- 根目录:
- drivers
- staging
- wilc1000
- wilc_wlan.c
/* ////////////////////////////////////////////////////////////////////////// */
/* */
/* Copyright (c) Atmel Corporation. All rights reserved. */
/* */
/* Module Name: wilc_wlan.c */
/* */
/* */
/* //////////////////////////////////////////////////////////////////////////// */
#include "wilc_wlan_if.h"
#include "wilc_wfi_netdevice.h"
#include "wilc_wlan_cfg.h"
/********************************************
*
* Global
*
********************************************/
extern wilc_hif_func_t hif_sdio;
extern wilc_hif_func_t hif_spi;
u32 wilc_get_chipid(u8 update);
typedef struct {
int quit;
/**
* input interface functions
**/
wilc_wlan_io_func_t io_func;
/**
* host interface functions
**/
wilc_hif_func_t hif_func;
/**
* configuration interface functions
**/
int cfg_frame_in_use;
wilc_cfg_frame_t cfg_frame;
u32 cfg_frame_offset;
int cfg_seq_no;
/**
* RX buffer
**/
#ifdef MEMORY_STATIC
u8 *rx_buffer;
u32 rx_buffer_offset;
#endif
/**
* TX buffer
**/
u8 *tx_buffer;
u32 tx_buffer_offset;
/**
* TX queue
**/
unsigned long txq_spinlock_flags;
struct txq_entry_t *txq_head;
struct txq_entry_t *txq_tail;
int txq_entries;
int txq_exit;
/**
* RX queue
**/
struct rxq_entry_t *rxq_head;
struct rxq_entry_t *rxq_tail;
int rxq_entries;
int rxq_exit;
} wilc_wlan_dev_t;
static wilc_wlan_dev_t g_wlan;
static inline void chip_allow_sleep(void);
static inline void chip_wakeup(void);
/********************************************
*
* Debug
*
********************************************/
static u32 dbgflag = N_INIT | N_ERR | N_INTR | N_TXQ | N_RXQ;
static void wilc_debug(u32 flag, char *fmt, ...)
{
char buf[256];
va_list args;
if (flag & dbgflag) {
va_start(args, fmt);
vsprintf(buf, fmt, args);
va_end(args);
linux_wlan_dbg(buf);
}
}
static CHIP_PS_STATE_T genuChipPSstate = CHIP_WAKEDUP;
/*acquire_bus() and release_bus() are made static inline functions*/
/*as a temporary workaround to fix a problem of receiving*/
/*unknown interrupt from FW*/
static inline void acquire_bus(BUS_ACQUIRE_T acquire)
{
mutex_lock(&g_linux_wlan->hif_cs);
#ifndef WILC_OPTIMIZE_SLEEP_INT
if (genuChipPSstate != CHIP_WAKEDUP)
#endif
{
if (acquire == ACQUIRE_AND_WAKEUP)
chip_wakeup();
}
}
static inline void release_bus(BUS_RELEASE_T release)
{
#ifdef WILC_OPTIMIZE_SLEEP_INT
if (release == RELEASE_ALLOW_SLEEP)
chip_allow_sleep();
#endif
mutex_unlock(&g_linux_wlan->hif_cs);
}
/********************************************
*
* Queue
*
********************************************/
static void wilc_wlan_txq_remove(struct txq_entry_t *tqe)
{
wilc_wlan_dev_t *p = &g_wlan;
if (tqe == p->txq_head) {
p->txq_head = tqe->next;
if (p->txq_head)
p->txq_head->prev = NULL;
} else if (tqe == p->txq_tail) {
p->txq_tail = (tqe->prev);
if (p->txq_tail)
p->txq_tail->next = NULL;
} else {
tqe->prev->next = tqe->next;
tqe->next->prev = tqe->prev;
}
p->txq_entries -= 1;
}
static struct txq_entry_t *wilc_wlan_txq_remove_from_head(void)
{
struct txq_entry_t *tqe;
wilc_wlan_dev_t *p = &g_wlan;
unsigned long flags;
spin_lock_irqsave(&g_linux_wlan->txq_spinlock, flags);
if (p->txq_head) {
tqe = p->txq_head;
p->txq_head = tqe->next;
if (p->txq_head)
p->txq_head->prev = NULL;
p->txq_entries -= 1;
} else {
tqe = NULL;
}
spin_unlock_irqrestore(&g_linux_wlan->txq_spinlock, flags);
return tqe;
}
static void wilc_wlan_txq_add_to_tail(struct txq_entry_t *tqe)
{
wilc_wlan_dev_t *p = &g_wlan;
unsigned long flags;
spin_lock_irqsave(&g_linux_wlan->txq_spinlock, flags);
if (p->txq_head == NULL) {
tqe->next = NULL;
tqe->prev = NULL;
p->txq_head = tqe;
p->txq_tail = tqe;
} else {
tqe->next = NULL;
tqe->prev = p->txq_tail;
p->txq_tail->next = tqe;
p->txq_tail = tqe;
}
p->txq_entries += 1;
PRINT_D(TX_DBG, "Number of entries in TxQ = %d\n", p->txq_entries);
spin_unlock_irqrestore(&g_linux_wlan->txq_spinlock, flags);
/**
* wake up TX queue
**/
PRINT_D(TX_DBG, "Wake the txq_handling\n");
up(&g_linux_wlan->txq_event);
}
static int wilc_wlan_txq_add_to_head(struct txq_entry_t *tqe)
{
wilc_wlan_dev_t *p = &g_wlan;
unsigned long flags;
if (linux_wlan_lock_timeout(&g_linux_wlan->txq_add_to_head_cs,
CFG_PKTS_TIMEOUT))
return -1;
spin_lock_irqsave(&g_linux_wlan->txq_spinlock, flags);
if (p->txq_head == NULL) {
tqe->next = NULL;
tqe->prev = NULL;
p->txq_head = tqe;
p->txq_tail = tqe;
} else {
tqe->next = p->txq_head;
tqe->prev = NULL;
p->txq_head->prev = tqe;
p->txq_head = tqe;
}
p->txq_entries += 1;
PRINT_D(TX_DBG, "Number of entries in TxQ = %d\n", p->txq_entries);
spin_unlock_irqrestore(&g_linux_wlan->txq_spinlock, flags);
up(&g_linux_wlan->txq_add_to_head_cs);
/**
* wake up TX queue
**/
up(&g_linux_wlan->txq_event);
PRINT_D(TX_DBG, "Wake up the txq_handler\n");
return 0;
}
u32 Statisitcs_totalAcks = 0, Statisitcs_DroppedAcks = 0;
#ifdef TCP_ACK_FILTER
struct Ack_session_info;
struct Ack_session_info {
u32 Ack_seq_num;
u32 Bigger_Ack_num;
u16 src_port;
u16 dst_port;
u16 status;
};
typedef struct {
u32 ack_num;
u32 Session_index;
struct txq_entry_t *txqe;
} Pending_Acks_info_t /*Ack_info_t*/;
struct Ack_session_info *Free_head;
struct Ack_session_info *Alloc_head;
#define NOT_TCP_ACK (-1)
#define MAX_TCP_SESSION 25
#define MAX_PENDING_ACKS 256
struct Ack_session_info Acks_keep_track_info[2 * MAX_TCP_SESSION];
