) == 0) {
pDevice->bHWRadioOff = true;
MACvRegBitsOn(pDevice, MAC_REG_GPIOCTL1, GPIO3_INTMD);
} else {
MACvRegBitsOff(pDevice, MAC_REG_GPIOCTL1, GPIO3_INTMD);
pDevice->bHWRadioOff = false;
}
}
ControlvMaskByte(pDevice, MESSAGE_REQUEST_MACREG,
MAC_REG_PAPEDELAY, LEDSTS_TMLEN, 0x38);
ControlvMaskByte(pDevice, MESSAGE_REQUEST_MACREG,
MAC_REG_PAPEDELAY, LEDSTS_STS, LEDSTS_SLOW);
MACvRegBitsOn(pDevice, MAC_REG_GPIOCTL0, 0x01);
if ((pDevice->bHWRadioOff == true) ||
(pDevice->bRadioControlOff == true)) {
CARDbRadioPowerOff(pDevice);
} else {
CARDbRadioPowerOn(pDevice);
}
spin_unlock_irq(&pDevice->lock);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"<----INIbInitAdapter Exit\n");
return true;
}
#ifdef CONFIG_PM /* Minimal support for suspend and resume */
static int vt6656_suspend(struct usb_interface *intf, pm_message_t message)
{
struct vnt_private *device = usb_get_intfdata(intf);
if (!device || !device->dev)
return -ENODEV;
if (device->flags & DEVICE_FLAGS_OPENED)
device_close(device->dev);
return 0;
}
static int vt6656_resume(struct usb_interface *intf)
{
struct vnt_private *device = usb_get_intfdata(intf);
if (!device || !device->dev)
return -ENODEV;
if (!(device->flags & DEVICE_FLAGS_OPENED))
device_open(device->dev);
return 0;
}
#endif /* CONFIG_PM */
static const struct net_device_ops device_netdev_ops = {
.ndo_open = device_open,
.ndo_stop = device_close,
.ndo_do_ioctl = device_ioctl,
.ndo_get_stats = device_get_stats,
.ndo_start_xmit = device_xmit,
.ndo_set_rx_mode = device_set_multi,
};
static int
vt6656_probe(struct usb_interface *intf, const struct usb_device_id *id)
{
u8 fake_mac[ETH_ALEN] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x01};
struct usb_device *udev = interface_to_usbdev(intf);
int rc = 0;
struct net_device *netdev = NULL;
struct vnt_private *pDevice;
printk(KERN_NOTICE "%s Ver. %s\n", DEVICE_FULL_DRV_NAM, DEVICE_VERSION);
printk(KERN_NOTICE "Copyright (c) 2004 VIA Networking Technologies, Inc.\n");
udev = usb_get_dev(udev);
netdev = alloc_etherdev(sizeof(struct vnt_private));
if (!netdev) {
printk(KERN_ERR DEVICE_NAME ": allocate net device failed\n");
rc = -ENOMEM;
goto err_nomem;
}
pDevice = netdev_priv(netdev);
memset(pDevice, 0, sizeof(struct vnt_private));
pDevice->dev = netdev;
pDevice->usb = udev;
device_set_options(pDevice);
spin_lock_init(&pDevice->lock);
INIT_DELAYED_WORK(&pDevice->run_command_work, vRunCommand);
INIT_DELAYED_WORK(&pDevice->second_callback_work, BSSvSecondCallBack);
INIT_WORK(&pDevice->read_work_item, RXvWorkItem);
INIT_WORK(&pDevice->rx_mng_work_item, RXvMngWorkItem);
pDevice->pControlURB = usb_alloc_urb(0, GFP_ATOMIC);
if (!pDevice->pControlURB) {
DBG_PRT(MSG_LEVEL_ERR, KERN_ERR"Failed to alloc control urb\n");
goto err_netdev;
}
pDevice->tx_80211 = device_dma0_tx_80211;
pDevice->vnt_mgmt.pAdapter = (void *) pDevice;
netdev->netdev_ops = &device_netdev_ops;
netdev->wireless_handlers =
