- 根目录:
- virt
- kvm
- arm
- vgic-v3-emul.c
/*
* GICv3 distributor and redistributor emulation
*
* GICv3 emulation is currently only supported on a GICv3 host (because
* we rely on the hardware's CPU interface virtualization support), but
* supports both hardware with or without the optional GICv2 backwards
* compatibility features.
*
* Limitations of the emulation:
* (RAZ/WI: read as zero, write ignore, RAO/WI: read as one, write ignore)
* - We do not support LPIs (yet). TYPER.LPIS is reported as 0 and is RAZ/WI.
* - We do not support the message based interrupts (MBIs) triggered by
* writes to the GICD_{SET,CLR}SPI_* registers. TYPER.MBIS is reported as 0.
* - We do not support the (optional) backwards compatibility feature.
* GICD_CTLR.ARE resets to 1 and is RAO/WI. If the _host_ GIC supports
* the compatiblity feature, you can use a GICv2 in the guest, though.
* - We only support a single security state. GICD_CTLR.DS is 1 and is RAO/WI.
* - Priorities are not emulated (same as the GICv2 emulation). Linux
* as a guest is fine with this, because it does not use priorities.
* - We only support Group1 interrupts. Again Linux uses only those.
*
* Copyright (C) 2014 ARM Ltd.
* Author: Andre Przywara <andre.przywara@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
#include <linux/irqchip/arm-gic-v3.h>
#include <kvm/arm_vgic.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
#include "vgic.h"
static bool handle_mmio_rao_wi(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
u32 reg = 0xffffffff;
vgic_reg_access(mmio, ®, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
return false;
}
static bool handle_mmio_ctlr(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
u32 reg = 0;
/*
* Force ARE and DS to 1, the guest cannot change this.
* For the time being we only support Group1 interrupts.
*/
if (vcpu->kvm->arch.vgic.enabled)
reg = GICD_CTLR_ENABLE_SS_G1;
reg |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
vgic_reg_access(mmio, ®, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
if (mmio->is_write) {
if (reg & GICD_CTLR_ENABLE_SS_G0)
kvm_info("guest tried to enable unsupported Group0 interrupts\n");
vcpu->kvm->arch.vgic.enabled = !!(reg & GICD_CTLR_ENABLE_SS_G1);
vgic_update_state(vcpu->kvm);
return true;
}
return false;
}
/*
* As this implementation does not provide compatibility
* with GICv2 (ARE==1), we report zero CPUs in bits [5..7].
* Also LPIs and MBIs are not supported, so we set the respective bits to 0.
* Also we report at most 2**10=1024 interrupt IDs (to match 1024 SPIs).
*/
#define INTERRUPT_ID_BITS 10
static bool handle_mmio_typer(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
u32 reg;
reg = (min(vcpu->kvm->arch.vgic.nr_irqs, 1024) >> 5) - 1;
reg |= (INTERRUPT_ID_BITS - 1) << 19;
vgic_reg_access(mmio, ®, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
return false;
}
static bool handle_mmio_iidr(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
u32 reg;
reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
vgic_reg_access(mmio, ®, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
return false;
}
static bool handle_mmio_set_enable_reg_dist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
vcpu->vcpu_id,
ACCESS_WRITE_SETBIT);
vgic_reg_access(mmio, NULL, offset,
ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
return false;
}
static bool handle_mmio_clear_enable_reg_dist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
vcpu->vcpu_id,
ACCESS_WRITE_CLEARBIT);
vgic_reg_access(mmio, NULL, offset,
ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
return false;
}
static bool handle_mmio_set_pending_reg_dist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset,
vcpu->vcpu_id);
vgic_reg_access(mmio, NULL, offset,
ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
return false;
}
static bool handle_mmio_clear_pending_reg_dist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset,
vcpu->vcpu_id);
vgic_reg_access(mmio, NULL, offset,
ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
return false;
}
static bool handle_mmio_priority_reg_dist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
u32 *reg;
if (unlikely(offset < VGIC_NR_PRIVATE_IRQS)) {
vgic_reg_access(mmio, NULL, offset,
ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
return false;
}
reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
vcpu->vcpu_id, offset);
vgic_reg_access(mmio, reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
return false;
}
static bool handle_mmio_cfg_reg_dist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
u32 *reg;
if (unlikely(offset < VGIC_NR_PRIVATE_IRQS / 4)) {
vgic_reg_access(mmio, NULL, offset,
ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
return false;
}
reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
vcpu->vcpu_id, offset >> 1);
return vgic_handle_cfg_reg(reg, mmio, offset);
}
/*
* We use a compressed version of the MPIDR (all 32 bits in one 32-bit word)
* when we store the target MPIDR written by the guest.