Pending_Acks_info_t Pending_Acks_info[MAX_PENDING_ACKS];
u32 PendingAcks_arrBase;
u32 Opened_TCP_session;
u32 Pending_Acks;
static inline int Init_TCP_tracking(void)
{
return 0;
}
static inline int add_TCP_track_session(u32 src_prt, u32 dst_prt, u32 seq)
{
Acks_keep_track_info[Opened_TCP_session].Ack_seq_num = seq;
Acks_keep_track_info[Opened_TCP_session].Bigger_Ack_num = 0;
Acks_keep_track_info[Opened_TCP_session].src_port = src_prt;
Acks_keep_track_info[Opened_TCP_session].dst_port = dst_prt;
Opened_TCP_session++;
PRINT_D(TCP_ENH, "TCP Session %d to Ack %d\n", Opened_TCP_session, seq);
return 0;
}
static inline int Update_TCP_track_session(u32 index, u32 Ack)
{
if (Ack > Acks_keep_track_info[index].Bigger_Ack_num)
Acks_keep_track_info[index].Bigger_Ack_num = Ack;
return 0;
}
static inline int add_TCP_Pending_Ack(u32 Ack, u32 Session_index, struct txq_entry_t *txqe)
{
Statisitcs_totalAcks++;
if (Pending_Acks < MAX_PENDING_ACKS) {
Pending_Acks_info[PendingAcks_arrBase + Pending_Acks].ack_num = Ack;
Pending_Acks_info[PendingAcks_arrBase + Pending_Acks].txqe = txqe;
Pending_Acks_info[PendingAcks_arrBase + Pending_Acks].Session_index = Session_index;
txqe->tcp_PendingAck_index = PendingAcks_arrBase + Pending_Acks;
Pending_Acks++;
} else {
}
return 0;
}
static inline int remove_TCP_related(void)
{
wilc_wlan_dev_t *p = &g_wlan;
unsigned long flags;
spin_lock_irqsave(&g_linux_wlan->txq_spinlock, flags);
spin_unlock_irqrestore(&g_linux_wlan->txq_spinlock, flags);
return 0;
}
static inline int tcp_process(struct net_device *dev, struct txq_entry_t *tqe)
{
int ret;
u8 *eth_hdr_ptr;
u8 *buffer = tqe->buffer;
unsigned short h_proto;
int i;
wilc_wlan_dev_t *p = &g_wlan;
unsigned long flags;
perInterface_wlan_t *nic;
struct wilc *wilc;
nic = netdev_priv(dev);
wilc = nic->wilc;
spin_lock_irqsave(&wilc->txq_spinlock, flags);
eth_hdr_ptr = &buffer[0];
h_proto = ntohs(*((unsigned short *)ð_hdr_ptr[12]));
if (h_proto == 0x0800) { /* IP */
u8 *ip_hdr_ptr;
u8 protocol;
ip_hdr_ptr = &buffer[ETHERNET_HDR_LEN];
protocol = ip_hdr_ptr[9];
if (protocol == 0x06) {
u8 *tcp_hdr_ptr;
u32 IHL, Total_Length, Data_offset;
tcp_hdr_ptr = &ip_hdr_ptr[IP_HDR_LEN];
IHL = (ip_hdr_ptr[0] & 0xf) << 2;
Total_Length = (((u32)ip_hdr_ptr[2]) << 8) + ((u32)ip_hdr_ptr[3]);
Data_offset = (((u32)tcp_hdr_ptr[12] & 0xf0) >> 2);
if (Total_Length == (IHL + Data_offset)) { /*we want to recognize the clear Acks(packet only carry Ack infos not with data) so data size must be equal zero*/
u32 seq_no, Ack_no;
seq_no = (((u32)tcp_hdr_ptr[4]) << 24) + (((u32)tcp_hdr_ptr[5]) << 16) + (((u32)tcp_hdr_ptr[6]) << 8) + ((u32)tcp_hdr_ptr[7]);
Ack_no = (((u32)tcp_hdr_ptr[8]) << 24) + (((u32)tcp_hdr_ptr[9]) << 16) + (((u32)tcp_hdr_ptr[10]) << 8) + ((u32)tcp_hdr_ptr[11]);
for (i = 0; i < Opened_TCP_session; i++) {
if (Acks_keep_track_info[i].Ack_seq_num == seq_no) {
Update_TCP_track_session(i, Ack_no);
break;
}
}
if (i == Opened_TCP_session)
add_TCP_track_session(0, 0, seq_no);
add_TCP_Pending_Ack(Ack_no, i, tqe);
}
} else {
ret = 0;
}
} else {
ret = 0;
}
spin_unlock_irqrestore(&wilc->txq_spinlock, flags);
return ret;
}
static int wilc_wlan_txq_filter_dup_tcp_ack(struct net_device *dev)
{
perInterface_wlan_t *nic;
struct wilc *wilc;
u32 i = 0;
u32 Dropped = 0;
wilc_wlan_dev_t *p = &g_wlan;
nic = netdev_priv(dev);
wilc = nic->wilc;
spin_lock_irqsave(&wilc->txq_spinlock, p->txq_spinlock_flags);
for (i = PendingAcks_arrBase; i < (PendingAcks_arrBase + Pending_Acks); i++) {
if (Pending_Acks_info[i].ack_num < Acks_keep_track_info[Pending_Acks_info[i].Session_index].Bigger_Ack_num) {
struct txq_entry_t *tqe;
PRINT_D(TCP_ENH, "DROP ACK: %u\n", Pending_Acks_info[i].ack_num);
tqe = Pending_Acks_info[i].txqe;
if (tqe) {
wilc_wlan_txq_remove(tqe);
Statisitcs_DroppedAcks++;
tqe->status = 1; /* mark the packet send */
if (tqe->tx_complete_func)
tqe->tx_complete_func(tqe->priv, tqe->status);
kfree(tqe);
Dropped++;
}
}
}
Pending_Acks = 0;
Opened_TCP_session = 0;
if (PendingAcks_arrBase == 0)
PendingAcks_arrBase = MAX_TCP_SESSION;
else
PendingAcks_arrBase = 0;
spin_unlock_irqrestore(&wilc->txq_spinlock, p->txq_spinlock_flags);
while (Dropped > 0) {
/*consume the semaphore count of the removed packet*/
linux_wlan_lock_timeout(&wilc->txq_event, 1);
Dropped--;
}
return 1;
}
#endif
bool EnableTCPAckFilter = false;
void Enable_TCP_ACK_Filter(bool value)
{
EnableTCPAckFilter = value;
}
bool is_TCP_ACK_Filter_Enabled(void)
{
return EnableTCPAckFilter;
}
static int wilc_wlan_txq_add_cfg_pkt(u8 *buffer, u32 buffer_size)
{
wilc_wlan_dev_t *p = &g_wlan;
struct txq_entry_t *tqe;
PRINT_D(TX_DBG, "Adding config packet ...\n");
if (p->quit) {
PRINT_D(TX_DBG, "Return due to clear function\n");
up(&g_linux_wlan->cfg_event);
return 0;
}
tqe = kmalloc(sizeof(struct txq_entry_t), GFP_ATOMIC);
if (tqe == NULL) {
PRINT_ER("Failed to allocate memory\n");
return 0;
}
tqe->type = WILC_CFG_PKT;
tqe->buffer = buffer;
tqe->buffer_size = buffer_size;
tqe->tx_complete_func = NULL;
tqe->priv = NULL;
#ifdef TCP_ACK_FILTER
tqe->tcp_PendingAck_index = NOT_TCP_ACK;
#endif
/**
* Configuration packet always at the front
**/
PRINT_D(TX_DBG, "Adding the config packet at the Queue tail\n");
if (wilc_wlan_txq_add_to_head(tqe))
return 0;
return 1;
}