(struct iw_handler_def *) &iwctl_handler_def;
usb_set_intfdata(intf, pDevice);
SET_NETDEV_DEV(netdev, &intf->dev);
memcpy(pDevice->dev->dev_addr, fake_mac, ETH_ALEN);
usb_device_reset(pDevice);
rc = register_netdev(netdev);
if (rc) {
printk(KERN_ERR DEVICE_NAME " Failed to register netdev\n");
goto err_netdev;
}
return 0;
err_netdev:
free_netdev(netdev);
err_nomem:
usb_put_dev(udev);
return rc;
}
static void device_free_tx_bufs(struct vnt_private *pDevice)
{
struct vnt_usb_send_context *pTxContext;
int ii;
for (ii = 0; ii < pDevice->cbTD; ii++) {
pTxContext = pDevice->apTD[ii];
/* deallocate URBs */
if (pTxContext->pUrb) {
usb_kill_urb(pTxContext->pUrb);
usb_free_urb(pTxContext->pUrb);
}
kfree(pTxContext);
}
return;
}
static void device_free_rx_bufs(struct vnt_private *pDevice)
{
struct vnt_rcb *pRCB;
int ii;
for (ii = 0; ii < pDevice->cbRD; ii++) {
pRCB = pDevice->apRCB[ii];
/* deallocate URBs */
if (pRCB->pUrb) {
usb_kill_urb(pRCB->pUrb);
usb_free_urb(pRCB->pUrb);
}
/* deallocate skb */
if (pRCB->skb)
dev_kfree_skb(pRCB->skb);
}
kfree(pDevice->pRCBMem);
return;
}
static void usb_device_reset(struct vnt_private *pDevice)
{
int status;
status = usb_reset_device(pDevice->usb);
if (status)
printk("usb_device_reset fail status=%d\n",status);
return ;
}
static void device_free_int_bufs(struct vnt_private *pDevice)
{
kfree(pDevice->intBuf.pDataBuf);
return;
}
static bool device_alloc_bufs(struct vnt_private *pDevice)
{
struct vnt_usb_send_context *pTxContext;
struct vnt_rcb *pRCB;
int ii;
for (ii = 0; ii < pDevice->cbTD; ii++) {
pTxContext = kmalloc(sizeof(struct vnt_usb_send_context), GFP_KERNEL);
if (pTxContext == NULL) {
DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s : allocate tx usb context failed\n", pDevice->dev->name);
goto free_tx;
}
pDevice->apTD[ii] = pTxContext;
pTxContext->pDevice = (void *) pDevice;
/* allocate URBs */
pTxContext->pUrb = usb_alloc_urb(0, GFP_ATOMIC);
if (pTxContext->pUrb == NULL) {
DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "alloc tx urb failed\n");
goto free_tx;
}
pTxContext->bBoolInUse = false;
}
/* allocate RCB mem */
pDevice->pRCBMem = kzalloc((sizeof(struct vnt_rcb) * pDevice->cbRD),
GFP_KERNEL);
if (pDevice->pRCBMem == NULL) {
DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s : alloc rx usb context failed\n", pDevice->dev->name);
goto free_tx;
}
pDevice->FirstRecvFreeList = NULL;
pDevice->LastRecvFreeList = NULL;
pDevice->FirstRecvMngList = NULL;
pDevice->LastRecvMngList = NULL;
pDevice->NumRecvFreeList = 0;
pRCB = (struct vnt_rcb *)pDevice->pRCBMem;
for (ii = 0; ii < pDevice->cbRD; ii++) {
pDevice->apRCB[ii] = pRCB;
pRCB->pDevice = (void *) pDevice;
/* allocate URBs */
pRCB->pUrb = usb_alloc_urb(0, GFP_ATOMIC);
if (pRCB->pUrb == NULL) {
DBG_PRT(MSG_LEVEL_ERR,KERN_ERR" Failed to alloc rx urb\n");
goto free_rx_tx;
}
pRCB->skb = dev_alloc_skb((int)pDevice->rx_buf_sz);
if (pRCB->skb == NULL) {