*/
static u32 compress_mpidr(unsigned long mpidr)
{
u32 ret;
ret = MPIDR_AFFINITY_LEVEL(mpidr, 0);
ret |= MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8;
ret |= MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16;
ret |= MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24;
return ret;
}
static unsigned long uncompress_mpidr(u32 value)
{
unsigned long mpidr;
mpidr = ((value >> 0) & 0xFF) << MPIDR_LEVEL_SHIFT(0);
mpidr |= ((value >> 8) & 0xFF) << MPIDR_LEVEL_SHIFT(1);
mpidr |= ((value >> 16) & 0xFF) << MPIDR_LEVEL_SHIFT(2);
mpidr |= (u64)((value >> 24) & 0xFF) << MPIDR_LEVEL_SHIFT(3);
return mpidr;
}
/*
* Lookup the given MPIDR value to get the vcpu_id (if there is one)
* and store that in the irq_spi_cpu[] array.
* This limits the number of VCPUs to 255 for now, extending the data
* type (or storing kvm_vcpu pointers) should lift the limit.
* Store the original MPIDR value in an extra array to support read-as-written.
* Unallocated MPIDRs are translated to a special value and caught
* before any array accesses.
*/
static bool handle_mmio_route_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
struct kvm *kvm = vcpu->kvm;
struct vgic_dist *dist = &kvm->arch.vgic;
int spi;
u32 reg;
int vcpu_id;
unsigned long *bmap, mpidr;
/*
* The upper 32 bits of each 64 bit register are zero,
* as we don't support Aff3.
*/
if ((offset & 4)) {
vgic_reg_access(mmio, NULL, offset,
ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
return false;
}
/* This region only covers SPIs, so no handling of private IRQs here. */
spi = offset / 8;
/* get the stored MPIDR for this IRQ */
mpidr = uncompress_mpidr(dist->irq_spi_mpidr[spi]);
reg = mpidr;
vgic_reg_access(mmio, ®, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
if (!mmio->is_write)
return false;
/*
* Now clear the currently assigned vCPU from the map, making room
* for the new one to be written below
*/
vcpu = kvm_mpidr_to_vcpu(kvm, mpidr);
if (likely(vcpu)) {
vcpu_id = vcpu->vcpu_id;
bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]);
__clear_bit(spi, bmap);
}
dist->irq_spi_mpidr[spi] = compress_mpidr(reg);
vcpu = kvm_mpidr_to_vcpu(kvm, reg & MPIDR_HWID_BITMASK);
/*
* The spec says that non-existent MPIDR values should not be
* forwarded to any existent (v)CPU, but should be able to become
* pending anyway. We simply keep the irq_spi_target[] array empty, so
* the interrupt will never be injected.
* irq_spi_cpu[irq] gets a magic value in this case.
*/
if (likely(vcpu)) {
vcpu_id = vcpu->vcpu_id;
dist->irq_spi_cpu[spi] = vcpu_id;
bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]);
__set_bit(spi, bmap);
} else {
dist->irq_spi_cpu[spi] = VCPU_NOT_ALLOCATED;
}
vgic_update_state(kvm);
return true;
}
/*
* We should be careful about promising too much when a guest reads
* this register. Don't claim to be like any hardware implementation,
* but just report the GIC as version 3 - which is what a Linux guest
* would check.