int wilc_wlan_txq_add_net_pkt(struct net_device *dev, void *priv, u8 *buffer,
u32 buffer_size, wilc_tx_complete_func_t func)
{
wilc_wlan_dev_t *p = &g_wlan;
struct txq_entry_t *tqe;
if (p->quit)
return 0;
tqe = kmalloc(sizeof(struct txq_entry_t), GFP_ATOMIC);
if (tqe == NULL)
return 0;
tqe->type = WILC_NET_PKT;
tqe->buffer = buffer;
tqe->buffer_size = buffer_size;
tqe->tx_complete_func = func;
tqe->priv = priv;
PRINT_D(TX_DBG, "Adding mgmt packet at the Queue tail\n");
#ifdef TCP_ACK_FILTER
tqe->tcp_PendingAck_index = NOT_TCP_ACK;
if (is_TCP_ACK_Filter_Enabled())
tcp_process(dev, tqe);
#endif
wilc_wlan_txq_add_to_tail(tqe);
/*return number of itemes in the queue*/
return p->txq_entries;
}
int wilc_wlan_txq_add_mgmt_pkt(void *priv, u8 *buffer, u32 buffer_size, wilc_tx_complete_func_t func)
{
wilc_wlan_dev_t *p = &g_wlan;
struct txq_entry_t *tqe;
if (p->quit)
return 0;
tqe = kmalloc(sizeof(struct txq_entry_t), GFP_KERNEL);
if (tqe == NULL)
return 0;
tqe->type = WILC_MGMT_PKT;
tqe->buffer = buffer;
tqe->buffer_size = buffer_size;
tqe->tx_complete_func = func;
tqe->priv = priv;
#ifdef TCP_ACK_FILTER
tqe->tcp_PendingAck_index = NOT_TCP_ACK;
#endif
PRINT_D(TX_DBG, "Adding Network packet at the Queue tail\n");
wilc_wlan_txq_add_to_tail(tqe);
return 1;
}
static struct txq_entry_t *wilc_wlan_txq_get_first(void)
{
wilc_wlan_dev_t *p = &g_wlan;
struct txq_entry_t *tqe;
unsigned long flags;
spin_lock_irqsave(&g_linux_wlan->txq_spinlock, flags);
tqe = p->txq_head;
spin_unlock_irqrestore(&g_linux_wlan->txq_spinlock, flags);
return tqe;
}
static struct txq_entry_t *wilc_wlan_txq_get_next(struct wilc *wilc,
struct txq_entry_t *tqe)
{
unsigned long flags;
spin_lock_irqsave(&wilc->txq_spinlock, flags);
tqe = tqe->next;
spin_unlock_irqrestore(&wilc->txq_spinlock, flags);
return tqe;
}
static int wilc_wlan_rxq_add(struct wilc *wilc, struct rxq_entry_t *rqe)
{
wilc_wlan_dev_t *p = &g_wlan;
if (p->quit)
return 0;
mutex_lock(&wilc->rxq_cs);
if (p->rxq_head == NULL) {
PRINT_D(RX_DBG, "Add to Queue head\n");
rqe->next = NULL;
p->rxq_head = rqe;
p->rxq_tail = rqe;
} else {
PRINT_D(RX_DBG, "Add to Queue tail\n");
p->rxq_tail->next = rqe;
rqe->next = NULL;
p->rxq_tail = rqe;
}
p->rxq_entries += 1;
PRINT_D(RX_DBG, "Number of queue entries: %d\n", p->rxq_entries);
mutex_unlock(&wilc->rxq_cs);
return p->rxq_entries;
}
static struct rxq_entry_t *wilc_wlan_rxq_remove(struct wilc *wilc)
{
wilc_wlan_dev_t *p = &g_wlan;
PRINT_D(RX_DBG, "Getting rxQ element\n");
if (p->rxq_head) {
struct rxq_entry_t *rqe;
mutex_lock(&wilc->rxq_cs);
rqe = p->rxq_head;
p->rxq_head = p->rxq_head->next;
p->rxq_entries -= 1;
PRINT_D(RX_DBG, "RXQ entries decreased\n");
mutex_unlock(&wilc->rxq_cs);
return rqe;
}
PRINT_D(RX_DBG, "Nothing to get from Q\n");
return NULL;
}
/********************************************
*
* Power Save handle functions
*
********************************************/
#ifdef WILC_OPTIMIZE_SLEEP_INT
static inline void chip_allow_sleep(void)
{
u32 reg = 0;
/* Clear bit 1 */
g_wlan.hif_func.hif_read_reg(0xf0, ®);
g_wlan.hif_func.hif_write_reg(0xf0, reg & ~BIT(0));
}
static inline void chip_wakeup(void)
{
u32 reg, clk_status_reg, trials = 0;
u32 sleep_time;
if ((g_wlan.io_func.io_type & 0x1) == HIF_SPI) {
do {
g_wlan.hif_func.hif_read_reg(1, ®);
/* Set bit 1 */
g_wlan.hif_func.hif_write_reg(1, reg | BIT(1));
/* Clear bit 1*/
g_wlan.hif_func.hif_write_reg(1, reg & ~BIT(1));
do {
/* Wait for the chip to stabilize*/
usleep_range(2 * 1000, 2 * 1000);
/* Make sure chip is awake. This is an extra step that can be removed */
/* later to avoid the bus access overhead */
if ((wilc_get_chipid(true) == 0))
wilc_debug(N_ERR, "Couldn't read chip id. Wake up failed\n");
} while ((wilc_get_chipid(true) == 0) && ((++trials % 3) == 0));
} while (wilc_get_chipid(true) == 0);
} else if ((g_wlan.io_func.io_type & 0x1) == HIF_SDIO) {
g_wlan.hif_func.hif_read_reg(0xf0, ®);
do {
/* Set bit 1 */
g_wlan.hif_func.hif_write_reg(0xf0, reg | BIT(0));
/* Check the clock status */
g_wlan.hif_func.hif_read_reg(0xf1, &clk_status_reg);
/* in case of clocks off, wait 2ms, and check it again. */
/* if still off, wait for another 2ms, for a total wait of 6ms. */
/* If still off, redo the wake up sequence */
while (((clk_status_reg & 0x1) == 0) && (((++trials) % 3) == 0)) {
/* Wait for the chip to stabilize*/
usleep_range(2 * 1000, 2 * 1000);
/* Make sure chip is awake. This is an extra step that can be removed */
/* later to avoid the bus access overhead */
g_wlan.hif_func.hif_read_reg(0xf1, &clk_status_reg);
if ((clk_status_reg & 0x1) == 0)
wilc_debug(N_ERR, "clocks still OFF. Wake up failed\n");
}
/* in case of failure, Reset the wakeup bit to introduce a new edge on the next loop */
if ((clk_status_reg & 0x1) == 0) {
/* Reset bit 0 */
g_wlan.hif_func.hif_write_reg(0xf0, reg &
(~BIT(0)));
}
} while ((clk_status_reg & 0x1) == 0);
}
if (genuChipPSstate == CHIP_SLEEPING_MANUAL) {
g_wlan.hif_func.hif_read_reg(0x1C0C, ®);
reg &= ~BIT(0);
g_wlan.hif_func.hif_write_reg(0x1C0C, reg);
if (wilc_get_chipid(false) >= 0x1002b0) {
/* Enable PALDO back right after wakeup */
u32 val32;
g_wlan.hif_func.hif_read_reg(0x1e1c, &val32);
val32 |= BIT(6);
g_wlan.hif_func.hif_write_reg(0x1e1c, val32);
g_wlan.hif_func.hif_read_reg(0x1e9c, &val32);
val32 |= BIT(6);
g_wlan.hif_func.hif_write_reg(0x1e9c, val32);
