- 根目录:
- arch
- arm
- mach-integrator
- integrator_ap.c
/*
* linux/arch/arm/mach-integrator/integrator_ap.c
*
* Copyright (C) 2000-2003 Deep Blue Solutions Ltd
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/syscore_ops.h>
#include <linux/amba/bus.h>
#include <linux/amba/kmi.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irqchip.h>
#include <linux/mtd/physmap.h>
#include <linux/clk.h>
#include <linux/platform_data/clk-integrator.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/stat.h>
#include <linux/sys_soc.h>
#include <linux/termios.h>
#include <linux/sched_clock.h>
#include <linux/clk-provider.h>
#include <asm/hardware/arm_timer.h>
#include <asm/setup.h>
#include <asm/param.h> /* HZ */
#include <asm/mach-types.h>
#include <asm/mach/arch.h>
#include <asm/mach/irq.h>
#include <asm/mach/map.h>
#include <asm/mach/time.h>
#include "hardware.h"
#include "cm.h"
#include "common.h"
#include "pci_v3.h"
#include "lm.h"
/* Base address to the AP system controller */
void __iomem *ap_syscon_base;
/* Base address to the external bus interface */
static void __iomem *ebi_base;
/*
* All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
* is the (PA >> 12).
*
* Setup a VA for the Integrator interrupt controller (for header #0,
* just for now).
*/
#define VA_IC_BASE __io_address(INTEGRATOR_IC_BASE)
/*
* Logical Physical
* ef000000 Cache flush
* f1100000 11000000 System controller registers
* f1300000 13000000 Counter/Timer
* f1400000 14000000 Interrupt controller
* f1600000 16000000 UART 0
* f1700000 17000000 UART 1
* f1a00000 1a000000 Debug LEDs
* f1b00000 1b000000 GPIO
*/
static struct map_desc ap_io_desc[] __initdata __maybe_unused = {
{
.virtual = IO_ADDRESS(INTEGRATOR_CT_BASE),
.pfn = __phys_to_pfn(INTEGRATOR_CT_BASE),
.length = SZ_4K,
.type = MT_DEVICE
}, {
.virtual = IO_ADDRESS(INTEGRATOR_IC_BASE),
.pfn = __phys_to_pfn(INTEGRATOR_IC_BASE),
.length = SZ_4K,
.type = MT_DEVICE
}, {
.virtual = IO_ADDRESS(INTEGRATOR_UART0_BASE),
.pfn = __phys_to_pfn(INTEGRATOR_UART0_BASE),
.length = SZ_4K,
.type = MT_DEVICE
}, {
.virtual = IO_ADDRESS(INTEGRATOR_DBG_BASE),
.pfn = __phys_to_pfn(INTEGRATOR_DBG_BASE),
.length = SZ_4K,
.type = MT_DEVICE
}, {
.virtual = IO_ADDRESS(INTEGRATOR_AP_GPIO_BASE),
.pfn = __phys_to_pfn(INTEGRATOR_AP_GPIO_BASE),
.length = SZ_4K,
.type = MT_DEVICE
}
};
static void __init ap_map_io(void)
{
iotable_init(ap_io_desc, ARRAY_SIZE(ap_io_desc));
pci_v3_early_init();
}
#ifdef CONFIG_PM
static unsigned long ic_irq_enable;
static int irq_suspend(void)
{
ic_irq_enable = readl(VA_IC_BASE + IRQ_ENABLE);
return 0;
}
static void irq_resume(void)
{
/* disable all irq sources */
cm_clear_irqs();
writel(-1, VA_IC_BASE + IRQ_ENABLE_CLEAR);
writel(-1, VA_IC_BASE + FIQ_ENABLE_CLEAR);
writel(ic_irq_enable, VA_IC_BASE + IRQ_ENABLE_SET);
}
#else
#define irq_suspend NULL
#define irq_resume NULL
#endif
static struct syscore_ops irq_syscore_ops = {
.suspend = irq_suspend,
.resume = irq_resume,
};
static int __init irq_syscore_init(void)
{
register_syscore_ops(&irq_syscore_ops);
return 0;
}
device_initcall(irq_syscore_init);
/*
* Flash handling.