DBG_PRT(MSG_LEVEL_ERR,KERN_ERR" Failed to alloc rx skb\n");
goto free_rx_tx;
}
pRCB->skb->dev = pDevice->dev;
pRCB->bBoolInUse = false;
EnqueueRCB(pDevice->FirstRecvFreeList, pDevice->LastRecvFreeList, pRCB);
pDevice->NumRecvFreeList++;
pRCB++;
}
pDevice->pInterruptURB = usb_alloc_urb(0, GFP_ATOMIC);
if (pDevice->pInterruptURB == NULL) {
DBG_PRT(MSG_LEVEL_ERR,KERN_ERR"Failed to alloc int urb\n");
goto free_rx_tx;
}
pDevice->intBuf.pDataBuf = kmalloc(MAX_INTERRUPT_SIZE, GFP_KERNEL);
if (pDevice->intBuf.pDataBuf == NULL) {
DBG_PRT(MSG_LEVEL_ERR,KERN_ERR"Failed to alloc int buf\n");
usb_free_urb(pDevice->pInterruptURB);
goto free_rx_tx;
}
return true;
free_rx_tx:
device_free_rx_bufs(pDevice);
free_tx:
device_free_tx_bufs(pDevice);
return false;
}
static bool device_init_defrag_cb(struct vnt_private *pDevice)
{
int i;
PSDeFragControlBlock pDeF;
/* Init the fragment ctl entries */
for (i = 0; i < CB_MAX_RX_FRAG; i++) {
pDeF = &(pDevice->sRxDFCB[i]);
if (!device_alloc_frag_buf(pDevice, pDeF)) {
DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc frag bufs\n",
pDevice->dev->name);
goto free_frag;
}
}
pDevice->cbDFCB = CB_MAX_RX_FRAG;
pDevice->cbFreeDFCB = pDevice->cbDFCB;
return true;
free_frag:
device_free_frag_bufs(pDevice);
return false;
}
static void device_free_frag_bufs(struct vnt_private *pDevice)
{
PSDeFragControlBlock pDeF;
int i;
for (i = 0; i < CB_MAX_RX_FRAG; i++) {
pDeF = &(pDevice->sRxDFCB[i]);
if (pDeF->skb)
dev_kfree_skb(pDeF->skb);
}
}
int device_alloc_frag_buf(struct vnt_private *pDevice,
PSDeFragControlBlock pDeF)
{
pDeF->skb = dev_alloc_skb((int)pDevice->rx_buf_sz);
if (pDeF->skb == NULL)
return false;
pDeF->skb->dev = pDevice->dev;
return true;
}
static int device_open(struct net_device *dev)
{
struct vnt_private *pDevice = netdev_priv(dev);
pDevice->fWPA_Authened = false;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " device_open...\n");
pDevice->rx_buf_sz = MAX_TOTAL_SIZE_WITH_ALL_HEADERS;
if (device_alloc_bufs(pDevice) == false) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " device_alloc_bufs fail... \n");
return -ENOMEM;
}
if (device_init_defrag_cb(pDevice)== false) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " Initial defragment cb fail \n");
goto free_rx_tx;
}
MP_CLEAR_FLAG(pDevice, fMP_DISCONNECTED);
MP_CLEAR_FLAG(pDevice, fMP_CONTROL_READS);
MP_CLEAR_FLAG(pDevice, fMP_CONTROL_WRITES);
MP_SET_FLAG(pDevice, fMP_POST_READS);
MP_SET_FLAG(pDevice, fMP_POST_WRITES);
/* read config file */
Read_config_file(pDevice);
if (device_init_registers(pDevice) == false) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO " init register fail\n");
goto free_all;
}
device_set_multi(pDevice->dev);
/* init for key management */
KeyvInitTable(pDevice,&pDevice->sKey);
memcpy(pDevice->vnt_mgmt.abyMACAddr,
pDevice->abyCurrentNetAddr, ETH_ALEN);
memcpy(pDevice->dev->dev_addr, pDevice->abyCurrentNetAddr, ETH_ALEN);
pDevice->bStopTx0Pkt = false;