}
}
genuChipPSstate = CHIP_WAKEDUP;
}
#else
static inline void chip_wakeup(void)
{
u32 reg, trials = 0;
do {
if ((g_wlan.io_func.io_type & 0x1) == HIF_SPI) {
g_wlan.hif_func.hif_read_reg(1, ®);
/* Make sure bit 1 is 0 before we start. */
g_wlan.hif_func.hif_write_reg(1, reg & ~BIT(1));
/* Set bit 1 */
g_wlan.hif_func.hif_write_reg(1, reg | BIT(1));
/* Clear bit 1*/
g_wlan.hif_func.hif_write_reg(1, reg & ~BIT(1));
} else if ((g_wlan.io_func.io_type & 0x1) == HIF_SDIO) {
/* Make sure bit 0 is 0 before we start. */
g_wlan.hif_func.hif_read_reg(0xf0, ®);
g_wlan.hif_func.hif_write_reg(0xf0, reg & ~BIT(0));
/* Set bit 1 */
g_wlan.hif_func.hif_write_reg(0xf0, reg | BIT(0));
/* Clear bit 1 */
g_wlan.hif_func.hif_write_reg(0xf0, reg & ~BIT(0));
}
do {
/* Wait for the chip to stabilize*/
mdelay(3);
/* Make sure chip is awake. This is an extra step that can be removed */
/* later to avoid the bus access overhead */
if ((wilc_get_chipid(true) == 0))
wilc_debug(N_ERR, "Couldn't read chip id. Wake up failed\n");
} while ((wilc_get_chipid(true) == 0) && ((++trials % 3) == 0));
} while (wilc_get_chipid(true) == 0);
if (genuChipPSstate == CHIP_SLEEPING_MANUAL) {
g_wlan.hif_func.hif_read_reg(0x1C0C, ®);
reg &= ~BIT(0);
g_wlan.hif_func.hif_write_reg(0x1C0C, reg);
if (wilc_get_chipid(false) >= 0x1002b0) {
/* Enable PALDO back right after wakeup */
u32 val32;
g_wlan.hif_func.hif_read_reg(0x1e1c, &val32);
val32 |= BIT(6);
g_wlan.hif_func.hif_write_reg(0x1e1c, val32);
g_wlan.hif_func.hif_read_reg(0x1e9c, &val32);
val32 |= BIT(6);
g_wlan.hif_func.hif_write_reg(0x1e9c, val32);
}
}
genuChipPSstate = CHIP_WAKEDUP;
}
#endif
void chip_sleep_manually(u32 u32SleepTime)
{
if (genuChipPSstate != CHIP_WAKEDUP) {
/* chip is already sleeping. Do nothing */
return;
}
acquire_bus(ACQUIRE_ONLY);
#ifdef WILC_OPTIMIZE_SLEEP_INT
chip_allow_sleep();
#endif
/* Trigger the manual sleep interrupt */
g_wlan.hif_func.hif_write_reg(0x10a8, 1);
genuChipPSstate = CHIP_SLEEPING_MANUAL;
release_bus(RELEASE_ONLY);
}
/********************************************
*
* Tx, Rx queue handle functions
*
********************************************/
int wilc_wlan_handle_txq(struct net_device *dev, u32 *pu32TxqCount)
{
wilc_wlan_dev_t *p = (wilc_wlan_dev_t *)&g_wlan;
int i, entries = 0;
u32 sum;
u32 reg;
u8 *txb = p->tx_buffer;
u32 offset = 0;
int vmm_sz = 0;
struct txq_entry_t *tqe;
int ret = 0;
int counter;
int timeout;
u32 vmm_table[WILC_VMM_TBL_SIZE];
perInterface_wlan_t *nic;
struct wilc *wilc;
nic = netdev_priv(dev);
wilc = nic->wilc;
p->txq_exit = 0;
do {
if (p->quit)
break;
linux_wlan_lock_timeout(&wilc->txq_add_to_head_cs,
CFG_PKTS_TIMEOUT);
#ifdef TCP_ACK_FILTER
wilc_wlan_txq_filter_dup_tcp_ack(dev);
#endif
/**
* build the vmm list
**/
PRINT_D(TX_DBG, "Getting the head of the TxQ\n");
tqe = wilc_wlan_txq_get_first();
i = 0;
sum = 0;
do {
if ((tqe != NULL) && (i < (WILC_VMM_TBL_SIZE - 1)) /* reserve last entry to 0 */) {
if (tqe->type == WILC_CFG_PKT)
vmm_sz = ETH_CONFIG_PKT_HDR_OFFSET;
else if (tqe->type == WILC_NET_PKT)
vmm_sz = ETH_ETHERNET_HDR_OFFSET;
else
vmm_sz = HOST_HDR_OFFSET;
vmm_sz += tqe->buffer_size;
PRINT_D(TX_DBG, "VMM Size before alignment = %d\n", vmm_sz);
if (vmm_sz & 0x3) { /* has to be word aligned */
vmm_sz = (vmm_sz + 4) & ~0x3;
}
if ((sum + vmm_sz) > LINUX_TX_SIZE)
break;
PRINT_D(TX_DBG, "VMM Size AFTER alignment = %d\n", vmm_sz);
vmm_table[i] = vmm_sz / 4; /* table take the word size */
PRINT_D(TX_DBG, "VMMTable entry size = %d\n", vmm_table[i]);
if (tqe->type == WILC_CFG_PKT) {
vmm_table[i] |= BIT(10);
PRINT_D(TX_DBG, "VMMTable entry changed for CFG packet = %d\n", vmm_table[i]);
}
#ifdef BIG_ENDIAN
vmm_table[i] = BYTE_SWAP(vmm_table[i]);
#endif
i++;
sum += vmm_sz;
PRINT_D(TX_DBG, "sum = %d\n", sum);
tqe = wilc_wlan_txq_get_next(wilc, tqe);
} else {
break;
}
} while (1);
if (i == 0) { /* nothing in the queue */
PRINT_D(TX_DBG, "Nothing in TX-Q\n");
break;
} else {
PRINT_D(TX_DBG, "Mark the last entry in VMM table - number of previous entries = %d\n", i);
vmm_table[i] = 0x0; /* mark the last element to 0 */
}
acquire_bus(ACQUIRE_AND_WAKEUP);
counter = 0;
do {
ret = p->hif_func.hif_read_reg(WILC_HOST_TX_CTRL, ®);
if (!ret) {
wilc_debug(N_ERR, "[wilc txq]: fail can't read reg vmm_tbl_entry..\n");
break;
}
if ((reg & 0x1) == 0) {
/**
* write to vmm table
**/
PRINT_D(TX_DBG, "Writing VMM table ... with Size = %d\n", ((i + 1) * 4));
break;
} else {
counter++;
if (counter > 200) {
counter = 0;
PRINT_D(TX_DBG, "Looping in tx ctrl , forcce quit\n");
ret = p->hif_func.hif_write_reg(WILC_HOST_TX_CTRL, 0);
break;
}
/**
* wait for vmm table is ready
**/
PRINT_WRN(GENERIC_DBG, "[wilc txq]: warn, vmm table not clear yet, wait...\n");
release_bus(RELEASE_ALLOW_SLEEP);
usleep_range(3000, 3000);
acquire_bus(ACQUIRE_AND_WAKEUP);
}
} while (!p->quit);
if (!ret)
goto _end_;
timeout = 200;
do {
/**
* write to vmm table
**/
ret = p->hif_func.hif_block_tx(WILC_VMM_TBL_RX_SHADOW_BASE, (u8 *)vmm_table, ((i + 1) * 4));
if (!ret) {
wilc_debug(N_ERR, "ERR block TX of VMM table.\n");
break;
}
/**
* interrupt firmware
**/
ret = p->hif_func.hif_write_reg(WILC_HOST_VMM_CTL, 0x2);
if (!ret) {
wilc_debug(N_ERR, "[wilc txq]: fail can't write reg host_vmm_ctl..\n");
break;
}
/**
* wait for confirm...