*/
static int ap_flash_init(struct platform_device *dev)
{
u32 tmp;
writel(INTEGRATOR_SC_CTRL_nFLVPPEN | INTEGRATOR_SC_CTRL_nFLWP,
ap_syscon_base + INTEGRATOR_SC_CTRLC_OFFSET);
tmp = readl(ebi_base + INTEGRATOR_EBI_CSR1_OFFSET) |
INTEGRATOR_EBI_WRITE_ENABLE;
writel(tmp, ebi_base + INTEGRATOR_EBI_CSR1_OFFSET);
if (!(readl(ebi_base + INTEGRATOR_EBI_CSR1_OFFSET)
& INTEGRATOR_EBI_WRITE_ENABLE)) {
writel(0xa05f, ebi_base + INTEGRATOR_EBI_LOCK_OFFSET);
writel(tmp, ebi_base + INTEGRATOR_EBI_CSR1_OFFSET);
writel(0, ebi_base + INTEGRATOR_EBI_LOCK_OFFSET);
}
return 0;
}
static void ap_flash_exit(struct platform_device *dev)
{
u32 tmp;
writel(INTEGRATOR_SC_CTRL_nFLVPPEN | INTEGRATOR_SC_CTRL_nFLWP,
ap_syscon_base + INTEGRATOR_SC_CTRLC_OFFSET);
tmp = readl(ebi_base + INTEGRATOR_EBI_CSR1_OFFSET) &
~INTEGRATOR_EBI_WRITE_ENABLE;
writel(tmp, ebi_base + INTEGRATOR_EBI_CSR1_OFFSET);
if (readl(ebi_base + INTEGRATOR_EBI_CSR1_OFFSET) &
INTEGRATOR_EBI_WRITE_ENABLE) {
writel(0xa05f, ebi_base + INTEGRATOR_EBI_LOCK_OFFSET);
writel(tmp, ebi_base + INTEGRATOR_EBI_CSR1_OFFSET);
writel(0, ebi_base + INTEGRATOR_EBI_LOCK_OFFSET);
}
}
static void ap_flash_set_vpp(struct platform_device *pdev, int on)
{
if (on)
writel(INTEGRATOR_SC_CTRL_nFLVPPEN,
ap_syscon_base + INTEGRATOR_SC_CTRLS_OFFSET);
else
writel(INTEGRATOR_SC_CTRL_nFLVPPEN,
ap_syscon_base + INTEGRATOR_SC_CTRLC_OFFSET);
}
static struct physmap_flash_data ap_flash_data = {
.width = 4,
.init = ap_flash_init,
.exit = ap_flash_exit,
.set_vpp = ap_flash_set_vpp,
};
/*
* For the PL010 found in the Integrator/AP some of the UART control is
* implemented in the system controller and accessed using a callback
* from the driver.
*/
static void integrator_uart_set_mctrl(struct amba_device *dev,
void __iomem *base, unsigned int mctrl)
{
unsigned int ctrls = 0, ctrlc = 0, rts_mask, dtr_mask;
u32 phybase = dev->res.start;
if (phybase == INTEGRATOR_UART0_BASE) {
/* UART0 */
rts_mask = 1 << 4;
dtr_mask = 1 << 5;
} else {
/* UART1 */
rts_mask = 1 << 6;
dtr_mask = 1 << 7;
}
if (mctrl & TIOCM_RTS)
ctrlc |= rts_mask;
else
ctrls |= rts_mask;
if (mctrl & TIOCM_DTR)
ctrlc |= dtr_mask;
else
ctrls |= dtr_mask;
__raw_writel(ctrls, ap_syscon_base + INTEGRATOR_SC_CTRLS_OFFSET);
__raw_writel(ctrlc, ap_syscon_base + INTEGRATOR_SC_CTRLC_OFFSET);
}
struct amba_pl010_data ap_uart_data = {
.set_mctrl = integrator_uart_set_mctrl,
};
/*
* Where is the timer (VA)?