pDevice->bStopDataPkt = false;
pDevice->bRoaming = false;
pDevice->bIsRoaming = false;
pDevice->bEnableRoaming = false;
if (pDevice->bDiversityRegCtlON) {
device_init_diversity_timer(pDevice);
}
vMgrObjectInit(pDevice);
tasklet_init(&pDevice->EventWorkItem, (void *)INTvWorkItem, (unsigned long)pDevice);
schedule_delayed_work(&pDevice->second_callback_work, HZ);
pDevice->int_interval = 100; /* max 100 microframes */
pDevice->eEncryptionStatus = Ndis802_11EncryptionDisabled;
pDevice->bIsRxWorkItemQueued = true;
pDevice->fKillEventPollingThread = false;
pDevice->bEventAvailable = false;
pDevice->bWPADEVUp = false;
pDevice->bwextstep0 = false;
pDevice->bwextstep1 = false;
pDevice->bwextstep2 = false;
pDevice->bwextstep3 = false;
pDevice->bWPASuppWextEnabled = false;
pDevice->byReAssocCount = 0;
schedule_work(&pDevice->read_work_item);
INTvWorkItem(pDevice);
/* if WEP key already set by iwconfig but device not yet open */
if ((pDevice->bEncryptionEnable == true) && (pDevice->bTransmitKey == true)) {
spin_lock_irq(&pDevice->lock);
KeybSetDefaultKey( pDevice,
&(pDevice->sKey),
pDevice->byKeyIndex | (1 << 31),
pDevice->uKeyLength,
NULL,
pDevice->abyKey,
KEY_CTL_WEP
);
spin_unlock_irq(&pDevice->lock);
pDevice->eEncryptionStatus = Ndis802_11Encryption1Enabled;
}
if (pDevice->vnt_mgmt.eConfigMode == WMAC_CONFIG_AP)
bScheduleCommand((void *) pDevice, WLAN_CMD_RUN_AP, NULL);
else
bScheduleCommand((void *) pDevice, WLAN_CMD_BSSID_SCAN, NULL);
netif_stop_queue(pDevice->dev);
pDevice->flags |= DEVICE_FLAGS_OPENED;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "device_open success..\n");
return 0;
free_all:
device_free_frag_bufs(pDevice);
free_rx_tx:
device_free_rx_bufs(pDevice);
device_free_tx_bufs(pDevice);
device_free_int_bufs(pDevice);
usb_kill_urb(pDevice->pInterruptURB);
usb_free_urb(pDevice->pInterruptURB);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "device_open fail.. \n");
return -ENOMEM;
}
static int device_close(struct net_device *dev)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
int uu;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "device_close1\n");
if (pDevice == NULL)
return -ENODEV;
if (pDevice->bLinkPass) {
bScheduleCommand((void *) pDevice, WLAN_CMD_DISASSOCIATE, NULL);
mdelay(30);
}
memset(pMgmt->abyDesireSSID, 0, WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1);
pMgmt->bShareKeyAlgorithm = false;
pDevice->bEncryptionEnable = false;
pDevice->eEncryptionStatus = Ndis802_11EncryptionDisabled;
spin_lock_irq(&pDevice->lock);
for (uu = 0; uu < MAX_KEY_TABLE; uu++)
MACvDisableKeyEntry(pDevice,uu);
spin_unlock_irq(&pDevice->lock);
if ((pDevice->flags & DEVICE_FLAGS_UNPLUG) == false) {
MACbShutdown(pDevice);
}
netif_stop_queue(pDevice->dev);
MP_SET_FLAG(pDevice, fMP_DISCONNECTED);
MP_CLEAR_FLAG(pDevice, fMP_POST_WRITES);
MP_CLEAR_FLAG(pDevice, fMP_POST_READS);
pDevice->fKillEventPollingThread = true;