**/
do {
ret = p->hif_func.hif_read_reg(WILC_HOST_VMM_CTL, ®);
if (!ret) {
wilc_debug(N_ERR, "[wilc txq]: fail can't read reg host_vmm_ctl..\n");
break;
}
if ((reg >> 2) & 0x1) {
/**
* Get the entries
**/
entries = ((reg >> 3) & 0x3f);
break;
} else {
release_bus(RELEASE_ALLOW_SLEEP);
usleep_range(3000, 3000);
acquire_bus(ACQUIRE_AND_WAKEUP);
PRINT_WRN(GENERIC_DBG, "Can't get VMM entery - reg = %2x\n", reg);
}
} while (--timeout);
if (timeout <= 0) {
ret = p->hif_func.hif_write_reg(WILC_HOST_VMM_CTL, 0x0);
break;
}
if (!ret)
break;
if (entries == 0) {
PRINT_WRN(GENERIC_DBG, "[wilc txq]: no more buffer in the chip (reg: %08x), retry later [[ %d, %x ]]\n", reg, i, vmm_table[i - 1]);
/* undo the transaction. */
ret = p->hif_func.hif_read_reg(WILC_HOST_TX_CTRL, ®);
if (!ret) {
wilc_debug(N_ERR, "[wilc txq]: fail can't read reg WILC_HOST_TX_CTRL..\n");
break;
}
reg &= ~BIT(0);
ret = p->hif_func.hif_write_reg(WILC_HOST_TX_CTRL, reg);
if (!ret) {
wilc_debug(N_ERR, "[wilc txq]: fail can't write reg WILC_HOST_TX_CTRL..\n");
break;
}
break;
} else {
break;
}
} while (1);
if (!ret)
goto _end_;
if (entries == 0) {
ret = WILC_TX_ERR_NO_BUF;
goto _end_;
}
/* since copying data into txb takes some time, then
* allow the bus lock to be released let the RX task go. */
release_bus(RELEASE_ALLOW_SLEEP);
/**
* Copy data to the TX buffer
**/
offset = 0;
i = 0;
do {
tqe = wilc_wlan_txq_remove_from_head();
if (tqe != NULL && (vmm_table[i] != 0)) {
u32 header, buffer_offset;
#ifdef BIG_ENDIAN
vmm_table[i] = BYTE_SWAP(vmm_table[i]);
#endif
vmm_sz = (vmm_table[i] & 0x3ff); /* in word unit */
vmm_sz *= 4;
header = (tqe->type << 31) | (tqe->buffer_size << 15) | vmm_sz;
if (tqe->type == WILC_MGMT_PKT)
header |= BIT(30);
else
header &= ~BIT(30);
#ifdef BIG_ENDIAN
header = BYTE_SWAP(header);
#endif
memcpy(&txb[offset], &header, 4);
if (tqe->type == WILC_CFG_PKT) {
buffer_offset = ETH_CONFIG_PKT_HDR_OFFSET;
}
else if (tqe->type == WILC_NET_PKT) {
char *pBSSID = ((struct tx_complete_data *)(tqe->priv))->pBssid;
buffer_offset = ETH_ETHERNET_HDR_OFFSET;
/* copy the bssid at the sart of the buffer */
memcpy(&txb[offset + 4], pBSSID, 6);
}
else {
buffer_offset = HOST_HDR_OFFSET;
}
memcpy(&txb[offset + buffer_offset], tqe->buffer, tqe->buffer_size);
offset += vmm_sz;
i++;
tqe->status = 1; /* mark the packet send */
if (tqe->tx_complete_func)
tqe->tx_complete_func(tqe->priv, tqe->status);
#ifdef TCP_ACK_FILTER
if (tqe->tcp_PendingAck_index != NOT_TCP_ACK)
Pending_Acks_info[tqe->tcp_PendingAck_index].txqe = NULL;
#endif
kfree(tqe);
} else {
break;
}
} while (--entries);
/**
* lock the bus
**/
acquire_bus(ACQUIRE_AND_WAKEUP);
ret = p->hif_func.hif_clear_int_ext(ENABLE_TX_VMM);
if (!ret) {
wilc_debug(N_ERR, "[wilc txq]: fail can't start tx VMM ...\n");
goto _end_;
}
/**
* transfer
**/
ret = p->hif_func.hif_block_tx_ext(0, txb, offset);
if (!ret) {
wilc_debug(N_ERR, "[wilc txq]: fail can't block tx ext...\n");
goto _end_;
}
_end_:
release_bus(RELEASE_ALLOW_SLEEP);
if (ret != 1)
break;
} while (0);
up(&wilc->txq_add_to_head_cs);
p->txq_exit = 1;
PRINT_D(TX_DBG, "THREAD: Exiting txq\n");
/* return tx[]q count */
*pu32TxqCount = p->txq_entries;
return ret;
}
static void wilc_wlan_handle_rxq(struct wilc *wilc)
{
wilc_wlan_dev_t *p = &g_wlan;
int offset = 0, size, has_packet = 0;
u8 *buffer;
struct rxq_entry_t *rqe;
p->rxq_exit = 0;
do {
if (p->quit) {
PRINT_D(RX_DBG, "exit 1st do-while due to Clean_UP function\n");
up(&wilc->cfg_event);
break;
}
rqe = wilc_wlan_rxq_remove(wilc);
if (rqe == NULL) {
PRINT_D(RX_DBG, "nothing in the queue - exit 1st do-while\n");
break;
}
buffer = rqe->buffer;
size = rqe->buffer_size;
PRINT_D(RX_DBG, "rxQ entery Size = %d - Address = %p\n", size, buffer);
offset = 0;
do {
u32 header;
u32 pkt_len, pkt_offset, tp_len;
int is_cfg_packet;
PRINT_D(RX_DBG, "In the 2nd do-while\n");
memcpy(&header, &buffer[offset], 4);
#ifdef BIG_ENDIAN
header = BYTE_SWAP(header);
#endif
PRINT_D(RX_DBG, "Header = %04x - Offset = %d\n", header, offset);
is_cfg_packet = (header >> 31) & 0x1;
pkt_offset = (header >> 22) & 0x1ff;
tp_len = (header >> 11) & 0x7ff;
pkt_len = header & 0x7ff;
if (pkt_len == 0 || tp_len == 0) {
wilc_debug(N_RXQ, "[wilc rxq]: data corrupt, packet len or tp_len is 0 [%d][%d]\n", pkt_len, tp_len);
break;
}
#define IS_MANAGMEMENT 0x100
#define IS_MANAGMEMENT_CALLBACK 0x080
#define IS_MGMT_STATUS_SUCCES 0x040
if (pkt_offset & IS_MANAGMEMENT) {
/* reset mgmt indicator bit, to use pkt_offeset in furthur calculations */
pkt_offset &= ~(IS_MANAGMEMENT | IS_MANAGMEMENT_CALLBACK | IS_MGMT_STATUS_SUCCES);
WILC_WFI_mgmt_rx(wilc, &buffer[offset + HOST_HDR_OFFSET], pkt_len);
}
else
{
if (!is_cfg_packet) {
if (pkt_len > 0) {
frmw_to_linux(wilc,
&buffer[offset],
pkt_len,
pkt_offset);
has_packet = 1;
}
} else {
wilc_cfg_rsp_t rsp;
wilc_wlan_cfg_indicate_rx(&buffer[pkt_offset + offset], pkt_len, &rsp);
if (rsp.type == WILC_CFG_RSP) {
/**
* wake up the waiting task...
**/
PRINT_D(RX_DBG, "p->cfg_seq_no = %d - rsp.seq_no = %d\n", p->cfg_seq_no, rsp.seq_no);
if (p->cfg_seq_no == rsp.seq_no)
up(&wilc->cfg_event);
} else if (rsp.type == WILC_CFG_RSP_STATUS) {
/**
* Call back to indicate status...