*/
#define TIMER0_VA_BASE __io_address(INTEGRATOR_TIMER0_BASE)
#define TIMER1_VA_BASE __io_address(INTEGRATOR_TIMER1_BASE)
#define TIMER2_VA_BASE __io_address(INTEGRATOR_TIMER2_BASE)
static unsigned long timer_reload;
static u64 notrace integrator_read_sched_clock(void)
{
return -readl((void __iomem *) TIMER2_VA_BASE + TIMER_VALUE);
}
static void integrator_clocksource_init(unsigned long inrate,
void __iomem *base)
{
u32 ctrl = TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC;
unsigned long rate = inrate;
if (rate >= 1500000) {
rate /= 16;
ctrl |= TIMER_CTRL_DIV16;
}
writel(0xffff, base + TIMER_LOAD);
writel(ctrl, base + TIMER_CTRL);
clocksource_mmio_init(base + TIMER_VALUE, "timer2",
rate, 200, 16, clocksource_mmio_readl_down);
sched_clock_register(integrator_read_sched_clock, 16, rate);
}
static void __iomem * clkevt_base;
/*
* IRQ handler for the timer
*/
static irqreturn_t integrator_timer_interrupt(int irq, void *dev_id)
{
struct clock_event_device *evt = dev_id;
/* clear the interrupt */
writel(1, clkevt_base + TIMER_INTCLR);
evt->event_handler(evt);
return IRQ_HANDLED;
}
static void clkevt_set_mode(enum clock_event_mode mode, struct clock_event_device *evt)
{
u32 ctrl = readl(clkevt_base + TIMER_CTRL) & ~TIMER_CTRL_ENABLE;
/* Disable timer */
writel(ctrl, clkevt_base + TIMER_CTRL);
switch (mode) {
case CLOCK_EVT_MODE_PERIODIC:
/* Enable the timer and start the periodic tick */
writel(timer_reload, clkevt_base + TIMER_LOAD);
ctrl |= TIMER_CTRL_PERIODIC | TIMER_CTRL_ENABLE;
writel(ctrl, clkevt_base + TIMER_CTRL);
break;
case CLOCK_EVT_MODE_ONESHOT:
/* Leave the timer disabled, .set_next_event will enable it */
ctrl &= ~TIMER_CTRL_PERIODIC;
writel(ctrl, clkevt_base + TIMER_CTRL);
break;
case CLOCK_EVT_MODE_UNUSED:
case CLOCK_EVT_MODE_SHUTDOWN:
case CLOCK_EVT_MODE_RESUME:
default:
/* Just leave in disabled state */
break;
}
}
static int clkevt_set_next_event(unsigned long next, struct clock_event_device *evt)
{
unsigned long ctrl = readl(clkevt_base + TIMER_CTRL);
writel(ctrl & ~TIMER_CTRL_ENABLE, clkevt_base + TIMER_CTRL);
writel(next, clkevt_base + TIMER_LOAD);
writel(ctrl | TIMER_CTRL_ENABLE, clkevt_base + TIMER_CTRL);
return 0;
}
static struct clock_event_device integrator_clockevent = {
.name = "timer1",
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
.set_mode = clkevt_set_mode,
.set_next_event = clkevt_set_next_event,
.rating = 300,
};
static struct irqaction integrator_timer_irq = {
.name = "timer",
.flags = IRQF_TIMER | IRQF_IRQPOLL,
.handler = integrator_timer_interrupt,
.dev_id = &integrator_clockevent,
};
static void integrator_clockevent_init(unsigned long inrate,
void __iomem *base, int irq)
{
unsigned long rate = inrate;
unsigned int ctrl = 0;
clkevt_base = base;
/* Calculate and program a divisor */
if (rate > 0x100000 * HZ) {
rate /= 256;
ctrl |= TIMER_CTRL_DIV256;
} else if (rate > 0x10000 * HZ) {
rate /= 16;
ctrl |= TIMER_CTRL_DIV16;
}
timer_reload = rate / HZ;
writel(ctrl, clkevt_base + TIMER_CTRL);
setup_irq(irq, &integrator_timer_irq);
clockevents_config_and_register(&integrator_clockevent,
rate,
1,
0xffffU);
}
void __init ap_init_early(void)
{
}
static void __init ap_of_timer_init(void)
{
struct device_node *node;
const char *path;
void __iomem *base;
int err;
int irq;
struct clk *clk;
unsigned long rate;
of_clk_init(NULL);
err = of_property_read_string(of_aliases,
"arm,timer-primary", &path);
if (WARN_ON(err))
return;
node = of_find_node_by_path(path);