*/
static bool handle_mmio_idregs(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
u32 reg = 0;
switch (offset + GICD_IDREGS) {
case GICD_PIDR2:
reg = 0x3b;
break;
}
vgic_reg_access(mmio, ®, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
return false;
}
static const struct vgic_io_range vgic_v3_dist_ranges[] = {
{
.base = GICD_CTLR,
.len = 0x04,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_ctlr,
},
{
.base = GICD_TYPER,
.len = 0x04,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_typer,
},
{
.base = GICD_IIDR,
.len = 0x04,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_iidr,
},
{
/* this register is optional, it is RAZ/WI if not implemented */
.base = GICD_STATUSR,
.len = 0x04,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_raz_wi,
},
{
/* this write only register is WI when TYPER.MBIS=0 */
.base = GICD_SETSPI_NSR,
.len = 0x04,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_raz_wi,
},
{
/* this write only register is WI when TYPER.MBIS=0 */
.base = GICD_CLRSPI_NSR,
.len = 0x04,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_raz_wi,
},
{
/* this is RAZ/WI when DS=1 */
.base = GICD_SETSPI_SR,
.len = 0x04,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_raz_wi,
},
{
/* this is RAZ/WI when DS=1 */
.base = GICD_CLRSPI_SR,
.len = 0x04,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_raz_wi,
},
{
.base = GICD_IGROUPR,
.len = 0x80,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_rao_wi,
},
{
.base = GICD_ISENABLER,
.len = 0x80,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_set_enable_reg_dist,
},
{
.base = GICD_ICENABLER,
.len = 0x80,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_clear_enable_reg_dist,
},
{
.base = GICD_ISPENDR,
.len = 0x80,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_set_pending_reg_dist,
},
{
.base = GICD_ICPENDR,
.len = 0x80,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_clear_pending_reg_dist,
},
{
.base = GICD_ISACTIVER,
.len = 0x80,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_raz_wi,
},
{
.base = GICD_ICACTIVER,
.len = 0x80,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_raz_wi,
},
{
.base = GICD_IPRIORITYR,
.len = 0x400,
.bits_per_irq = 8,
.handle_mmio = handle_mmio_priority_reg_dist,
},
{
/* TARGETSRn is RES0 when ARE=1 */
.base = GICD_ITARGETSR,
.len = 0x400,
.bits_per_irq = 8,
.handle_mmio = handle_mmio_raz_wi,
},
{
.base = GICD_ICFGR,
.len = 0x100,
.bits_per_irq = 2,
.handle_mmio = handle_mmio_cfg_reg_dist,
},
{
/* this is RAZ/WI when DS=1 */
.base = GICD_IGRPMODR,
.len = 0x80,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_raz_wi,
},
{
/* this is RAZ/WI when DS=1 */
.base = GICD_NSACR,
.len = 0x100,
.bits_per_irq = 2,
.handle_mmio = handle_mmio_raz_wi,
},
{
/* this is RAZ/WI when ARE=1 */
.base = GICD_SGIR,
.len = 0x04,
.handle_mmio = handle_mmio_raz_wi,
},
{
/* this is RAZ/WI when ARE=1 */
.base = GICD_CPENDSGIR,
.len = 0x10,
.handle_mmio = handle_mmio_raz_wi,
},
{
/* this is RAZ/WI when ARE=1 */
.base = GICD_SPENDSGIR,
.len = 0x10,
.handle_mmio = handle_mmio_raz_wi,
},
{
.base = GICD_IROUTER + 0x100,
.len = 0x1ee0,
.bits_per_irq = 64,
.handle_mmio = handle_mmio_route_reg,
},
{
.base = GICD_IDREGS,
.len = 0x30,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_idregs,
},
{},
};
static bool handle_mmio_ctlr_redist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
/* since we don't support LPIs, this register is zero for now */
vgic_reg_access(mmio, NULL, offset,
ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
return false;
}
static bool handle_mmio_typer_redist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
u32 reg;
u64 mpidr;
struct kvm_vcpu *redist_vcpu = mmio->private;
int target_vcpu_id = redist_vcpu->vcpu_id;
/* the upper 32 bits contain the affinity value */
if ((offset & ~3) == 4) {
mpidr = kvm_vcpu_get_mpidr_aff(redist_vcpu);
reg = compress_mpidr(mpidr);
vgic_reg_access(mmio, ®, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
return false;
}
reg = redist_vcpu->vcpu_id << 8;
if (target_vcpu_id == atomic_read(&vcpu->kvm->online_vcpus) - 1)
reg |= GICR_TYPER_LAST;
vgic_reg_access(mmio, ®, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
return false;
}
static bool handle_mmio_set_enable_reg_redist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