cancel_delayed_work_sync(&pDevice->run_command_work);
cancel_delayed_work_sync(&pDevice->second_callback_work);
if (pDevice->bDiversityRegCtlON) {
del_timer(&pDevice->TimerSQ3Tmax1);
del_timer(&pDevice->TimerSQ3Tmax2);
del_timer(&pDevice->TimerSQ3Tmax3);
}
cancel_work_sync(&pDevice->rx_mng_work_item);
cancel_work_sync(&pDevice->read_work_item);
tasklet_kill(&pDevice->EventWorkItem);
pDevice->bRoaming = false;
pDevice->bIsRoaming = false;
pDevice->bEnableRoaming = false;
pDevice->bCmdRunning = false;
pDevice->bLinkPass = false;
memset(pMgmt->abyCurrBSSID, 0, 6);
pMgmt->eCurrState = WMAC_STATE_IDLE;
pDevice->flags &= ~DEVICE_FLAGS_OPENED;
device_free_tx_bufs(pDevice);
device_free_rx_bufs(pDevice);
device_free_int_bufs(pDevice);
device_free_frag_bufs(pDevice);
usb_kill_urb(pDevice->pInterruptURB);
usb_free_urb(pDevice->pInterruptURB);
BSSvClearNodeDBTable(pDevice, 0);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "device_close2 \n");
return 0;
}
static void vt6656_disconnect(struct usb_interface *intf)
{
struct vnt_private *device = usb_get_intfdata(intf);
if (!device)
return;
usb_set_intfdata(intf, NULL);
usb_put_dev(interface_to_usbdev(intf));
device->flags |= DEVICE_FLAGS_UNPLUG;
if (device->dev) {
unregister_netdev(device->dev);
usb_kill_urb(device->pControlURB);
usb_free_urb(device->pControlURB);
free_netdev(device->dev);
}
}
static int device_dma0_tx_80211(struct sk_buff *skb, struct net_device *dev)
{
struct vnt_private *pDevice = netdev_priv(dev);
spin_lock_irq(&pDevice->lock);
if (unlikely(pDevice->bStopTx0Pkt))
dev_kfree_skb_irq(skb);
else
vDMA0_tx_80211(pDevice, skb);
spin_unlock_irq(&pDevice->lock);
return NETDEV_TX_OK;
}
static int device_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct net_device_stats *stats = &pDevice->stats;
spin_lock_irq(&pDevice->lock);
netif_stop_queue(dev);
if (!pDevice->bLinkPass) {
dev_kfree_skb_irq(skb);
goto out;
}
if (pDevice->bStopDataPkt) {
dev_kfree_skb_irq(skb);
stats->tx_dropped++;
goto out;
}
if (nsDMA_tx_packet(pDevice, TYPE_AC0DMA, skb)) {
if (netif_queue_stopped(dev))
netif_wake_queue(dev);
}
out:
spin_unlock_irq(&pDevice->lock);
return NETDEV_TX_OK;
}
/* find out the start position of str2 from str1 */
static unsigned char *kstrstr(const unsigned char *str1,
const unsigned char *str2) {
int str1_len = strlen(str1);
int str2_len = strlen(str2);
while (str1_len >= str2_len) {
str1_len--;
if(memcmp(str1,str2,str2_len)==0)
return (unsigned char *) str1;
str1++;
}
return NULL;
}
static int Config_FileGetParameter(unsigned char *string,
unsigned char *dest,
unsigned char *source)
{
unsigned char buf1[100];
unsigned char buf2[100];
unsigned char *start_p = NULL, *end_p = NULL, *tmp_p = NULL;
int ii;
memset(buf1,0,100);
strcat(buf1, string);
strcat(buf1, "=");
source+=strlen(buf1);
/* find target string start point */
start_p = kstrstr(source,buf1);
if (start_p == NULL)
return false;