**/
linux_wlan_mac_indicate(wilc, WILC_MAC_INDICATE_STATUS);
} else if (rsp.type == WILC_CFG_RSP_SCAN) {
linux_wlan_mac_indicate(wilc, WILC_MAC_INDICATE_SCAN);
}
}
}
offset += tp_len;
if (offset >= size)
break;
} while (1);
#ifndef MEMORY_STATIC
kfree(buffer);
#endif
kfree(rqe);
if (has_packet)
linux_wlan_rx_complete();
} while (1);
p->rxq_exit = 1;
PRINT_D(RX_DBG, "THREAD: Exiting RX thread\n");
}
/********************************************
*
* Fast DMA Isr
*
********************************************/
static void wilc_unknown_isr_ext(void)
{
g_wlan.hif_func.hif_clear_int_ext(0);
}
static void wilc_pllupdate_isr_ext(u32 int_stats)
{
int trials = 10;
g_wlan.hif_func.hif_clear_int_ext(PLL_INT_CLR);
/* Waiting for PLL */
mdelay(WILC_PLL_TO);
/* poll till read a valid data */
while (!(ISWILC1000(wilc_get_chipid(true)) && --trials)) {
PRINT_D(TX_DBG, "PLL update retrying\n");
mdelay(1);
}
}
static void wilc_sleeptimer_isr_ext(u32 int_stats1)
{
g_wlan.hif_func.hif_clear_int_ext(SLEEP_INT_CLR);
#ifndef WILC_OPTIMIZE_SLEEP_INT
genuChipPSstate = CHIP_SLEEPING_AUTO;
#endif
}
static void wilc_wlan_handle_isr_ext(struct wilc *wilc, u32 int_status)
{
wilc_wlan_dev_t *p = &g_wlan;
#ifdef MEMORY_STATIC
u32 offset = p->rx_buffer_offset;
#endif
u8 *buffer = NULL;
u32 size;
u32 retries = 0;
int ret = 0;
struct rxq_entry_t *rqe;
/**
* Get the rx size
**/
size = ((int_status & 0x7fff) << 2);
while (!size && retries < 10) {
u32 time = 0;
/*looping more secure*/
/*zero size make a crashe because the dma will not happen and that will block the firmware*/
wilc_debug(N_ERR, "RX Size equal zero ... Trying to read it again for %d time\n", time++);
p->hif_func.hif_read_size(&size);
size = ((size & 0x7fff) << 2);
retries++;
}
if (size > 0) {
#ifdef MEMORY_STATIC
if (LINUX_RX_SIZE - offset < size)
offset = 0;
if (p->rx_buffer)
buffer = &p->rx_buffer[offset];
else {
wilc_debug(N_ERR, "[wilc isr]: fail Rx Buffer is NULL...drop the packets (%d)\n", size);
goto _end_;
}
#else
buffer = kmalloc(size, GFP_KERNEL);
if (buffer == NULL) {
wilc_debug(N_ERR, "[wilc isr]: fail alloc host memory...drop the packets (%d)\n", size);
usleep_range(100 * 1000, 100 * 1000);
goto _end_;
}
#endif
/**
* clear the chip's interrupt after getting size some register getting corrupted after clear the interrupt
**/
p->hif_func.hif_clear_int_ext(DATA_INT_CLR | ENABLE_RX_VMM);
/**
* start transfer
**/
ret = p->hif_func.hif_block_rx_ext(0, buffer, size);
if (!ret) {
wilc_debug(N_ERR, "[wilc isr]: fail block rx...\n");
goto _end_;
}
_end_:
if (ret) {
#ifdef MEMORY_STATIC
offset += size;
p->rx_buffer_offset = offset;
#endif
/**
* add to rx queue
**/
rqe = kmalloc(sizeof(struct rxq_entry_t), GFP_KERNEL);
if (rqe != NULL) {
rqe->buffer = buffer;
rqe->buffer_size = size;
PRINT_D(RX_DBG, "rxq entery Size= %d - Address = %p\n", rqe->buffer_size, rqe->buffer);
wilc_wlan_rxq_add(wilc, rqe);
}
} else {
#ifndef MEMORY_STATIC
kfree(buffer);
#endif
}
}
wilc_wlan_handle_rxq(wilc);
}
void wilc_handle_isr(void *wilc)
{
u32 int_status;
acquire_bus(ACQUIRE_AND_WAKEUP);
g_wlan.hif_func.hif_read_int(&int_status);
if (int_status & PLL_INT_EXT)
wilc_pllupdate_isr_ext(int_status);
if (int_status & DATA_INT_EXT) {
wilc_wlan_handle_isr_ext(wilc, int_status);
#ifndef WILC_OPTIMIZE_SLEEP_INT
/* Chip is up and talking*/
genuChipPSstate = CHIP_WAKEDUP;
#endif
}
if (int_status & SLEEP_INT_EXT)
wilc_sleeptimer_isr_ext(int_status);
if (!(int_status & (ALL_INT_EXT))) {
#ifdef WILC_SDIO
PRINT_D(TX_DBG, ">> UNKNOWN_INTERRUPT - 0x%08x\n", int_status);
#endif
wilc_unknown_isr_ext();
}
release_bus(RELEASE_ALLOW_SLEEP);
}
/********************************************
*
* Firmware download
*
********************************************/
int wilc_wlan_firmware_download(const u8 *buffer, u32 buffer_size)
{
wilc_wlan_dev_t *p = &g_wlan;
u32 offset;
u32 addr, size, size2, blksz;
u8 *dma_buffer;
int ret = 0;
blksz = BIT(12);
/* Allocate a DMA coherent buffer. */
dma_buffer = kmalloc(blksz, GFP_KERNEL);
if (dma_buffer == NULL) {
/*EIO 5*/
ret = -5;
PRINT_ER("Can't allocate buffer for firmware download IO error\n ");
goto _fail_1;
}
PRINT_D(INIT_DBG, "Downloading firmware size = %d ...\n", buffer_size);
/**
* load the firmware
**/
offset = 0;
do {
memcpy(&addr, &buffer[offset], 4);
memcpy(&size, &buffer[offset + 4], 4);
#ifdef BIG_ENDIAN
addr = BYTE_SWAP(addr);
size = BYTE_SWAP(size);
#endif
acquire_bus(ACQUIRE_ONLY);
offset += 8;
while (((int)size) && (offset < buffer_size)) {
if (size <= blksz)
size2 = size;
else
size2 = blksz;
/* Copy firmware into a DMA coherent buffer */
memcpy(dma_buffer, &buffer[offset], size2);
ret = p->hif_func.hif_block_tx(addr, dma_buffer, size2);
if (!ret)
break;
addr += size2;
offset += size2;
size -= size2;
}
release_bus(RELEASE_ONLY);
if (!ret) {
/*EIO 5*/
ret = -5;
PRINT_ER("Can't download firmware IO error\n ");
goto _fail_;
}
PRINT_D(INIT_DBG, "Offset = %d\n", offset);
} while (offset < buffer_size);
_fail_:
kfree(dma_buffer);
_fail_1:
return (ret < 0) ? ret : 0;
}
/********************************************
*
* Common
*
********************************************/
int wilc_wlan_start(void)
{
wilc_wlan_dev_t *p = &g_wlan;
u32 reg = 0;
int ret;
u32 chipid;
/**
* Set the host interface
**/
if (p->io_func.io_type == HIF_SDIO) {
reg = 0;
reg |= BIT(3); /* bug 4456 and 4557 */
} else if (p->io_func.io_type == HIF_SPI) {
reg = 1;
}
acquire_bus(ACQUIRE_ONLY);
ret = p->hif_func.hif_write_reg(WILC_VMM_CORE_CFG, reg);
if (!ret) {
wilc_debug(N_ERR, "[wilc start]: fail write reg vmm_core_cfg...\n");
release_bus(RELEASE_ONLY);
/* EIO 5*/
ret = -5;
return ret;
}
reg = 0;
#ifdef WILC_SDIO_IRQ_GPIO
reg |= WILC_HAVE_SDIO_IRQ_GPIO;
#endif
#ifdef WILC_DISABLE_PMU
#else
reg |= WILC_HAVE_USE_PMU;
#endif
#ifdef WILC_SLEEP_CLK_SRC_XO
reg |= WILC_HAVE_SLEEP_CLK_SRC_XO;
#elif defined WILC_SLEEP_CLK_SRC_RTC
reg |= WILC_HAVE_SLEEP_CLK_SRC_RTC;
#endif
#ifdef WILC_EXT_PA_INV_TX_RX
reg |= WILC_HAVE_EXT_PA_INV_TX_RX;
#endif
reg |= WILC_HAVE_LEGACY_RF_SETTINGS;
/*Set oscillator frequency*/
#ifdef XTAL_24
reg |= WILC_HAVE_XTAL_24;
#endif
/*Enable/Disable GPIO configuration for FW logs*/
#ifdef DISABLE_WILC_UART
reg |= WILC_HAVE_DISABLE_WILC_UART;
#endif
ret = p->hif_func.hif_write_reg(WILC_GP_REG_1, reg);
if (!ret) {
wilc_debug(N_ERR, "[wilc start]: fail write WILC_GP_REG_1 ...\n");
release_bus(RELEASE_ONLY);
/* EIO 5*/
ret = -5;
return ret;
}
/**
* Bus related
**/
p->hif_func.hif_sync_ext(NUM_INT_EXT);
ret = p->hif_func.hif_read_reg(0x1000, &chipid);
if (!ret) {
wilc_debug(N_ERR, "[wilc start]: fail read reg 0x1000 ...\n");
release_bus(RELEASE_ONLY);
/* EIO 5*/
ret = -5;
return ret;
}
/**
* Go...