struct kvm_vcpu *redist_vcpu = mmio->private;
return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
redist_vcpu->vcpu_id,
ACCESS_WRITE_SETBIT);
}
static bool handle_mmio_clear_enable_reg_redist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
struct kvm_vcpu *redist_vcpu = mmio->private;
return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
redist_vcpu->vcpu_id,
ACCESS_WRITE_CLEARBIT);
}
static bool handle_mmio_set_pending_reg_redist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
struct kvm_vcpu *redist_vcpu = mmio->private;
return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset,
redist_vcpu->vcpu_id);
}
static bool handle_mmio_clear_pending_reg_redist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
struct kvm_vcpu *redist_vcpu = mmio->private;
return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset,
redist_vcpu->vcpu_id);
}
static bool handle_mmio_priority_reg_redist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
struct kvm_vcpu *redist_vcpu = mmio->private;
u32 *reg;
reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
redist_vcpu->vcpu_id, offset);
vgic_reg_access(mmio, reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
return false;
}
static bool handle_mmio_cfg_reg_redist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
struct kvm_vcpu *redist_vcpu = mmio->private;
u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
redist_vcpu->vcpu_id, offset >> 1);
return vgic_handle_cfg_reg(reg, mmio, offset);
}
#define SGI_base(x) ((x) + SZ_64K)
static const struct vgic_io_range vgic_redist_ranges[] = {
{
.base = GICR_CTLR,
.len = 0x04,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_ctlr_redist,
},
{
.base = GICR_TYPER,
.len = 0x08,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_typer_redist,
},
{
.base = GICR_IIDR,
.len = 0x04,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_iidr,
},
{
.base = GICR_WAKER,
.len = 0x04,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_raz_wi,
},
{
.base = GICR_IDREGS,
.len = 0x30,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_idregs,
},
{
.base = SGI_base(GICR_IGROUPR0),
.len = 0x04,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_rao_wi,
},
{
.base = SGI_base(GICR_ISENABLER0),
.len = 0x04,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_set_enable_reg_redist,
},
{
.base = SGI_base(GICR_ICENABLER0),
.len = 0x04,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_clear_enable_reg_redist,
},
{
.base = SGI_base(GICR_ISPENDR0),
.len = 0x04,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_set_pending_reg_redist,
},
{
.base = SGI_base(GICR_ICPENDR0),
.len = 0x04,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_clear_pending_reg_redist,
},
{
.base = SGI_base(GICR_ISACTIVER0),
.len = 0x04,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_raz_wi,
},
{
.base = SGI_base(GICR_ICACTIVER0),
.len = 0x04,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_raz_wi,
},
{
.base = SGI_base(GICR_IPRIORITYR0),
.len = 0x20,
.bits_per_irq = 8,
.handle_mmio = handle_mmio_priority_reg_redist,
},
{
.base = SGI_base(GICR_ICFGR0),
.len = 0x08,
.bits_per_irq = 2,
.handle_mmio = handle_mmio_cfg_reg_redist,
},
{
.base = SGI_base(GICR_IGRPMODR0),
.len = 0x04,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_raz_wi,
},
{
.base = SGI_base(GICR_NSACR),
.len = 0x04,
.handle_mmio = handle_mmio_raz_wi,
},
{},
};
static bool vgic_v3_queue_sgi(struct kvm_vcpu *vcpu, int irq)
{
if (vgic_queue_irq(vcpu, 0, irq)) {
vgic_dist_irq_clear_pending(vcpu, irq);
vgic_cpu_irq_clear(vcpu, irq);
return true;
}
return false;
}
static int vgic_v3_map_resources(struct kvm *kvm,
const struct vgic_params *params)
{
int ret = 0;
struct vgic_dist *dist = &kvm->arch.vgic;
gpa_t rdbase = dist->vgic_redist_base;
struct vgic_io_device *iodevs = NULL;
int i;
if (!irqchip_in_kernel(kvm))
return 0;
mutex_lock(&kvm->lock);
if (vgic_ready(kvm))
goto out;
if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) ||
IS_VGIC_ADDR_UNDEF(dist->vgic_redist_base)) {
kvm_err("Need to set vgic distributor addresses first\n");
ret = -ENXIO;
goto out;
}
/*
* For a VGICv3 we require the userland to explicitly initialize
* the VGIC before we need to use it.