/* check if current config line is marked by "#" */
for (ii = 1; ; ii++) {
if (memcmp(start_p - ii, "\n", 1) == 0)
break;
if (memcmp(start_p - ii, "#", 1) == 0)
return false;
}
/* find target string end point */
end_p = kstrstr(start_p,"\n");
if (end_p == NULL) { /* can't find "\n", but don't care */
end_p = start_p + strlen(start_p); /* no include "\n" */
}
memset(buf2,0,100);
memcpy(buf2, start_p, end_p-start_p); /* get the target line */
buf2[end_p-start_p]='\0';
/* find value */
start_p = kstrstr(buf2,"=");
if (start_p == NULL)
return false;
memset(buf1,0,100);
strcpy(buf1,start_p+1);
/* except space */
tmp_p = buf1;
while(*tmp_p != 0x00) {
if(*tmp_p==' ')
tmp_p++;
else
break;
}
memcpy(dest,tmp_p,strlen(tmp_p));
return true;
}
/* if read fails, return NULL, or return data pointer */
static unsigned char *Config_FileOperation(struct vnt_private *pDevice)
{
unsigned char *buffer = kmalloc(1024, GFP_KERNEL);
struct file *file;
if (!buffer) {
printk("allocate mem for file fail?\n");
return NULL;
}
file = filp_open(CONFIG_PATH, O_RDONLY, 0);
if (IS_ERR(file)) {
kfree(buffer);
printk("Config_FileOperation file Not exist\n");
return NULL;
}
if (kernel_read(file, 0, buffer, 1024) < 0) {
printk("read file error?\n");
kfree(buffer);
buffer = NULL;
}
fput(file);
return buffer;
}
/* return --->-1:fail; >=0:successful */
static int Read_config_file(struct vnt_private *pDevice)
{
int result = 0;
unsigned char tmpbuffer[100];
unsigned char *buffer = NULL;
/* init config setting */
pDevice->config_file.ZoneType = -1;
pDevice->config_file.eAuthenMode = -1;
pDevice->config_file.eEncryptionStatus = -1;
buffer = Config_FileOperation(pDevice);
if (buffer == NULL) {
result =-1;
return result;
}
/* get zonetype */
{
memset(tmpbuffer,0,sizeof(tmpbuffer));
if(Config_FileGetParameter("ZONETYPE",tmpbuffer,buffer) ==true) {
if(memcmp(tmpbuffer,"USA",3)==0) {
pDevice->config_file.ZoneType=ZoneType_USA;
}
else if(memcmp(tmpbuffer,"JAPAN",5)==0) {
pDevice->config_file.ZoneType=ZoneType_Japan;
}
else if(memcmp(tmpbuffer,"EUROPE",6)==0) {
pDevice->config_file.ZoneType=ZoneType_Europe;
}
else {
printk("Unknown Zonetype[%s]?\n",tmpbuffer);
}
}
}
/* get other parameter */
{
memset(tmpbuffer,0,sizeof(tmpbuffer));
if(Config_FileGetParameter("AUTHENMODE",tmpbuffer,buffer)==true) {
pDevice->config_file.eAuthenMode = (int) simple_strtol(tmpbuffer, NULL, 10);
}
memset(tmpbuffer,0,sizeof(tmpbuffer));
if(Config_FileGetParameter("ENCRYPTIONMODE",tmpbuffer,buffer)==true) {
pDevice->config_file.eEncryptionStatus= (int) simple_strtol(tmpbuffer, NULL, 10);
}
}
kfree(buffer);
return result;
}
static void device_set_multi(struct net_device *dev)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
struct netdev_hw_addr *ha;
u32 mc_filter[2];
int ii;
u8 pbyData[8] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
u8 byTmpMode = 0;
int rc;
spin_lock_irq(&pDevice->lock);
rc = CONTROLnsRequestIn(pDevice,
MESSAGE_TYPE_READ,