**/
p->hif_func.hif_read_reg(WILC_GLB_RESET_0, ®);
if ((reg & BIT(10)) == BIT(10)) {
reg &= ~BIT(10);
p->hif_func.hif_write_reg(WILC_GLB_RESET_0, reg);
p->hif_func.hif_read_reg(WILC_GLB_RESET_0, ®);
}
reg |= BIT(10);
ret = p->hif_func.hif_write_reg(WILC_GLB_RESET_0, reg);
p->hif_func.hif_read_reg(WILC_GLB_RESET_0, ®);
release_bus(RELEASE_ONLY);
return (ret < 0) ? ret : 0;
}
void wilc_wlan_global_reset(void)
{
wilc_wlan_dev_t *p = &g_wlan;
acquire_bus(ACQUIRE_AND_WAKEUP);
p->hif_func.hif_write_reg(WILC_GLB_RESET_0, 0x0);
release_bus(RELEASE_ONLY);
}
int wilc_wlan_stop(void)
{
wilc_wlan_dev_t *p = &g_wlan;
u32 reg = 0;
int ret;
u8 timeout = 10;
/**
* TODO: stop the firmware, need a re-download
**/
acquire_bus(ACQUIRE_AND_WAKEUP);
ret = p->hif_func.hif_read_reg(WILC_GLB_RESET_0, ®);
if (!ret) {
PRINT_ER("Error while reading reg\n");
release_bus(RELEASE_ALLOW_SLEEP);
return ret;
}
reg &= ~BIT(10);
ret = p->hif_func.hif_write_reg(WILC_GLB_RESET_0, reg);
if (!ret) {
PRINT_ER("Error while writing reg\n");
release_bus(RELEASE_ALLOW_SLEEP);
return ret;
}
do {
ret = p->hif_func.hif_read_reg(WILC_GLB_RESET_0, ®);
if (!ret) {
PRINT_ER("Error while reading reg\n");
release_bus(RELEASE_ALLOW_SLEEP);
return ret;
}
PRINT_D(GENERIC_DBG, "Read RESET Reg %x : Retry%d\n", reg, timeout);
/*Workaround to ensure that the chip is actually reset*/
if ((reg & BIT(10))) {
PRINT_D(GENERIC_DBG, "Bit 10 not reset : Retry %d\n", timeout);
reg &= ~BIT(10);
ret = p->hif_func.hif_write_reg(WILC_GLB_RESET_0, reg);
timeout--;
} else {
PRINT_D(GENERIC_DBG, "Bit 10 reset after : Retry %d\n", timeout);
ret = p->hif_func.hif_read_reg(WILC_GLB_RESET_0, ®);
if (!ret) {
PRINT_ER("Error while reading reg\n");
release_bus(RELEASE_ALLOW_SLEEP);
return ret;
}
PRINT_D(GENERIC_DBG, "Read RESET Reg %x : Retry%d\n", reg, timeout);
break;
}
} while (timeout);
reg = (BIT(0) | BIT(1) | BIT(2) | BIT(3) | BIT(8) | BIT(9) | BIT(26) |
BIT(29) | BIT(30) | BIT(31));
p->hif_func.hif_write_reg(WILC_GLB_RESET_0, reg);
reg = (u32)~BIT(10);
ret = p->hif_func.hif_write_reg(WILC_GLB_RESET_0, reg);
release_bus(RELEASE_ALLOW_SLEEP);
return ret;
}
void wilc_wlan_cleanup(struct net_device *dev)
{
wilc_wlan_dev_t *p = &g_wlan;
struct txq_entry_t *tqe;
struct rxq_entry_t *rqe;
u32 reg = 0;
int ret;
perInterface_wlan_t *nic;
struct wilc *wilc;
nic = netdev_priv(dev);
wilc = nic->wilc;
p->quit = 1;
do {
tqe = wilc_wlan_txq_remove_from_head();
if (tqe == NULL)
break;
if (tqe->tx_complete_func)
tqe->tx_complete_func(tqe->priv, 0);
kfree(tqe);
} while (1);
do {
rqe = wilc_wlan_rxq_remove(wilc);
if (rqe == NULL)
break;
#ifndef MEMORY_STATIC
kfree(rqe->buffer);
#endif
kfree(rqe);
} while (1);
/**
* clean up buffer
**/
#ifdef MEMORY_STATIC
kfree(p->rx_buffer);
p->rx_buffer = NULL;
#endif
kfree(p->tx_buffer);
acquire_bus(ACQUIRE_AND_WAKEUP);
ret = p->hif_func.hif_read_reg(WILC_GP_REG_0, ®);
if (!ret) {
PRINT_ER("Error while reading reg\n");
release_bus(RELEASE_ALLOW_SLEEP);
}
PRINT_ER("Writing ABORT reg\n");
ret = p->hif_func.hif_write_reg(WILC_GP_REG_0, (reg | ABORT_INT));
if (!ret) {
PRINT_ER("Error while writing reg\n");
release_bus(RELEASE_ALLOW_SLEEP);
}
release_bus(RELEASE_ALLOW_SLEEP);
/**
* io clean up
**/
p->hif_func.hif_deinit(NULL);
}
static int wilc_wlan_cfg_commit(int type, u32 drvHandler)
{
wilc_wlan_dev_t *p = &g_wlan;
wilc_cfg_frame_t *cfg = &p->cfg_frame;
int total_len = p->cfg_frame_offset + 4 + DRIVER_HANDLER_SIZE;
int seq_no = p->cfg_seq_no % 256;
int driver_handler = (u32)drvHandler;
/**
* Set up header
**/
if (type == WILC_CFG_SET) { /* Set */
cfg->wid_header[0] = 'W';
} else { /* Query */
cfg->wid_header[0] = 'Q';
}
cfg->wid_header[1] = seq_no; /* sequence number */
cfg->wid_header[2] = (u8)total_len;
cfg->wid_header[3] = (u8)(total_len >> 8);
cfg->wid_header[4] = (u8)driver_handler;
cfg->wid_header[5] = (u8)(driver_handler >> 8);
cfg->wid_header[6] = (u8)(driver_handler >> 16);
cfg->wid_header[7] = (u8)(driver_handler >> 24);
p->cfg_seq_no = seq_no;
/**
* Add to TX queue
**/
if (!wilc_wlan_txq_add_cfg_pkt(&cfg->wid_header[0], total_len))
return -1;
return 0;
}
int wilc_wlan_cfg_set(int start, u32 wid, u8 *buffer, u32 buffer_size,
int commit, u32 drvHandler)
{
wilc_wlan_dev_t *p = &g_wlan;
u32 offset;
int ret_size;
if (p->cfg_frame_in_use)
return 0;
if (start)
p->cfg_frame_offset = 0;
offset = p->cfg_frame_offset;
ret_size = wilc_wlan_cfg_set_wid(p->cfg_frame.frame, offset, (u16)wid,
buffer, buffer_size);
offset += ret_size;
p->cfg_frame_offset = offset;
if (commit) {
PRINT_D(TX_DBG, "[WILC]PACKET Commit with sequence number %d\n", p->cfg_seq_no);
PRINT_D(RX_DBG, "Processing cfg_set()\n");
p->cfg_frame_in_use = 1;
if (wilc_wlan_cfg_commit(WILC_CFG_SET, drvHandler))
ret_size = 0;
if (linux_wlan_lock_timeout(&g_linux_wlan->cfg_event,
CFG_PKTS_TIMEOUT)) {
PRINT_D(TX_DBG, "Set Timed Out\n");
ret_size = 0;
}
p->cfg_frame_in_use = 0;
p->cfg_frame_offset = 0;
p->cfg_seq_no += 1;
}
return ret_size;
}
int wilc_wlan_cfg_get(int start, u32 wid, int commit, u32 drvHandler)
{
wilc_wlan_dev_t *p = &g_wlan;
u32 offset;
int ret_size;
if (p->cfg_frame_in_use)
return 0;
if (start)
p->cfg_frame_offset = 0;
offset = p->cfg_frame_offset;
ret_size = wilc_wlan_cfg_get_wid(p->cfg_frame.frame, offset, (u16)wid);
offset += ret_size;
p->cfg_frame_offset = offset;
if (commit) {
p->cfg_frame_in_use = 1;
if (wilc_wlan_cfg_commit(WILC_CFG_QUERY, drvHandler))
ret_size = 0;
if (linux_wlan_lock_timeout(&g_linux_wlan->cfg_event,
CFG_PKTS_TIMEOUT)) {
PRINT_D(TX_DBG, "Get Timed Out\n");
ret_size = 0;
}
PRINT_D(GENERIC_DBG, "[WILC]Get Response received\n");
p->cfg_frame_in_use = 0;
p->cfg_frame_offset = 0;
p->cfg_seq_no += 1;
}
return ret_size;
}
int wilc_wlan_cfg_get_val(u32 wid, u8 *buffer, u32 buffer_size)
{
int ret;
ret = wilc_wlan_cfg_get_wid_value((u16)wid, buffer, buffer_size);
return ret;
}
void wilc_bus_set_max_speed(void)
{
/* Increase bus speed to max possible. */
g_wlan.hif_func.hif_set_max_bus_speed();
}
void wilc_bus_set_default_speed(void)
{
/* Restore bus speed to default. */
g_wlan.hif_func.hif_set_default_bus_speed();
}
u32 init_chip(void)
{
u32 chipid;
u32 reg, ret = 0;
acquire_bus(ACQUIRE_ONLY);
chipid = wilc_get_chipid(true);
if ((chipid & 0xfff) != 0xa0) {
/**
* Avoid booting from boot ROM. Make sure that Drive IRQN [SDIO platform]
* or SD_DAT3 [SPI platform] to ?1?