*/
if (!vgic_initialized(kvm)) {
ret = -EBUSY;
goto out;
}
ret = vgic_register_kvm_io_dev(kvm, dist->vgic_dist_base,
GIC_V3_DIST_SIZE, vgic_v3_dist_ranges,
-1, &dist->dist_iodev);
if (ret)
goto out;
iodevs = kcalloc(dist->nr_cpus, sizeof(iodevs[0]), GFP_KERNEL);
if (!iodevs) {
ret = -ENOMEM;
goto out_unregister;
}
for (i = 0; i < dist->nr_cpus; i++) {
ret = vgic_register_kvm_io_dev(kvm, rdbase,
SZ_128K, vgic_redist_ranges,
i, &iodevs[i]);
if (ret)
goto out_unregister;
rdbase += GIC_V3_REDIST_SIZE;
}
dist->redist_iodevs = iodevs;
dist->ready = true;
goto out;
out_unregister:
kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS, &dist->dist_iodev.dev);
if (iodevs) {
for (i = 0; i < dist->nr_cpus; i++) {
if (iodevs[i].dev.ops)
kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
&iodevs[i].dev);
}
}
out:
if (ret)
kvm_vgic_destroy(kvm);
mutex_unlock(&kvm->lock);
return ret;
}
static int vgic_v3_init_model(struct kvm *kvm)
{
int i;
u32 mpidr;
struct vgic_dist *dist = &kvm->arch.vgic;
int nr_spis = dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
dist->irq_spi_mpidr = kcalloc(nr_spis, sizeof(dist->irq_spi_mpidr[0]),
GFP_KERNEL);
if (!dist->irq_spi_mpidr)
return -ENOMEM;
/* Initialize the target VCPUs for each IRQ to VCPU 0 */
mpidr = compress_mpidr(kvm_vcpu_get_mpidr_aff(kvm_get_vcpu(kvm, 0)));
for (i = VGIC_NR_PRIVATE_IRQS; i < dist->nr_irqs; i++) {
dist->irq_spi_cpu[i - VGIC_NR_PRIVATE_IRQS] = 0;
dist->irq_spi_mpidr[i - VGIC_NR_PRIVATE_IRQS] = mpidr;
vgic_bitmap_set_irq_val(dist->irq_spi_target, 0, i, 1);
}
return 0;
}
/* GICv3 does not keep track of SGI sources anymore. */
static void vgic_v3_add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
{
}
void vgic_v3_init_emulation(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
dist->vm_ops.queue_sgi = vgic_v3_queue_sgi;
dist->vm_ops.add_sgi_source = vgic_v3_add_sgi_source;
dist->vm_ops.init_model = vgic_v3_init_model;
dist->vm_ops.map_resources = vgic_v3_map_resources;
kvm->arch.max_vcpus = KVM_MAX_VCPUS;
}
/*
* Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
* generation register ICC_SGI1R_EL1) with a given VCPU.
* If the VCPU's MPIDR matches, return the level0 affinity, otherwise
* return -1.
*/
static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
{
unsigned long affinity;
int level0;
/*
* Split the current VCPU's MPIDR into affinity level 0 and the
* rest as this is what we have to compare against.
*/
affinity = kvm_vcpu_get_mpidr_aff(vcpu);
level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
affinity &= ~MPIDR_LEVEL_MASK;
/* bail out if the upper three levels don't match */
if (sgi_aff != affinity)
return -1;
/* Is this VCPU's bit set in the mask ? */
if (!(sgi_cpu_mask & BIT(level0)))
return -1;
return level0;
}
#define SGI_AFFINITY_LEVEL(reg, level) \
((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
>> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
/**
* vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
* @vcpu: The VCPU requesting a SGI
* @reg: The value written into the ICC_SGI1R_EL1 register by that VCPU
*
* With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
* This will trap in sys_regs.c and call this function.