MAC_REG_RCR,
MESSAGE_REQUEST_MACREG,
1,
&byTmpMode
);
if (rc == 0) pDevice->byRxMode = byTmpMode;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "pDevice->byRxMode in= %x\n", pDevice->byRxMode);
if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
DBG_PRT(MSG_LEVEL_ERR,KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
/* unconditionally log net taps */
pDevice->byRxMode |= (RCR_MULTICAST|RCR_BROADCAST|RCR_UNICAST);
}
else if ((netdev_mc_count(dev) > pDevice->multicast_limit) ||
(dev->flags & IFF_ALLMULTI)) {
CONTROLnsRequestOut(pDevice,
MESSAGE_TYPE_WRITE,
MAC_REG_MAR0,
MESSAGE_REQUEST_MACREG,
8,
pbyData
);
pDevice->byRxMode |= (RCR_MULTICAST|RCR_BROADCAST);
}
else {
memset(mc_filter, 0, sizeof(mc_filter));
netdev_for_each_mc_addr(ha, dev) {
int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
mc_filter[bit_nr >> 5] |= cpu_to_le32(1 << (bit_nr & 31));
}
for (ii = 0; ii < 4; ii++) {
MACvWriteMultiAddr(pDevice, ii, *((u8 *)&mc_filter[0] + ii));
MACvWriteMultiAddr(pDevice, ii+ 4, *((u8 *)&mc_filter[1] + ii));
}
pDevice->byRxMode &= ~(RCR_UNICAST);
pDevice->byRxMode |= (RCR_MULTICAST|RCR_BROADCAST);
}
if (pMgmt->eConfigMode == WMAC_CONFIG_AP) {
/*
* If AP mode, don't enable RCR_UNICAST since HW only compares
* addr1 with local MAC
*/
pDevice->byRxMode |= (RCR_MULTICAST|RCR_BROADCAST);
pDevice->byRxMode &= ~(RCR_UNICAST);
}
ControlvWriteByte(pDevice, MESSAGE_REQUEST_MACREG, MAC_REG_RCR, pDevice->byRxMode);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "pDevice->byRxMode out= %x\n", pDevice->byRxMode);
spin_unlock_irq(&pDevice->lock);
}
static struct net_device_stats *device_get_stats(struct net_device *dev)
{
struct vnt_private *pDevice = netdev_priv(dev);
return &pDevice->stats;
}
static int device_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct vnt_private *pDevice = netdev_priv(dev);
struct iwreq *wrq = (struct iwreq *) rq;
int rc = 0;
switch (cmd) {
case IOCTL_CMD_HOSTAPD:
if (!(pDevice->flags & DEVICE_FLAGS_OPENED))
rc = -EFAULT;
rc = vt6656_hostap_ioctl(pDevice, &wrq->u.data);
break;
case SIOCETHTOOL:
return ethtool_ioctl(dev, rq);
}
return rc;
}
static int ethtool_ioctl(struct net_device *dev, struct ifreq *rq)
{
u32 ethcmd;
if (copy_from_user(ðcmd, rq->ifr_data, sizeof(ethcmd)))
return -EFAULT;
switch (ethcmd) {
case ETHTOOL_GDRVINFO: {
struct ethtool_drvinfo info = {ETHTOOL_GDRVINFO};
strncpy(info.driver, DEVICE_NAME, sizeof(info.driver)-1);
strncpy(info.version, DEVICE_VERSION, sizeof(info.version)-1);
if (copy_to_user(rq->ifr_data, &info, sizeof(info)))
return -EFAULT;
return 0;
}
}
return -EOPNOTSUPP;
}
MODULE_DEVICE_TABLE(usb, vt6656_table);
static struct usb_driver vt6656_driver = {
.name = DEVICE_NAME,
.probe = vt6656_probe,
.disconnect = vt6656_disconnect,
.id_table = vt6656_table,
#ifdef CONFIG_PM
.suspend = vt6656_suspend,
.resume = vt6656_resume,
#endif /* CONFIG_PM */
};
module_usb_driver(vt6656_driver);