**/
/* Set cortus reset register to register control. */
ret = g_wlan.hif_func.hif_read_reg(0x1118, ®);
if (!ret) {
wilc_debug(N_ERR, "[wilc start]: fail read reg 0x1118 ...\n");
return ret;
}
reg |= BIT(0);
ret = g_wlan.hif_func.hif_write_reg(0x1118, reg);
if (!ret) {
wilc_debug(N_ERR, "[wilc start]: fail write reg 0x1118 ...\n");
return ret;
}
/**
* Write branch intruction to IRAM (0x71 trap) at location 0xFFFF0000
* (Cortus map) or C0000 (AHB map).
**/
ret = g_wlan.hif_func.hif_write_reg(0xc0000, 0x71);
if (!ret) {
wilc_debug(N_ERR, "[wilc start]: fail write reg 0xc0000 ...\n");
return ret;
}
}
release_bus(RELEASE_ONLY);
return ret;
}
u32 wilc_get_chipid(u8 update)
{
static u32 chipid;
/* SDIO can't read into global variables */
/* Use this variable as a temp, then copy to the global */
u32 tempchipid = 0;
u32 rfrevid;
if (chipid == 0 || update != 0) {
g_wlan.hif_func.hif_read_reg(0x1000, &tempchipid);
g_wlan.hif_func.hif_read_reg(0x13f4, &rfrevid);
if (!ISWILC1000(tempchipid)) {
chipid = 0;
goto _fail_;
}
if (tempchipid == 0x1002a0) {
if (rfrevid == 0x1) { /* 1002A0 */
} else { /* if (rfrevid == 0x2) */ /* 1002A1 */
tempchipid = 0x1002a1;
}
} else if (tempchipid == 0x1002b0) {
if (rfrevid == 3) { /* 1002B0 */
} else if (rfrevid == 4) { /* 1002B1 */
tempchipid = 0x1002b1;
} else { /* if(rfrevid == 5) */ /* 1002B2 */
tempchipid = 0x1002b2;
}
} else {
}
chipid = tempchipid;
}
_fail_:
return chipid;
}
int wilc_wlan_init(wilc_wlan_inp_t *inp)
{
int ret = 0;
PRINT_D(INIT_DBG, "Initializing WILC_Wlan ...\n");
memset((void *)&g_wlan, 0, sizeof(wilc_wlan_dev_t));
/**
* store the input
**/
memcpy((void *)&g_wlan.io_func, (void *)&inp->io_func, sizeof(wilc_wlan_io_func_t));
/***
* host interface init
**/
if ((inp->io_func.io_type & 0x1) == HIF_SDIO) {
if (!hif_sdio.hif_init(inp, wilc_debug)) {
/* EIO 5 */
ret = -5;
goto _fail_;
}
memcpy((void *)&g_wlan.hif_func, &hif_sdio, sizeof(wilc_hif_func_t));
} else {
if ((inp->io_func.io_type & 0x1) == HIF_SPI) {
/**
* TODO:
**/
if (!hif_spi.hif_init(inp, wilc_debug)) {
/* EIO 5 */
ret = -5;
goto _fail_;
}
memcpy((void *)&g_wlan.hif_func, &hif_spi, sizeof(wilc_hif_func_t));
} else {
/* EIO 5 */
ret = -5;
goto _fail_;
}
}
/***
* mac interface init
**/
if (!wilc_wlan_cfg_init(wilc_debug)) {
/* ENOBUFS 105 */
ret = -105;
goto _fail_;
}
/**
* alloc tx, rx buffer
**/
if (g_wlan.tx_buffer == NULL)
g_wlan.tx_buffer = kmalloc(LINUX_TX_SIZE, GFP_KERNEL);
PRINT_D(TX_DBG, "g_wlan.tx_buffer = %p\n", g_wlan.tx_buffer);
if (g_wlan.tx_buffer == NULL) {
/* ENOBUFS 105 */
ret = -105;
PRINT_ER("Can't allocate Tx Buffer");
goto _fail_;
}
/* rx_buffer is not used unless we activate USE_MEM STATIC which is not applicable, allocating such memory is useless*/
#if defined (MEMORY_STATIC)
if (g_wlan.rx_buffer == NULL)
g_wlan.rx_buffer = kmalloc(LINUX_RX_SIZE, GFP_KERNEL);
PRINT_D(TX_DBG, "g_wlan.rx_buffer =%p\n", g_wlan.rx_buffer);
if (g_wlan.rx_buffer == NULL) {
/* ENOBUFS 105 */
ret = -105;
PRINT_ER("Can't allocate Rx Buffer");
goto _fail_;
}
#endif
if (!init_chip()) {
/* EIO 5 */
ret = -5;
goto _fail_;
}
#ifdef TCP_ACK_FILTER
Init_TCP_tracking();
#endif
return 1;
_fail_:
#ifdef MEMORY_STATIC
kfree(g_wlan.rx_buffer);
g_wlan.rx_buffer = NULL;
#endif
kfree(g_wlan.tx_buffer);
g_wlan.tx_buffer = NULL;
return ret;
}
u16 Set_machw_change_vir_if(struct net_device *dev, bool bValue)
{
u16 ret;
u32 reg;
perInterface_wlan_t *nic;
struct wilc *wilc;
nic = netdev_priv(dev);
wilc = nic->wilc;
/*Reset WILC_CHANGING_VIR_IF register to allow adding futrue keys to CE H/W*/
mutex_lock(&wilc->hif_cs);
ret = (&g_wlan)->hif_func.hif_read_reg(WILC_CHANGING_VIR_IF, ®);
if (!ret)
PRINT_ER("Error while Reading reg WILC_CHANGING_VIR_IF\n");
if (bValue)
reg |= BIT(31);
else
reg &= ~BIT(31);
ret = (&g_wlan)->hif_func.hif_write_reg(WILC_CHANGING_VIR_IF, reg);
if (!ret)
PRINT_ER("Error while writing reg WILC_CHANGING_VIR_IF\n");
mutex_unlock(&wilc->hif_cs);
return ret;
}