* This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
* target processors as well as a bitmask of 16 Aff0 CPUs.
* If the interrupt routing mode bit is not set, we iterate over all VCPUs to
* check for matching ones. If this bit is set, we signal all, but not the
* calling VCPU.
*/
void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg)
{
struct kvm *kvm = vcpu->kvm;
struct kvm_vcpu *c_vcpu;
struct vgic_dist *dist = &kvm->arch.vgic;
u16 target_cpus;
u64 mpidr;
int sgi, c;
int vcpu_id = vcpu->vcpu_id;
bool broadcast;
int updated = 0;
sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
broadcast = reg & BIT(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
mpidr = SGI_AFFINITY_LEVEL(reg, 3);
mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
/*
* We take the dist lock here, because we come from the sysregs
* code path and not from the MMIO one (which already takes the lock).
*/
spin_lock(&dist->lock);
/*
* We iterate over all VCPUs to find the MPIDRs matching the request.
* If we have handled one CPU, we clear it's bit to detect early
* if we are already finished. This avoids iterating through all
* VCPUs when most of the times we just signal a single VCPU.
*/
kvm_for_each_vcpu(c, c_vcpu, kvm) {
/* Exit early if we have dealt with all requested CPUs */
if (!broadcast && target_cpus == 0)
break;
/* Don't signal the calling VCPU */
if (broadcast && c == vcpu_id)
continue;
if (!broadcast) {
int level0;
level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
if (level0 == -1)
continue;
/* remove this matching VCPU from the mask */
target_cpus &= ~BIT(level0);
}
/* Flag the SGI as pending */
vgic_dist_irq_set_pending(c_vcpu, sgi);
updated = 1;
kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
}
if (updated)
vgic_update_state(vcpu->kvm);
spin_unlock(&dist->lock);
if (updated)
vgic_kick_vcpus(vcpu->kvm);
}
static int vgic_v3_create(struct kvm_device *dev, u32 type)
{
return kvm_vgic_create(dev->kvm, type);
}
static void vgic_v3_destroy(struct kvm_device *dev)
{
kfree(dev);
}
static int vgic_v3_set_attr(struct kvm_device *dev,
struct kvm_device_attr *attr)
{
int ret;
ret = vgic_set_common_attr(dev, attr);
if (ret != -ENXIO)
return ret;
switch (attr->group) {
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
return -ENXIO;
}
return -ENXIO;
}
static int vgic_v3_get_attr(struct kvm_device *dev,
struct kvm_device_attr *attr)
{
int ret;
ret = vgic_get_common_attr(dev, attr);
if (ret != -ENXIO)
return ret;
switch (attr->group) {
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
return -ENXIO;
}
return -ENXIO;
}
static int vgic_v3_has_attr(struct kvm_device *dev,
struct kvm_device_attr *attr)
{
switch (attr->group) {
case KVM_DEV_ARM_VGIC_GRP_ADDR:
switch (attr->attr) {
case KVM_VGIC_V2_ADDR_TYPE_DIST:
case KVM_VGIC_V2_ADDR_TYPE_CPU:
return -ENXIO;
case KVM_VGIC_V3_ADDR_TYPE_DIST:
case KVM_VGIC_V3_ADDR_TYPE_REDIST:
return 0;
}
break;
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
return -ENXIO;
case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
return 0;
case KVM_DEV_ARM_VGIC_GRP_CTRL:
switch (attr->attr) {
case KVM_DEV_ARM_VGIC_CTRL_INIT:
return 0;
}
}
return -ENXIO;
}
struct kvm_device_ops kvm_arm_vgic_v3_ops = {
.name = "kvm-arm-vgic-v3",
.create = vgic_v3_create,
.destroy = vgic_v3_destroy,
.set_attr = vgic_v3_set_attr,
.get_attr = vgic_v3_get_attr,
.has_attr = vgic_v3_has_attr,
};