base = of_iomap(node, 0);
if (WARN_ON(!base))
return;
clk = of_clk_get(node, 0);
BUG_ON(IS_ERR(clk));
clk_prepare_enable(clk);
rate = clk_get_rate(clk);
writel(0, base + TIMER_CTRL);
integrator_clocksource_init(rate, base);
err = of_property_read_string(of_aliases,
"arm,timer-secondary", &path);
if (WARN_ON(err))
return;
node = of_find_node_by_path(path);
base = of_iomap(node, 0);
if (WARN_ON(!base))
return;
irq = irq_of_parse_and_map(node, 0);
clk = of_clk_get(node, 0);
BUG_ON(IS_ERR(clk));
clk_prepare_enable(clk);
rate = clk_get_rate(clk);
writel(0, base + TIMER_CTRL);
integrator_clockevent_init(rate, base, irq);
}
static void __init ap_init_irq_of(void)
{
cm_init();
irqchip_init();
}
/* For the Device Tree, add in the UART callbacks as AUXDATA */
static struct of_dev_auxdata ap_auxdata_lookup[] __initdata = {
OF_DEV_AUXDATA("arm,primecell", INTEGRATOR_RTC_BASE,
"rtc", NULL),
OF_DEV_AUXDATA("arm,primecell", INTEGRATOR_UART0_BASE,
"uart0", &ap_uart_data),
OF_DEV_AUXDATA("arm,primecell", INTEGRATOR_UART1_BASE,
"uart1", &ap_uart_data),
OF_DEV_AUXDATA("arm,primecell", KMI0_BASE,
"kmi0", NULL),
OF_DEV_AUXDATA("arm,primecell", KMI1_BASE,
"kmi1", NULL),
OF_DEV_AUXDATA("cfi-flash", INTEGRATOR_FLASH_BASE,
"physmap-flash", &ap_flash_data),
{ /* sentinel */ },
};
static const struct of_device_id ap_syscon_match[] = {
{ .compatible = "arm,integrator-ap-syscon"},
{ },
};
static const struct of_device_id ebi_match[] = {
{ .compatible = "arm,external-bus-interface"},
{ },
};
static void __init ap_init_of(void)
{
unsigned long sc_dec;
struct device_node *syscon;
struct device_node *ebi;
struct device *parent;
struct soc_device *soc_dev;
struct soc_device_attribute *soc_dev_attr;
u32 ap_sc_id;
int i;
syscon = of_find_matching_node(NULL, ap_syscon_match);
if (!syscon)
return;
ebi = of_find_matching_node(NULL, ebi_match);
if (!ebi)
return;
ap_syscon_base = of_iomap(syscon, 0);
if (!ap_syscon_base)
return;
ebi_base = of_iomap(ebi, 0);
if (!ebi_base)
return;
of_platform_populate(NULL, of_default_bus_match_table,
ap_auxdata_lookup, NULL);
ap_sc_id = readl(ap_syscon_base);
soc_dev_attr = kzalloc(sizeof(*soc_dev_attr), GFP_KERNEL);
if (!soc_dev_attr)
return;
soc_dev_attr->soc_id = "XVC";
soc_dev_attr->machine = "Integrator/AP";
soc_dev_attr->family = "Integrator";
soc_dev_attr->revision = kasprintf(GFP_KERNEL, "%c",
'A' + (ap_sc_id & 0x0f));
soc_dev = soc_device_register(soc_dev_attr);
if (IS_ERR(soc_dev)) {
kfree(soc_dev_attr->revision);
kfree(soc_dev_attr);
return;
}
parent = soc_device_to_device(soc_dev);
integrator_init_sysfs(parent, ap_sc_id);
sc_dec = readl(ap_syscon_base + INTEGRATOR_SC_DEC_OFFSET);
for (i = 0; i < 4; i++) {
struct lm_device *lmdev;
if ((sc_dec & (16 << i)) == 0)
continue;
lmdev = kzalloc(sizeof(struct lm_device), GFP_KERNEL);
if (!lmdev)
continue;
lmdev->resource.start = 0xc0000000 + 0x10000000 * i;
lmdev->resource.end = lmdev->resource.start + 0x0fffffff;
lmdev->resource.flags = IORESOURCE_MEM;
lmdev->irq = irq_of_parse_and_map(syscon, i);
lmdev->id = i;
lm_device_register(lmdev);
}
}
static const char * ap_dt_board_compat[] = {
"arm,integrator-ap",
NULL,
};
DT_MACHINE_START(INTEGRATOR_AP_DT, "ARM Integrator/AP (Device Tree)")
.reserve = integrator_reserve,
.map_io = ap_map_io,
.init_early = ap_init_early,
.init_irq = ap_init_irq_of,
.init_time = ap_of_timer_init,
.init_machine = ap_init_of,
.restart = integrator_restart,
.dt_compat = ap_dt_board_compat,
MACHINE_END